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Effects of Aging on the Obstacle 
Negotiation Strategy while 
Stepping over Multiple Obstacles
Jung Hung Chien, Jerod Post & Ka-Chun Siu

Forty-seven percent of falling accidents in older adults are caused by tripping over obstacles. 
Understanding what strategies are involved in obstacle negotiation in older adults could reduce fall 
risks. There is a paucity of research investigating how healthy adults negotiate multiple obstacles, 
which may better reflect the complexity of the real environment. The presence of a second obstacle 
has induced mixed results in the obstacle negotiation of healthy older adults with the interval between 
obstacles two steps apart. This study extended the knowledge to understand what strategies healthy 
younger and older adults used to step over two obstacles placed at three-step-length apart. Twenty 
healthy subjects performed 2 tasks: level ground walking and stepping over two obstacles. The height 
of each obstacle was set at 10% of subjects’ leg height. We found that aging significantly increased 
the toe clearance in leading and trailing legs when stepping over the obstacles at a three-step-length 
interval. Toe clearance was higher while stepping over the second obstacle than the first one in older 
adults. These results had two-fold meanings: the three-step-length interval was long enough to trigger 
the adjustment of the obstacle negotiation strategy, and aging led older adults to use conservative 
negotiation strategies.

Falls are serious health problems for older adults. One-third of Americans over the age of 65 experience a fall at 
least once per year1–3. Specifically, forty-seven percent of falling accidents are caused by tripping over obstacles1,4. 
These falls lead to more than 2.8 million injuries annually, and a total cost reaching $3.4 billion, including 800,000 
hospitalizations and more than 27,000 deaths5. Thus, understanding what strategies are involved in obstacle nego-
tiation in older adults has become an important undertaking.

The age-related effect on “single” obstacle negotiation has been well documented6–13. The most consistent 
observation across studies comparing healthy older to younger adults is a significant increase in the elevation of 
the swing leg over an obstacle in an effort to maintain a safe elevation distance between the swing foot and the 
obstacle6–9. Further, a shorter step length, an altered toe-off-to-obstacle interval (horizontal distance from the 
obstacle to the location where toe off) before stepping over the obstacle, and a shorter obstacle-to-heel strike 
interval (horizontal distance from the obstacle to the location where heel strike) after stepping over the obstacle 
have also been observed in older adults7–9,11. From a biomechanical point of view, a shorter step length induces a 
slower walking speed in older adults while negotiating the obstacle, and a slower walking speed ensures minimal 
requirement for torso momentum to maintain stability of the upper body8. At the same time, large hip rotation 
angles help an older adult elevate the leg high enough to step over the obstacle6,7,14.

These changes of gait kinematics in older adults might be due to the deterioration of sensory (visual, propri-
oceptive, and vestibular) systems12,13,15, and the reduction of muscle strength16. The deteriorations in vision, pro-
prioceptive, and visual-spatial cognition leads to the adoption of conservative strategies in older adults (shorter 
step length, slower walking speed, shorter obstacle-to-heel strike interval, smaller knee joint flexion and greater 
ankle dorsiflexion when heel-strike of leading leg after stepping over the obstacles, larger hip joint flexion at the 
moment of passing the obstacle) to allow for increased control of the upper torso12,13,15. Moreover, muscle weak-
ness has a negative impact on mobility, significantly decreasing push-off power16.

From a neuro-physiological point of view, these biomechanical changes while negotiating an obstacle in older 
adults could be due to the attenuation of executive function17. Efficient obstacle elevation requires high cogni-
tive processes such as strategically planning to step over obstacles through vision18, the real-time monitoring of 
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changes in the environment, and the adjustment of future actions using proprioceptive feedback from the trailing 
leg19. These functions can be reduced in older adults due to the deterioration of the prefrontal cortex20, which is 
involved in decision making and the controlling and planning of complex cognitive behavior. Therefore, older 
adults need more time to negotiate the obstacles than young adults. In addition, this deterioration of executive 
function has been related to the reductions in step length21.

Regardless of the alteration of strategies involved in obstacle negotiation in older adults reported in previous 
studies, most healthy older adults still can successfully complete obstacle negotiation without tripping over the 
obstacle. Successful obstacle negotiation requires that one leg steps over the obstacle first (leading leg), followed 
by the other leg (trailing leg). The trajectory of the leading leg differs from the trajectory of trailing leg. In addi-
tion, the maximum elevation of the trailing leg, which cannot be aided by vision, is lower than that of the leading 
leg10. Two hypotheses have been suggested to explain this phenomenon: (1) vision pre-programming18 and, (2) 
unilateral and bilateral transfer19. Although visual information is absent as the trailing leg steps over the obstacle, 
the trailing leg can successfully negotiate the obstacle without tripping. It is likely that vision plays an important 
role in recognizing the shape and height of obstacles for the take-off location and trajectory of the trailing leg to 
be determined in advance18. Meanwhile, the somatosensory sensory system plays a crucial role in transferring the 
height and shape information from the leading to the trailing leg19.

Surprisingly, all of the aforementioned studies only focus on “single” obstacle negotiation. However, inves-
tigating the effect of age on single obstacle negotiation may not reflect the complexity of the real world. To the 
best of our knowledge, there are only four existing studies that attempt to understand how humans negotiate 
multiple obstacles8,22–24. Krell and Patla indicated that the toe-off-to-obstacle distance of the trailing leg is related 
to the distance between the two obstacles in young adults22. If only one-step length between two obstacles is 
allowed, the toe-off-to-obstacle distance is shortened significantly while stepping over the second obstacle22. On 
the other hand, if two-step length is allowed, the toe-off-to-obstacle distance over the second obstacle shows no 
difference in comparison to that over the first22. However, if the relative distance between two obstacles is longer 
than two-step length, the toe-off-to-obstacle distance is shortened again. This previous study confirms that vision 
information can be used in the pre-programming of the trajectory of the trailing leg by around two steps away. 
In a follow-up study, a significantly decreased toe clearance in the trailing leg is observed in healthy young adults 
while stepping over the second obstacle in comparison to the first23. This result infers that young adults could 
learn the shape and height of obstacles from stepping over the first obstacle and then use this learned experience 
for stepping over the second obstacle.

While investigating the effect of aging on multiple obstacle crossing, there is only a significant aging effect on 
placing the heel of the leading leg closer to the obstacle in older adults than in young adults after stepping over 
the obstacle8. However, the presence of the second obstacle does not affect the obstacle negotiation strategy in 
young and older adults when two-step length between obstacles is allowed8. A recent study that investigates the 
negotiation of multiple obstacles in healthy older adults and in patients with Parkinson’s disease, indicates that the 
presence of a second obstacle increases stride duration in both groups when two-step length between obstacles 
is provided24. The rationale is that both healthy older adults and patients with Parkinson’s disease require more 
time to plan and execute adjustments due to the presence of the second obstacle, to ensure success of obstacle 
negotiation24. These four studies have already presented mixed results that clearly highlight the importance of 
continued research in the area of multiple obstacle negotiation, specifically when the intervals between multiple 
obstacles are different.

In the current study, we extended the understanding of the effect of aging on multiple obstacle negotiation strat-
egies when an interval of three-step-length between two identical obstacles was allowed. By using this method, the 
leading and trailing legs would be altered in order to step over two obstacles. We also attempted to answer these 
questions: (1) Would age affect kinematics (i.e. joint angles and spatial gait parameters) while stepping over obsta-
cles? (2) Would obstacle negotiation strategies be similar between the first obstacle and the second obstacle? (3) 
Would an interaction effect between age and obstacle exist while negotiating two obstacles? Four obstacle negotia-
tion events were investigated to address above questions: the moment when both the leading and trailing leg crossed 
the obstacle, the moment when the heel of leading leg contacted the floor (heel-strike) after stepping over the obsta-
cle, and the moment when the toe of the trailing leg lifted off the floor (toe-off) before stepping over the obstacle. The 
dependent variables were the spatiotemporal gait kinematics at these four events. Each spatial gait parameter was 
normalized to leg length to account for between-subjects differences. We hypothesized that: (1) older adults would 
increase the toe clearance in both legs and decrease the obstacle-to-heel strike distance of the leading leg; (2) the 
presence of the second obstacle placed three steps away from the first one would increase the toe clearance in both 
legs and increase the obstacle-to-heel strike distance of the leading leg and (3) the toe clearance would be higher in 
older adults than in young adults while stepping over the second obstacle.

Results
No failure of obstacle negotiation or fall was observed in this study in either the young or the older adult group. In 
addition, adding gender as a covariate in the statistical model did not alter the major findings.

Age effects (Hypothesis #1). We hypothesized that older adults would increase toe clearance in both legs 
and decrease the obstacle-to-heel strike distance of the leading leg.

 (1) Walking speed during level walking (unobstructed): Older adults (1.03 ± 0.18 m/s) walked significantly 
slower than younger adults (1.23 ± 0.19 m/s, p = 0.036).

 (2) Spatial gait parameters (Fig. 1): Significantly higher normalized toe clearances of the leading leg 
(F1,17 = 4.57, p = 0.047) and the trailing leg (F1,17 = 18.91, p < 0.0001) were found in older in comparison to 
younger adults, when either the leading or trailing leg crossed the obstacle.
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 (3) Joint Angles (Table 1): At the moment when either the leading or trailing leg crossed the obstacle, a signif-
icant age effect was observed at the hip joint of the leading leg (F1,17 = 10.51, p = 0.005), and of the trailing 
leg (F1,17 = 6.39, p = 0.022). In addition, a significant age effect was found at the knee joint (F1,17 = 4.67, 
p = 0.045) and at the ankle joint (F1,17 = 17.05, p = 0.001) at the heel-strike of the leading leg after stepping 
over the obstacle. Moreover, a significant age effect was observed at the knee joint (F1,17 = 7.29, p = 0.015) 
at the toe-off of the trailing leg before stepping over the obstacle. Further values are provided in Table 1.

Obstacle effects (Hypothesis #2). We hypothesized that the presence of the second obstacle placed 
three steps away from the first one would lead to an increase in toe clearance in both legs and increase the 
obstacle-to-heel strike distance of the leading leg.

 (1) Spatial gait parameters (Fig. 2): A significant effect of obstacle was found in the normalized toe clearance 
of the trailing leg (F1,17 = 15.65, p = 0.001) at the moment when the trailing leg crossed the obstacle, and 
in the normalized obstacle-to-heel-strike distance of the leading leg (F1,17 = 16.97, p = 0.001). The results 
showed that subjects significantly increased the toe clearance of the trailing leg and the obstacle-to-heel-
strike distance of the leading leg while stepping over the second obstacle as compared to the first one.

 (2) Joint Angles (Table 1): A significant effect of obstacle was found at the hip joint at three events – the heel-
strike of the leading leg after stepping over the obstacle (F1,17 = 5.57, p = 0.031), the moment when the 
trailing leg crossed the obstacle (F1,17 = 4.66, p = 0.045), and the moment when the leading leg crossed the 
obstacle (F1,17 = 4.95, p = 0.04). In addition, a significant major obstacle effect was found at the knee joint 
(F1,17 = 6.19, p = 0.024) and at the ankle joint (F1,23 = 10.26, p = 0.005) at the moment when the trailing leg 
crossed the obstacle. Finally, a significant effect of obstacle was found at the ankle joint at the toe-off of the 
trailing leg while stepping over the obstacle (F1,17 = 13.24, p = 0.002).

The Interaction between the age effect and obstacle effect (Hypothesis #3). The toe clearance 
was higher in older adults than in young adults while stepping over the second obstacle.

 (1) Spatial gait parameters (Table 1 and Fig. 3): A significant interaction was found in the step length 
(F1,17 = 19.90, p < 0.0001), step time (F1,17 = 22.77, p < 0.0001), normalized obstacle-to-heel-strike distance 
(F1,17 = 8.87, p = 0.008) at the heel-strike of the leading leg, the normalized toe clearance (F1,17 = 4.50, 
p = 0.049) at the moment when the trailing leg crossed the obstacle, and the normalized toe-off-to-obstacle 
distance at toe-off of the trailing leg (F1,17 = 5.22, p = 0.035). The post-hoc pairwise comparisons showed 
that younger adults had longer normalized obstacle-to-heel distances of the leading leg while crossing 
the second obstacle compared to the first obstacle (t(9) = −4.89, p = 0.0008). Moreover, they showed 
longer normalized obstacle-to-heel distances of the leading leg than those of the older adults (t(18) = 2.21, 

Figure 1. Main effect of age on multiple obstacle negotiation. * represents the significant age effect at the toe 
clearance of leading and trailing legs.
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Step Time (s) Step length

Ob1
Young Older Young Older

0.41(0.01) 0.52(0.02) Ob1 0.32(0.07) 0.29(0.07)

Ob2 0.39(0.01)& 0.54(0.02)!,& Ob2 0.38(0.05)& 0.26(0.09)!,&

Toe Clearance of Leading Leg while stepping over the obstacle

Ob1

Hip*,# Knee Ankle

Young Older Young Older Young Older

47.22(4.86) 54.45(5.08) 86.23(13.59) 80.78(4.54) −3.07(3.66) −5.54(6.22)

Ob2 44.29(5.59) 52.89(5.63) 84.99(14.96) 82.49(7.58) −1.36(4.26) −4.28(4.89)

Toe Clearance of trailing Leg while stepping over the obstacle

Ob1

Hip*,# Knee# Ankle#

Young Older Young Older Young Older

17.71(5.44) 18.64(5.13) 91.55(7.26) 96.28(7.06) −8.05(5.78) −7.81(5.76)

Ob2 17.71(4.79) 26.77(5.79)!,& 95.62(8.21) 99.94(6.46) −11.67(8.51) −11.77(8.89)

Heel-Strike of the leading leg after stepping over obstacles

Ob1

Hip# Knee* Ankle*

Young Older Young Older Young Older

18.25(2.61) 17.27(3.85) 8.63(3.58) 5.01(4.32) −7.12(5.30) −12.33(4.03)!

Ob2 17.53(1.99) 15.24(2.94) 7.52(4.32) 4.56(4.03) −4.33(4.26) −14.00(3.29)!

Toe-off of the trailing leg before stepping over obstacles

Ob1

Hip Knee* Ankle#

Young Older Young Older Young Older

−10.03(2.39) −9.91(2.95) 24.35(3.16) 18.43(5.69) 8.73(4.56) 9.66(7.12)

Ob2 −10.61(2.55) −8.43(4.73) 24.28(4.36) 20.05(7.27) 12.46(5.63) 12.30(6.84)

Table 1. Step time (s), Normalized Step length, Joint angles (degree) at four obstacle negotiation events – toe 
clearance of leading leg  while stepping over the obstacle, toe clearance of trailing leg while stepping over the 
obstacle, Heel-Strike of the leading leg after stepping over obstacles, and Toe-Off of the trailing leg before 
stepping over obstacles. * represents that there was a significant main effect of age and # represents that there 
was a significant main effect of obstacle, ! represents that there was a significant difference between cell means 
for corresponding age group (young vs older) and & represents that there was a significant statistical difference 
between cell means for corresponding obstacles (Ob1 vs Ob2). Ob1: first obstacle, Ob2: second obstacle. 
Positive value: hip flexion, knee flexion, ankle dorsi-flexion. Negative value: hip extension, knee extension, ankle 
plantar-flexion.

Figure 2. Main effect of obstacle on multiple obstacle negotiation. * represents the significant obstacle effect at 
the toe clearance of trailing legs and the heel-strike of leading legs.
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p = 0.04). The post-hoc pairwise comparisons indicated that older adults had higher normalized toe clear-
ances of the trailing leg while crossing the second obstacle compared to the first obstacle (t(9) = −4.85, 
p < 0.001). Moreover, older adults showed higher normalized toe clearances of the trailing leg than young 
adults over both the first obstacle (t(18) = −2.51, p = 0.022) and the second obstacle (t(18) = −2.32, 
p = 0.032). Significant interactions were found in step time (F1,17 = 22.77, p < 0.001) and step length 
(F1,17 = 19.90, p < 0.001). The post-hoc pairwise comparisons revealed that step length was significantly 
shorter in older adults than in young adults while crossing the second obstacle. Young adults significantly 
decreased their step time while crossing the second obstacle in comparison to the first one (t(9) = 4.97, 
p = 0.001); however, older adults significantly increased their step time while crossing the second obstacle 
in comparison to the first one (t(9) = −2.65, p = 0.026). The post-hoc pairwise comparisons also showed 
that the step time was significantly longer in older adults than in young adults while crossing the second 
obstacle (t(18) = −2.53, p = 0.021).

 (2) Joint Angle (Table 1): A significant interaction was found at the ankle joint at the heel-strike of the leading 
leg after stepping over the obstacle (F1,17 = 8.22, p = 0.011), and at the hip joint at the moment when the 
trailing leg crossed the obstacle (F1,17 = 7.89, p = 0.012). The post-hoc pairwise comparisons showed that 
older adults dorsi-flexed less than younger adults at the heel-strike after stepping over both obstacles (Ob1: 
t(18) = −5.68, p < 0.001; Ob2: t(18) = −2.47, p = 0.024) and flexed the hip joint more than younger adults 
while stepping over the second obstacle (t(18) = −3.81, p = 0.001).

The Effect size. For the significant interaction between obstacle and age, the partial eta squared was 0.539 
for step length, 0.573 for step time, 0.178 for the distance-to-heel-stride of leading leg, 0.091 for toe clearance of 
the trailing leg, 0.326 for ankle joint at the heel-strike after stepping over the obstacle, 0.17 for the hip joint at the 
moment when the trailing leg crossed the obstacle. The partial eta squared values revealed a moderate to large 
size effect25.

Discussion
In the current study, we investigated the strategies involved in multiple obstacle negotiation in both healthy young 
and older adults when obstacles were placed three-step-length apart. We attempted to answer three questions: 
1) Would age affect kinematics (joint angles and spatial gait parameters) while stepping over two obstacles? 2) 
Would the obstacle negotiation strategy be similar between stepping over the first obstacle and the second obsta-
cle? 3) Would an interaction between age and obstacle effect exist? Our findings supported our hypotheses.

Influence of Age on Multiple Obstacles Negotiation Strategy. Aging increased the toe clearance in 
both the leading and trailing legs. Previous studies have found that age affects kinematic parameters during 
“single” obstacle negotiation6,7,14. The current results extended the existing knowledge by revealing that the effect 
of aging also increased the toe clearance in both leading and trailing legs while stepping over “multiple” obsta-
cles. It might be that older adults selected conservative strategies (higher toe clearance and shorter step length) 
to ensure sufficient leg elevation to safely step over obstacles regardless of whether there was a single or multiple 

Figure 3. The post hoc pairwise comparisons of the marginal cell means. & represents the significant differences 
between two obstacles in young adults; # represents the significant differences between two obstacles in older 
adults; $ represents the significant differences between young and older adults.
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obstacles6,7,14. Under this conservative strategy in older adults (greater vertical movement and shorter horizon-
tal movement), the use of the hip joint was more crucial than the use of other joints due to the requirement to 
stabilize the movement of upper torso due to the short step length26. Specifically, our findings showed that older 
adults preferentially utilized the hip joint rather than the knee joint to raise the legs while stepping over multiple 
obstacles. Declines in muscle strength could be one of the reasons why older adults tended to use the proximal 
(hip) rather than the distal joints (knee and ankle) to negotiate multiple obstacles27. It has been shown that reduc-
tions in skeletal muscle strength of 20–40% occur by age 70, and this reduction in strength starts from the distal 
joints28,29. Therefore, this significant reduction of distal muscle strength forces older adults to use the hip muscles 
to compensate for distal muscle weakness since the power generation requirements from the hip joint tend to be 
easier than at the distal joints27.

Our findings contradict the results of a previous literature8, which reported no significant differences between 
younger and older adults in the toe clearance of the leading and trailing legs while stepping over multiple obsta-
cles. This may be due to the difference in the interval between the two obstacles across studies. This explanation 
is supported by one study22 that showed a U-shape relationship between spatial kinematic parameters and the 
relative distance between two obstacles, although the study only focused on healthy young adults. The authors 
conclude that placing two obstacles at an interval either greater or less than two-step length apart reduces the 
capability of visual guidance for obstacle negotiation22. The visual guidance involves complex sensory processing 
from visual information, selective attention, and executive function30. Similarly, we observed that greater intervals 
between two obstacles reduced the capability of visual guidance in both young and older adults at the instance of 
crossing the obstacle in the trailing leg when the visual information was not available.

Aging reduced knee flexion at the heel-strike of the leading leg and the toe-off of the trailing leg. To the best of our 
knowledge, the study of joint motion at these two obstacle negotiation events has been limited. These two events 
require the body system to be stabilized for handling weight-bearing. Therefore, unlike the hip and ankle joints, 
which are the primary joints for generating power to move the body over obstacles, the knee joint plays an impor-
tant role in stabilizing the system at these two events31. In the current study, the reductions in knee flexion angle 
at these two obstacle negotiation events in older adults might be explained by two rationales – (1) They allowed 
for flexibility of the other joints to absorb the impact at the heel-strike or to generate power at toe-off or (2) they 
were only due to the slower walking speed. For rationale #1, this strategy was supported by a previous study32 that 
showed that older adults tended to reduce their knee flexion to maintain dynamic balance during walking when 
encountering conditions of sensory conflict. Thus, we speculated that the reduced knee flexion at these two events 
observed in the current study provided the older adults with a more stable system to enable other joints to either 
move the body forward or stop the body and prepare for the next movement. For rationale #2, it has been shown 
that slowing the walking speed significantly reduces the flexion of the knee joint due to a lesser loading response 
at heel-strike and toe-off events33. In the current study, older adults significantly reduced their walking speed in 
comparison to young adults.

Influence of the Second Obstacle on Multiple Obstacle Negotiation Strategy At Different 
Age Groups. The presence of a second obstacle in the pathway indeed influenced obstacle negotiation strat-
egies in the current study. The proprioceptive system, specifically, might play an important role in transferring 
information about obstacles from the first attempt of stepping over an obstacle to the following attempts19. 
Our results provided further evidence supporting this speculation by demonstrating a longer normalized 
obstacle-to-heel-strike distance in the leading leg while stepping over the second obstacle than the first one in 
young adults. It is well documented that an increased obstacle-to-heel-strike distance results in a safer strategy of 
obstacle negotiation8,9,18. The distance of obstacle-to-heel-strike is treated with careful consideration in previous 
literature because a reduction in this distance could increase the likelihood of stepping down on to the obsta-
cle8,9,18, which happens to older adults frequently.

Moreover, the relative interval between obstacles in the current study was set three-step-length apart. Based on 
a previous study22, the three-step-length interval between obstacles in the current study was intended to reduce 
the capability of visual guidance, which involves visual information search, sensory information processes, and 
executive function. Although we observed that longer intervals between obstacles induced higher toe clearance in 
older individuals, which indirectly infers the deterioration of executive function, the transfer effect between two 
different legs seemingly still existed in young adults. Therefore, this transfer effect between two obstacles might be 
provided majorly by the proprioceptive system in young adults. Our results supported that the transfer effect hap-
pened in young adults not only when the interval between obstacles was two steps apart (subjects used the same 
leg to step over two obstacles)23 but also when the interval between obstacles was three steps apart (subjects used 
the different leg to step over two obstacles). Similarly, Harris et al. (2001) found that the ability to discriminate the 
roughness of a surface can be transferred to the neighboring fingers and to corresponding fingers of the contralat-
eral side34. It is possible that effective neuronal inter-limb coupling is important for efficient human movement35 
and this speculation might be applied to the situation of multiple obstacle negotiation. However, such a transfer 
effect was not found in older adults while stepping over the second obstacle in the current study. This could be due 
to the deterioration of proprioceptive function in older adults12; therefore, this transfer effect could not happen 
between legs when the interval between obstacles was not long enough.

In summary, our study clearly demonstrated that older adults use different strategies to perform multiple 
obstacle crossing, specifically while stepping over a second obstacle three steps away from the first one. Thus, the 
multiple obstacles protocol (e.g. varied locations between obstacles) may be a technique for detecting the risk of 
falling in older adults. However, there were three limitations of this study. First, our sample size was only 10 sub-
jects per group for data analysis. For the outcomes that reached significance between the effect of obstacle and age 
in the current study, our partial eta squared results indicated a moderate-to-large effect size25. Second, we did not 
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perform any cognitive assessment to examine the deterioration of executive function in older adults. Third, we 
did not perform any visual acuity test. Although we asked subjects to report their visual acuity status verbally, lack 
of visual acuity might hinder the true visual guidance capability when performing multiple obstacle negotiation. 
In future studies, a simple visual acuity test could be used to exclude subjects if their scores are below 20/20 with 
corrected glasses. Those limitations should be considered in future work.

Figure 4. The definition of joint angles. The joint angles were set to 0 when standing on anatomical neutral 
standing position. Positive value: hip flexion, knee flexion, and ankle dorsi-flexion. Negative value: hip 
extension, knee extension, and ankle plantar-flexion. θhip_D, θknee_D, θAnkle_D,: angles in walking conditions, θhip_S, 
θknee_S, θAnkle_S,: angles in standing condition.

Figure 5. The experimental design and the dependent variables.



www.nature.com/scientificreports/

8Scientific RepoRts |  (2018) 8:8576  | DOI:10.1038/s41598-018-26807-5

Methodology
Subjects. Fifteen healthy young adults (10 female and 5 male; age 27.33 ± 6.29 years; height 1.72 ± 0.09 m; 
and weight 71.7 ± 15.72 kg) and ten healthy older adults (7 female and 3 male; age 66.70 ± 5.21 years; height 
1.69 ± 0.06 m; and weight 75.33 ± 12.82 kg) participated in this study. For pairing purposes, we reduced the sample 
size of the young adults from 15 to 10. We randomly picked 10 young adults using “randi” function in MATLAB 
R2011a (Mathworks, Natick, MA). Therefore, ten healthy young adults (6 females and 4 males; age 28.1 ± 7.08 years; 
height 1.71 ± 0.09 m; and weight 75.33 ± 12.82 kg) and ten healthy older adults participated in this study. All older 
subjects were living independently and did not require a walking aid (cane or walker) during the testing session. 
Subjects were excluded from the study if they had a history of visual or vestibular deficits or any neurological disor-
der. Before data collection, we verbally asked subjects “Can you see the surroundings clearly when you walk straight, 
without glasses.” If subjects could not see the surroundings clearly, visual acuity was corrected by wearing glasses. 
Subjects also filled in a health questionnaire to determine whether they had sustained any falls in the previous year. 
If they had had any falls in the past year, they were excluded from the study. This study was carried out in accordance 
with relevant guidelines and regulations of the University of Nebraska Medical Center Institutional Review Board. 
In addition, all experimental protocols were approved by the University of Nebraska Medical Center Institutional 
Review Board (IRB # 304-14-EP). All subjects signed informed consent documents before experiments began.

Experimental materials. Spherical retro-reflective markers and an infra-red eight-camera motion capture 
system (Qualisys AB, Gothenburg, Sweden) were used to collect three-dimensional kinematic data using Qualisys 
Tracker Manager (QTM) software (Qualisys AB) at 100 Hz. Retro-reflective markers were placed on the greater 
trochanter of the femur, lateral epicondyle of the femur, lateral malleoli, toe (second metatarsophalangeal joint), 
and heel of both legs. Two markers were fixed at the top edge of each obstacle. Four obstacle negotiation events 
were investigated as follows: toe clearance of the leading leg (vertical distance from the toe marker to the height 
of the obstacle while crossing an obstacle), toe clearance of the trailing leg (vertical distance from the toe marker 
to the height of the obstacle while crossing an obstacle), the moment when the heel of the leading leg contacted 
the floor (heel-strike) after stepping over an obstacle, and the moment when the toe of the trailing leg lifted off 
the floor (toe-off) before stepping over an obstacle. All kinematic parameters and joint angles were determined 
using a custom-written MATLAB R2011a program (Mathworks, Natick, MA). The step time was the time from the 
heel-strike of the leading leg to the toe-off of the trailing leg. The step length was the horizontal distance between the 
moment of the heel-strike of the leading leg and the moment of the toe-off of the trailing leg. All joint angles were 
set at 0 degrees in anatomical neutral standing position and the joint angles in walking conditions were offset by the 
joint angle from standing trial. Joint angles were calculated according to Hamill et al.36 as shown in Fig. 4. Participant 
traversed a walkway (0.8 m × 6 m active area). Two identical obstacles made of PVC (shape: cylinder, height: 0.6 m, 
radius: 0.02 m) were placed three-step-length apart with height set at 10% of each subject’s leg length (Fig. 5).

Experimental Protocol. Once the informed consent was completed, subjects performed two walking tasks 
consisting of unobstructed (level ground walking) and obstructed (stepping over two obstacles) conditions. First, 
subjects were instructed to walk straight at a self-selected pace five times for 6 meters in the unobstructed condition. 
Then, the average stride length and average preferred walking speed were calculated. The average step length was 
used to calculate the appropriate interval between the two obstacles and the interval between the starting point of 
the traverse and the first obstacle. The first obstacle was placed approximately three steps away from the starting 
point of each subject, and the second obstacle was placed approximately three steps away from the first one. We 
chose to adjust the inter-obstacle distance according to the regular step length of each subject in order to present a 
similar challenge to all subjects. Subjects were instructed to perform the obstructed condition five times. We limited 
the numbers of trials to reduce potential for adaptation to stepping over the second obstacle that could potentially 
occur in as few as 5 attempts37. The subjects were free to choose which leg they began walking with. Subjects rested 
for 1 minute between trials in order to eliminate any learning effects from the previous trial.

Statistical Analysis. A mixed repeated measures ANCOVA (2 age groups × 2 obstacles, with gender as a covar-
iate factor) was used to investigate the effect of aging and the effect of two obstacles for each dependent variable. The 
significance level was set at 0.05. When a significant interaction effect was determined, post-hoc pairwise comparisons 
were used. Statistical analysis was completed in SPSS 18.0 (IBM Corporation, Armond, NY). To understand the effect 
size we used the partial eta squared method. The partial eta squared has been widely used for measuring the effect size 
and was at least 0.138 for large effect size, 0.059 for moderate effect size, and 0.01 for small effect size25.
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