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Korostyński, M.; Sławek, J.;

Zekanowski, C. Two Rare Variants in

PLAU and BACE1 Genes—Do They

Contribute to Semantic Dementia

Clinical Phenotype? Genes 2021, 12,

1806. https://doi.org/10.3390/

genes12111806

Academic Editor: Mariarosa Anna

Beatrice Melone

Received: 12 October 2021

Accepted: 16 November 2021

Published: 17 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Laboratory of Neurogenetics, Mossakowski Medical Research Institute, Polish Academy of Sciences,
02-106 Warsaw, Poland; m.berdynski@imdik.pan.pl (M.B.); c.zekanowski@imdik.pan.pl (C.Z.)

2 Neurology Department, St. Adalbert Hospital, Copernicus PL, 80-462 Gdansk, Poland;
gdansk.ewa1@gmail.com (E.N.); jaroslaw.slawek@gumed.edu.pl (J.S.)

3 Division of Neurological and Psychiatric Nursing, Faculty of Health Sciences, Medical University of Gdansk,
80-462 Gdansk, Poland

4 Laboratory of Pharmacogenomics, Department of Molecular Pharmacology, Maj Institute of Pharmacology
Polish Academy of Sciences, 31-343 Krakow, Poland; gosborcz@if-pan.krakow.pl (M.B.);
michkor@if-pan.krakow.pl (M.K.)

5 Division of Nuclear Medicine, Faculty of Health Sciences, Medical University of Gdansk, 80-214 Gdansk,
Poland; bognabro@gumed.edu.pl

* Correspondence: kgaweda@imdik.pan.pl (K.G.-W.); emilia.sitek@gumed.edu.pl (E.J.S.)

Abstract: We have performed whole-genome sequencing to identify the genetic variants potentially
contributing to the early-onset semantic dementia phenotype in a patient with family history of
dementia and episodic memory deficit accompanied with profound semantic loss. Only very rare
variants of unknown significance (VUS) have been identified: a nonsense variant c.366C>A/p.Cys122*
in plasminogen activator, urokinase (PLAU) and a missense variant c.944C>T/p.Thr315Met in β-
site APP-cleaving enzyme 1 (BACE1)—along with known disease-modifying variants of moderate
penetrance. Patient-derived fibroblasts showed reduced PLAU and elevated BACE1 mRNA and
protein levels compared to control fibroblasts. Successful rescue of PLAU mRNA levels by nonsense-
mediated mRNA decay (NMD) inhibitor (puromycin) confirmed NMD as the underlying mechanism.
This is the first report of the PLAU variant with the confirmed haploinsufficiency, associated with
semantic dementia phenotype. Our results suggest that rare variants in the PLAU and BACE1 genes
should be considered in future studies on early-onset dementias.

Keywords: whole-genome sequencing (WGS); urokinase-type plasminogen activator (PLAU) hap-
loinsuficiency; β-site APP-cleaving enzyme 1 (BACE1); mtDNA polymerase gamma (POLG); seman-
tic dementia; atypical Alzheimer’s disease; primary skin fibroblasts; magnetic resonance imaging
(MRI); single-photon emission computed tomography (SPECT)

1. Introduction

Clinical diagnosis of dementia is often difficult and inconclusive due to overlapping
clinical presentations and neuropathology [1,2]. Moreover, the implementation of next-
generation sequencing methods revealed a complex genomic nature of disease phenotypes,
challenged the classical definition of genetic causality, and the concept of strictly monogenic
disorders, shifting the pathogenicity model from monogenic to oligogenic inheritance [3,4].

Here we present a patient with the phenotype of early-onset semantic dementia. The
diagnosis of atypical Alzheimer’s disease (AD) was also considered due to episodic memory
deficit accompanying profound semantic loss. Whole-genome sequencing (WGS) analysis
did not reveal any pathogenic/likely pathogenic variants, as defined by The American
College of Medical Genetics and Genomics (ACMG) criteria. Thus, we have selected the
most promising variants of unknown significance (VUS) in PLAU (Plasminogen Activator,
Urokinase) and BACE1 (β-site APP-cleaving enzyme 1) genes for which we performed
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functional in vitro analysis and discussed their putative contribution to the observed
clinical phenotype.

2. Materials and Methods
2.1. Whole-Genome Sequencing

Genomic DNA was extracted from peripheral blood leukocytes using a standard
salting-out procedure [5]. Then WGS was performed (Novogene, Beijing, China) according
to the following protocol: sequencing libraries were generated using NEBNext Ultra
II DNA Library Prep Kit for Illumina (New England Biolabs, Hitchin, UK) following
the manufacturers’ recommendations. Genomic DNA was randomly fragmented to a
size of 350 bp by Bioruptor, DNA fragments were size-selected with sample purification
beads. The selected fragments were end-polished, A-tailed, and ligated with the full-length
adapter. After the treatments, the fragments were filtered with beads again. Finally, the
libraries were analyzed for size distribution by Agilent2100 Bioanalyzer and quantified
using real-time PCR. Libraries were sequenced by Illumina high-throughput HiSeq X Ten
sequencer with paired-end sequencing strategy.

2.2. WGS Data Preprocessing

Raw read files were processed with Intelliseq Flow Annotation Pipeline (https://
intelliseq.com/, accessed on 31 July 2021) based on Cromwell (https://cromwell.readthedocs.
io/en/stable/, accessed on 31 July 2021). Within the pipeline, fastq file quality was assessed
with FastQC. Further, fastq files were then aligned to Broad Institute Hg38 Human Refer-
ence Genome with GATK 4.0.3. Duplicate reads were removed with Picard and base quality
Phred scores were recalibrated using GATK’s covariance recalibration. Variants were called
using GATK best practices. Identified variants were assessed using the Intelliseq Flow
annotation pipeline that implemented ACMG recommendations.

2.3. Quality Assessment

Mean sequencing depth for the whole genome was 24.95 and the mean genotype
quality (GQ) score for the whole-genome vcf was 83.75. 99.9% of genotypes had an
estimated probability of error <10%. Additional quality analysis was conducted for each of
the genes included in the panel (for both selected rare and all 368,460 variants identified in
the panel genes) and is available as Supplementary Table S1.

2.4. Rare Variant Analysis

Whole-genome sequencing identified 4,827,282 SNVs and small indels in the sample.
Further filtering was based on Phred quality scores, allele frequency in the ExAC (Exome
Aggregation Consortium) database (<5% for variants in genes associated with the disease
phenotype), association with Human Phenotype Ontology (HPO) terms, and predicted
pathogenicity. Variants with the following impact on protein and mRNA were retained:
missense, nonsense, frameshift, and splice site variants. Common and low impact variants
were then filtered out (with a max frequency threshold of 0.05 and minimal SnpEff predicted
impact on gene product set as MODERATE). Low-quality multiallelic variants (QUAL < 300)
were removed.

Annotated variants for genes from the defined gene list (Supplementary Table S2)
were then classified according to the American College of Medical Genetics and Genomics
(ACMG) criteria and prioritized. Selected variants were manually evaluated for quality in
IGV. PLAU and BACE1 variants were confirmed with Sanger sequencing (ABI 3130 Genetic
Analyzer, Applied Biosystems, Foster City, CA, USA) (Supplementary Figures S2 and S3).

2.5. Copy Number Variation Analysis

Structural variants (SVs) in selected gene panel were called with Intelliseq Flow
Structural Variants pipeline (https://intelliseq.com/, accessed on 14 August 2021). Within
the pipepline variants were called with lumpy/smoove (https://github.com/brentp/
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smoove, accessed on 14 August 2021) [6] and annotated with duphold [7]. SVs were then
filtered with the following parameters: QUAL > 30, del_cov_max = 0.7, dup_cov_min = 1.3,
min_snp_count = 4, het_max = 0.25.

2.6. Mutation Screening of the PGRN, MAPT and C9orf72 Genes

Sanger sequencing, genotyping and expansion analysis were performed using previ-
ously described protocols [8–10] using Genetic Analyzer 3130 and SeqScape v2.5 software
(Applied Biosystems).

2.7. Fibroblast Cultures and Inhibition of Nonsense-Mediated Decay (NMD)

Primary skin fibroblasts (obtained from the patient and age-matched, unrelated neu-
rologically healthy subjects—Supplementary Table S3) were collected and cultured as
previously described [11]. For NMD analysis primary fibroblast cultures were treated with
an NMD inhibitor, puromycin (100 µg/mL or water) (Sigma Aldrich, Saint Louis, MO,
USA) for 8 h [12,13].

2.8. mRNA Expression Analysis—Real Time PCR

RNA was extracted and reverse transcribed according to standard protocol with
QIAzol Lysis Reagent (Qiagen, Manchester, UK) and QuantiTect® Reverse Transcription kit
(Qiagen, Manchester, UK), respectively. Quantitative real-time PCR analysis was done with
RT HS-PCR Mix SYBR (A&A BIOTECHNOLOGY, Gdańsk, Poland) (primers are listed in
Supplementary Table S4), using a StepOne Plus system (Applied Biosystems, Foster City,
CA, USA). Changes in gene expression were determined with the ∆Ct method using GAPDH
levels for normalization. Similar results were obtained with PPIB as a normalizing gene.

2.9. Western Blot

Western blot was performed as previously described [11] with the following primary
antibodies: PLAU (Abcam, catalog number: ab169754, 1:1000), BACE1 (Cell Signaling, cat-
alog number: 5606, 1:500), GAPDH (Merck Millipore, catalog number: MAB374, 1:20,000).
The representative experiment result is shown.

2.10. Statistical Analysis

For each experiment, the relative values obtained from different biological replicates
(n ≥ 3) were used to calculate mean, standard deviations (SD) and statistical significance
in a two-tailed t-test (GraphPad Prism 6.0). p < 0.05 was considered significant. For
quantitative densitometric analysis of WB results, ImageJ software was used [14]. The
intensity value of each protein band was normalized to the respective GAPDH value.

Extended methods can be found in Supplementary Materials.

3. Results
3.1. Case Description

A 69-year-old patient, with university education and professional experience in
forestry and agriculture, was referred to our neurology outpatient clinic with a five year
history of cognitive dysfunction. When he was 64 (age at onset), he started experiencing
problems with planning chemical fertilizers’ application while running a large agricultural
company. His insight was initially preserved as he employed a new worker to help him
with the tasks he could no longer perform on his own. Progressive cognitive decline was
evident in the report provided by his family. He was no longer able to recognize fruit types,
he could not name trees or birds, despite his previous vast knowledge in this area. He
became very effusive, also to strangers. The patient had a strong family history of demen-
tia (Figure 1A). One of the proband’s paternal aunts was diagnosed with an unspecified
late-onset dementia that also progressed slowly. One of the proband’s brother presented
with a mild cognitive impairment with predominant semantic deficit. The results of his
neuropsychological examination are presented in a supplementary file (Supplementary
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Table S5). Both the proband’s father and the above-mentioned brother had marked cogni-
tive rigidity (Figure 1A).

At the time of the first clinical evaluation the general neurological examination did
not reveal any motor or sensory problems nor frontal release signs. There was no evidence
of depression or psychotic symptoms. His speech was fluent and effortless but empty. He
did not demonstrate any insight.

The neuropsychological assessment planned and executed by a neuropsychologist
showed dementia (Addenbrooke’s Cognitive Examination III: 59/100) (Supplementary
Table S6), which was consistent with the patient’s inability to perform complex daily life
activities. His speech was severely anomic. Phonology, syntax and prosody were not
affected. Phonemic fluency was initially preserved in contrast to very deficient semantic
fluency (Supplementary Table S7). He had a widespread semantic deficit, which affected
both verbal and visual semantics. He was unable to recognize many very famous faces.
His spatial skills were very well preserved which contrasted with a very poor semantic
memory as demonstrated by impaired drawing to command but good copying (Figure 1C).
He had episodic memory impairment and executive dysfunction, while the calculation
was very well preserved [15]. Praxis was unaffected in copying tasks that did not require
reference to semantics.
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Figure 1. Family history, brain imaging of the patient, and drawing/calculation tasks. (A). Patient’s family history, shaded
figures represent three family members who had some neuropsychiatric symptoms, but were not diagnosed with dementia;
(B). Mild atrophy of right temporal lobe (arrow) on transaxial MRI image (left panel); Reduced perfusion in right temporal
lobe (arrowhead) and slightly reduced perfusion, diffused in both frontal lobes in SPECT (right panel); Abbreviations: R-
right, L-left; MRI, magnetic resonance imaging; (C). Drawing, copying, and calculation tasks demonstrating the dissociation
between impaired semantics and well preserved visuospatial processing (inability to retrieve specific features of an object
with good visuoperceptual and visuoconstructive functions) and calculation. I A. Drawing a bicycle to a verbal command at
the age of 71. I B. Copy of a bicycle drawing at the age of 71. II. The calculation task was performed correctly at the age of
71, as well as at the age of 72. III A. Drawing a bicycle to a verbal command at the age of 72. III B. Copy of a bicycle drawing
at the age of 72.

The pattern of progression in neuropsychological assessment, as well as behavioral
deterioration over the next years was typical for semantic dementia/semantic variant of
a primary progressive aphasia [16,17]. He remained a good swimmer and dancer during
the next few years. He continued to enjoy numerical paper and pencil games, especially
Sudoku. However, he could no longer handle computer games. At the age of 71, he could
not understand Easter celebrations nor understand the word “glass”. Face recognition
deficits progressed. At the age of 72 semantic deficit progressed significantly e.g., he
was unable to recognize snow and tried to eat a dishwasher tablet. Instead of using his
wife’s first name, he called her “my girl”. Parsimony appeared. He also required constant
supervision due to compulsive behavior and disinhibition, e.g., during a walk he stole
chips from a child who was passing by. He was also very agitated and had transient
psychotic symptoms. At this time neuropsychological assessment had to be shortened due
to impatience and deficient verbal comprehension. As he required 24h supervision and
nursing care due to severe dementia and incontinence, he was institutionalized at the age
of 73 and deceased in September 2021 at the age of 76.
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MRI performed at the age of 67 and 69 revealed mild bilateral temporal atrophy that
became more pronounced on the right side at the age of 72 (Figure 1B, left panel)

Single-photon emission computed tomography (SPECT) was conducted when he was
70 and showed an anterior pattern of hypoperfusion with bilateral frontal and temporal
involvement with more pronounced deficits in the superior frontal gyrus and the temporal
lobe on the right side (Figure 1B, right panel).

3.2. Genetic Analyses

Initial genetic analysis of the patient’s DNA has excluded mutations in MAPT, PGRN,
and C9orf72 which are the most common genetic causes of the FTLD spectrum [18] and
subsequently whole-genome sequencing was performed. Neither pathogenic or likely
pathogenic variants (P/LP variants) nor high-confidence structural variants have been
identified according to the ACMG criteria for pathogenicity [19]. However, very rare
variants of unknown significance (VUS) have been found in PLAU, BACE1, and POLG
genes along with common established risk factors in APOE and MAPT that could contribute
to the observed phenotype (Table 1, and Supplementary Table S8).

Table 1. The highest impact variants detected in the patient.

Gene HGVS 1 DNA/Protein Predicted Effect MAF
gnomAD CADD 2

Rare
variants

PLAU heterozygous
c.366C>A/p.Cys122stop

mRNA nonsense
mediated decay,

haploinsuficiency
- 38

BACE1 heterozygous
c.944C>T/p.Thr315Met

missense (splicing
variant) 0.00002389 29.5

POLG heterozygous
c.3436C>T/p.Arg1146Cys missense 0.00018695 35

Common
variants

APOE ε2/ε4 - - -

MAPT H1/H1 - - -
1 HGVS—Human Genome Variation Society; 2 CADD—Combined Annotation Dependent Depletion.

3.2.1. PLAU (Urokinase-Type Plasminogen Activator)

PLAU is a secreted serine protease that converts plasminogen to plasmin, triggering
the downstream fibrinolysis cascade (#191840, OMIM). The mutation in the PLAU gene
(NM_002658.6 ENST00000372764.4, c.366C>A;p.Cys122*) (Table 1, Supplementary Figure S2A)
has been classified as a high confidence loss of function variant with the ACMG score of
0.6 (Supplementary Table S7). The PLAU c.366A has been previously reported only in the
ALFA (for Alzheimer and Families) project (MAF = 0.00005; 1/21336), a research platform
to identify early pathophysiological features of AD [20]. PLAU c.366C>A was absent
from gnomAD (11.10.2021) and in Polish WGS samples (n = 287, an in-house database):
sportsmen (n = 102); patients with Tourette syndrome (n = 129), and healthy controls (n = 56).

PLAU position c.366 is highly evolutionarily conserved according to PhastCons (1.0;
high: >0.93) and GERP = 5.68 (high: >3.26) and C>A substitution introduces a stop codon
in exon 5 (out of 11). As a consequence, a fraction of transcripts is predicted to undergo
nonsense-mediated mRNA decay (NMD) which was confirmed by the successful rescue of
PLAU mRNA levels (Figure 2A) and PLAU mutant allele (Supplementary Figure S2B) by an
NMD inhibitor, puromycin [12,13]. Accordingly, the PLAU mRNA and protein levels were
decreased in the patient’s fibroblasts compared to neurologically healthy, age-matched
control individuals (Figure 2A,B).

3.2.2. BACE1 (β-Site APP-Cleaving Enzyme 1, Beta-Secretase 1)

BACE1 (# 604252, OMIM) is a transmembrane aspartic protease that catalyzes the
first step in the formation of amyloid-beta (Ab) peptides from amyloid precursor protein
(APP) [21]. Amyloid-beta peptides build amyloid-beta plaques that accumulate in the
brains of AD patients [21]. Since BACE1 levels/activity are elevated in AD brains and
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fluids, the inhibition of this β-secretase has been extensively tested in clinical trials as a ther-
apeutic strategy for AD [21]. c.944C>T variant (NM_012104.6 ENST00000313005.11, Table 1,
Supplementary Figure S3) was predicted to be pathogenic by six programs: DANN, EIGEN,
FATHMM-MKL, LIST-S2, M-CAP, and MutationTaster, and to affect splicing (Human Splic-
ing Finder) (Supplementary Table S9). There was no evidence of additional/aberrant
mRNA isoforms (Supplementary Figure S4). However, we have found elevated BACE1
mRNA and protein levels in patient’s fibroblasts compared to controls (Figure 2C,D).

Other identified variants potentially contributing to the clinical phenotype are pre-
sented in Supplementary Table S9, filtering criteria are described in Materials and Methods.
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CTRL2, CTRL3) could be rescued upon puromycin treatment (PURO) (left panel); As a positive
control for NMD, the Down syndrome critical region 1 (DSCR1) gene was used (right panel); as
a control for even cDNA input in RT-PCR GAPDH gene was used. (B) Decreased PLAU protein
level in patient-derived fibroblasts (PATIENT) compared to control fibroblasts (CTRL1, CTRL2);
densitometric analysis of PLAU protein level (n = 3), (right panel) (C) Increased BACE1 mRNA level
in the patient (PATIENT) compared to control fibroblasts (CTRL1, CTRL2, CTRL3); (D) Increased
BACE1 protein level in the patient compared to control fibroblasts (CTRL1, CTRL2) (left panel),
densitometric analysis of BACE1 protein level (n = 3), (right panel); * p < 0.05; ** p < 0.01.

4. Discussion

Overlapping features of dementia phenotypes pose a considerable challenge for clini-
cians, especially semantic dementia, which in most cases is considered to be sporadic [22].

In our patient prominent deficits in both verbal and visual semantics, face recognition
and episodic memory were present, consistent with the clinical presentation of a right
temporal variant of frontotemporal dementia (rtvFTD) [23]. However, the changes observed
in neuroimaging were bilateral with only slight right-sided predominance, so his clinical-
radiological presentation did not fully correspond to the rtvFTD. The pattern of semantic
impairment in this patient showed that limiting SD to a semantic variant of a primary
progressive aphasia (svPPA) according to Gorno-Tempini et al. criteria [24] obscures the
global semantic deficit. Although some patients may be classified as svPPA or rtvFTD
our case presented with a mixed pattern of deficits, corresponding to the previous Lund-
Manchester criteria of SD [25].

The disease duration was relatively long in the proband (12 years) and his affected
relatives. Of note, long disease duration is typical for SD [26], unlike other early-onset
dementias, which have a rather fast slope of progression.

The possible hereditary nature of semantic dementia has been recently shown in
rtvFTD [27]. The potential association of psychotic symptoms in one of the proband’s
brothers with FTD cannot be excluded, although in FTD psychotic symptoms are usually
associated with C9orf72 mutation [28].

While the bioinformatic analysis of WGS results revealed no pathogenic or likely
pathogenic variants, in vitro functional analyses suggested that the very rare variants of
unknown significance in PLAU (c.366C>A; p.Cys122*), and BACE1 (c.944C>T; p.Thr315Met)
could contribute to the disease phenotype.

To date, only heterozygous tandem duplications of PLAU have been found to cause the
disease phenotype of autosomal dominant Quebec platelet disorder (QPD, # 601,709 OMIM).
QPD is a bleeding disorder due to a gain-of-function defect in fibrinolysis with significantly
increased PLAU levels in patient’s platelets, who showed delayed onset bleeding after
vascular damage (e.g., surgery). To our knowledge, p.Cys122* (Table 1), is the first PLAU
variant with the confirmed haploinsufficiency detected in a patient presenting semantic
dementia phenotype. The loss-of-function (LOF) variants of the PLAU gene have not
been previously reported in humans, and the consequences of PLAU deficiency have
been studied only in mouse models. Mice lacking PLAU showed a reduced spontaneous
exploration of the surrounding environment, impaired post-injury recovery [29,30], and
had elevated amyloid-beta (Ab42 and Ab40) levels in plasma [31]. PLAU deficiency in
mice also led to delayed wound healing with an abnormal angiogenic pattern [32]. On the
other hand, Ab aggregates induced PLAU expression leading to increased plasmin, which
in turn, degraded both aggregated and non-aggregated forms of Ab suggesting a negative
feedback loop [33].

Interestingly, genotypes C/T and T/T of a missense PLAU variant in exon 6 (c.422T>C,
Leu141Pro, rs2227564) have been previously associated with elevated plasma Ab42 levels
and the increased LOAD risk (late-onset AD) [31,34], although the data remained contro-
versial [35,36] (see also meta-analysis on http://www.alzgene.org, accessed on 5 October
2021). While the Pro141Leu variant seems to bind fibrin aggregates more efficiently [37]

http://www.alzgene.org


Genes 2021, 12, 1806 9 of 12

the exact molecular mechanism underlying its action is not known. However, our patient
carried a genotype C/C at the position c.422. Moreover, other rare missense and nonsense
single nucleotide variants (SNVs) in PLAU (p.T86A, p.H149Y, and p.C151F) have been
identified in patients with multiple sclerosis (MS), an inflammatory disease characterized
by myelin loss and neuronal dysfunction [38]. Finally, PLAU has also been identified as
a frailty biomarker in aging and age-related diseases [39]. It can be speculated that the
decreased PLAU levels due to p.Cys122* variant could lead to the dysfunction of fibrinoly-
sis cascade and inefficient blood clots dissolution. However, our patient did not have any
history of thrombotic disorders.

While patients with SD showed predominantly TDP-43 type C brain pathology, other
pathology types, i.e., FTLD-TDP types A and B, Tau-positive (FTLD-tau) and Alzheimer’s
disease (AD) pathology have been reported in 17% up to 32% of SD cases [22,40]. A
recent neuropathological report suggests that rtvFTD in particular may be caused by other
pathologies apart from FTLD-TDP type C [41]. It highlights the distinction between svPPA
and rtvFTD. Unfortunately, in our case the diagnosis of SD (rtvFTD) was not supported by a
definite exclusion of Alzheimer’s disease pathology through cerebrospinal fluid biomarker
testing, amyloid-PET (Positron Emission Tomography) or neuropathological examination.
For this reason, it cannot be excluded that the patient had amyloid-beta neuropathology.
That speculation is strengthened by the fact that he showed several features of atypical AD.
It is worth noting that the increased BACE1 mRNA/protein levels (Table 1, Figure 2C,D)
could possibly increase the amyloid-beta load and in this respect act in synergy with PLAU
deficiency [31]. It is also worth mentioning that the patient’s other brother was diagnosed
with paranoid schizophrenia (Figure 1A), in which BACE1 could play an important role [42].
To date, only the impact of common BACE1 polymorphisms on AD risk has been studied,
yielding discordant results (see also meta-analysis on http://www.alzgene.org, accessed
on 5 October 2021).

In addition, we report a POLG variant (mtDNA polymerase gamma; NM_002693.3
ENST00000268124.9, c.3436C>T, p.Arg1146Cys; Table 1), as it has been described previously
in autosomal-dominant progressive external ophthalmoplegia type 1 (adPEO1) [43]. The
pathogenic status of POLG p.Arg1146Cys variant is controversial and our patient has
not shown any symptoms of adPEO1. However, since mitochondrial impairment is a
common mechanism of many neurodegenerative disorders, it could be speculated that
variants interfering with the mitochondrial function could aggravate the phenotype. This
is also suggested by the fact that another POLG mutation (p.Y955C) has been associated
previously with Alzheimer’s pathology [44].

Finally, known moderate-impact variants such as APOE (ε2, ε4), which translates into
a threefold greater risk of developing AD by age of 75 y. [45], as well as MAPT H1/H1
haplotype, previously associated with an increased AD risk [46] (Table 1), may contribute
to the observed clinical phenotype.

Although our functional analyses suggested that PLAU and BACE1 variants had a
biological impact, further functional and segregation studies are needed to clarify their
pathogenic status. Overall, it could be envisioned that more complex patterns of inheritance
including oligogenic inheritance may account for part of early-onset dementia cases. How-
ever, the discrimination between causative and modifying variants, and insignificant ones
is one of the greatest challenges of medical genetics. The concept of oligogenic inheritance
should influence not only the approach to gene identification but also genetic testing and
counseling [47].

5. Conclusions

Our findings suggest that future genetic analyses of early-onset dementia cases, espe-
cially those with slow disease progression, should take into account very rare variants in the
PLAU and BACE1 genes, that both are responsible for the regulation of amyloid-beta levels.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12111806/s1, Table S1: Quality analysis conducted for each gene included in the
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panel; Table S2: List of genes selected for variant analysis; Table S3: Control fibroblast lines used
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