
Heliyon 10 (2024) e26403

Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon

Research article

BI-RRT*: An improved path planning algorithm for secure and

trustworthy mobile robots systems

Honghui Fan a, Jiahe Huang b, Xianzhen Huang b, Hongjin Zhu a, Huachang Su c,∗

a School of Computer Engineering, Jiangsu University of Technology, ChangZhou, JiangSu, China
b School of Mechanical Engineering, Jiangsu University of Technology, ChangZhou, JiangSu, China
c School of Computer Science, Nanjing University of Information Science and Technology, NanJing, JiangSu, China

A R T I C L E I N F O A B S T R A C T

Keywords:

Initial solution

Bidirectional search

Obstacle expansion

Informed sampling

Smooth path

The optimal RRT in elliptic space sampling (Informed-RRT*) is an extension of RRT that provides
asymptotic optimality, however, it experiences gradual progress and close to obstacles. In the
paper, we propose a novel path planning algorithm guided bidirectional Informed-RRT* (BI-

RRT*), that introduces extension range, dual-direction exploration, and refinement in trajectory
design. The growth range refers to maintaining an additional area from the obstacle to enhance
the dependability of the path through preventing impacts. Bidirectional search is a search strategy
using both start and target points for a initial solution. Smoothing improves path robustness by
using cubic spline. Furthermore, simulation tests for the BI-RRT* algorithm are executed, and
the efficacy of the suggested algorithm is confirmed through its application in a robot operating
system (ROS). Simulations and experimental tests verify that the proposed algorithm improves
the path planning capability. We emphasize the importance of safety, privacy, and reliability
in the deployment of AI systems. Our algorithm ensures that the planned paths maintain a safe
distance from obstacles, reducing the risk of collisions. Additionally, we prioritize privacy by
adhering to data protection regulations and implementing secure communication protocols within
the AI system. Moreover, we have applied rigorous testing and validation processes to enhance
the reliability of our algorithm, ensuring consistent and accurate path planning outcomes.

1. Introduction

Path planning can be thought of as a way for a mobile agent to discover a route in the state space that enables it to move from a
starting point to a destination point. In engineering applications, the position pose of the mobile agent is considered and its volume
must be considered. We refer to the state space where the position pose as well as the volume of the mobile agent needs to be
considered as the workspace.

Path planning in state space should first have completeness, when a path exists in state space, it can be found in finite time. Path
planning methods that satisfy completeness are generally classified into resolution-complete path planning methods and probability-

complete path planning methods.

Resolution-complete planning solves for the configuration space in the state space, and if a solution exists then the corresponding
solution must be found in the resulting representation. Resolution-complete planning guarantees completeness and provides bounds

* Corresponding author.
Available online 20 February 2024
2405-8440/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

E-mail address: shc_0804@163.com (H. Su).

https://doi.org/10.1016/j.heliyon.2024.e26403

Received 7 November 2023; Received in revised form 1 February 2024; Accepted 13 February 2024

http://www.ScienceDirect.com/
http://www.cell.com/heliyon
mailto:shc_0804@163.com
https://doi.org/10.1016/j.heliyon.2024.e26403
https://doi.org/10.1016/j.heliyon.2024.e26403
http://creativecommons.org/licenses/by-nc-nd/4.0/

Heliyon 10 (2024) e26403H. Fan, J. Huang, X. Huang et al.

on the suboptimality of solutions, but can be computationally expensive, especially in high-dimensional spaces. As in A* [1] and
Dijkstra algorithm [2], the configuration space is first discretized and feasible paths are found in the space. For the existence of a
feasible solution then an executable path is returned, if a route is not available then the solution fails, and no path is returned. The
efficiency of the computation relies on the intricacy of the environment.

For sampling-based planning, the space is continuous and more benign. The sampling approach generates a sparse representation
of the configuration space on which to search in the hope of finding a solution and can only provide probabilistic completeness
guarantees. Probabilistic completeness means that if a resolution is available, the likelihood of identifying a solution converges to 1
as long as the quantity of data points approaches infinity, and the solution method is well suited to high-dimensional planning. As
in Probabilistic Roadmaps (PRM), Rapid-exploration Random Tree (RRT) use random sampling to solve for feasible paths. Instead
of rasterization in the configuration space, random sampling is discretized in the feasible configuration space based on probabilities,
a feature that makes probabilistic completeness-based path planning methods more responsive to solving feasible paths in complex
environments. A specific path is returned if the test sample is large enough, but no failure result is returned if no feasible path exists.

In the random sampling approach, multi-objective as well as single-objective decisions can be made, where PRM can be used for
multi-objective route formulation and the RRT algorithm for single-objective path planning problems. RRT algorithm has significant
performance improvements for single-objective route formulation problems. The RRT algorithm is a progressive sampling exploration
technique that doesn’t necessitate parameter settings rectification and has good performance in use. An advanced version of RRT,
RRT-Connect, uses dual trees to more rapidly seek viable solutions, especially if the target point is hard to reach. RRT-connect uses
an incremental approach to search simultaneously using two trees, one from the starting position and the other from the target point.
The connection is attempted from the target point. Once the connection is successful, the search is stopped.

Although RRT and RRT-Connect can quickly plan feasible paths, owing to the absence of refinement of RRT and RRT-connect
through stochastic sampling in the state space, to solve this problem. Karaman introduced RRT* [3], which rewires the state space and
cuts branches to optimize the search tree, resulting in a near-optimal solution. This type of planning is called asymptotic optimality.
Because of the rewiring required, the number of samples needs to be increased to return a near-optimal solution. RRT*-Connect [4]

combines RRT-Connect with RRT* and has a bidirectional approach that yields a nearly optimal solution. Like RRT*, RRT*-Connect
continuously searches the entire region with the aim of providing a solution that is better than the current solution.

Although RRT* and RRT*-Connect yield nearly optimal results, they look at all states to optimize their paths. However, this
is not an efficient way to reduce path costs. Gammell et al. [5] demonstrate that the effectiveness of existing methods decreases
exponentially with the dimensionality of the configuration space. In response they proposed informed RRT*, and after obtaining a
first solution, used informed sampling for RRT*. Informed sampling in a portion of the state space allows for faster optimization of
the sampling space and better results.

Q-RRT* (Jeong et al. [6]) extends the scope of RRT* to reselect the progenitor node and establishes the ‘level’ of the progenitor
node choice to beyond the circumference so that the expense of the complete route is less than RRT*. The exploration duration
is extended due to the progenitor node encompasses a broader range. Gammell et al. [7] propose batch sampling, using multiple
batches of multiple samples, using informed sampling, where the generated sample points are implicitly connected to the surrounding
samples to form a random geometric graph (RRG) using the constructed dense RRG for incremental search. Strub et al. [8]. Proposed
the ABIT* algorithm using advanced graph search, using expansion and truncation factors, to find an initial path faster and optimize
it in the remaining time. These improved versions are since a portion of the state space to be acquired, the ellipsoidal space, needs to
be determined by the initial solution. That is, before finding the initial path, they require examining the whole state space similarly
as the RRT* [9], and only after the first initial solution is obtained do they start to perform informed sampling in a subset of the state
space, and they will be slower in obtaining the initial solution than the unoptimized RRT. In RRT planning methods, the one-way
search tree is typically replaced by a bidirectional search RRT-connect algorithm to enhance the effectiveness of initial solution
finding.

In this paper we use an asymptotically optimal route formulation technique, inspired by the fusion algorithm described above we
propose a single-objective decision path planning method based on informed sampling, using bi-directional search to overcome slow
convergence, using expansion distance to avoid close to obstacles. The contribution can be clearly illustrated as follows.

Build initial solutions using a bidirectional search method to find possible path solutions in the state space in as short a time as
possible. Lowers the time expense for determining the initial route.

The initial solution created is inflated and truncated to optimize the initial path. The obstacle space is inflated and the sampled
points on the initial path are tested for collisions and if no obstacle exists between two points, the point is merged to the next sampled
point to optimize the path length.

Combined with existing informed sampling. The set of state space ellipsoidal space subsets obtained after the initial path opti-

mization is further reduced, thus reducing the number of iterations.

A path smoothing operation is performed on the resulting paths. Optimization of the stability and smoothness of the paths using
the Cubic Spline interpolation method, followed by a final test on real scenarios. The advantage of the BI-RRT* algorithm with a
bidirectional search strategy over other algorithms is that it is able to plan less costly and smoother paths in a shorter period of time,
which better satisfies the mobility requirements of mobile agents.

The rest of the paper is organized as follows. The second section describes the algorithms relevant to this paper and the strategies
for optimizing and improving them. The third section presents the algorithm optimization strategy and the associated pseudo-code
proposed in this paper [10]. Section 4 gives a comparison between the simulation tests and the improved algorithm. Part V tests the
improved algorithm in a robotic system and verifies the effectiveness of the improved algorithm. The final conclusions are presented
2

in Part VI.

Heliyon 10 (2024) e26403H. Fan, J. Huang, X. Huang et al.

Fig. 1. Path planning flow chart.

Fig. 2. RRT node extension.

2. Background

2.1. Problem definition

We formulate the optimal planning problem in a similar fashion to [11]. The primary contribution of this paper is the presentation
of novel algorithms, namely PRM and RRT, which are shown to be asymptotically optimal, i.e., the cost of the returned solution
almost certainly converges to the optimum. 𝑥 ⊆ℝ𝑛 is the bounded workspace of the path planning problem (n⩾ 2) where 𝑛 denotes
the dimension of the workspace. 𝑥𝑜𝑏𝑠 ⫋ 𝑥 denotes the obstacle region in the bounded space and the free region is denoted as 𝑥𝑓𝑟𝑒𝑒,
which satisfying 𝑥𝑓𝑟𝑒𝑒 = 𝑥 ⧵𝑥𝑜𝑏𝑠. 𝑥𝑓𝑟𝑒𝑒 contains all states in the workspace set. Given a path starting point 𝑥𝑖𝑛𝑖𝑡 and an end point 𝑥𝑔𝑜𝑎𝑙
use the continuous function 𝑥 ∶ [0,1] ≥ 𝑅𝑛 to denote its robot path. If for all 𝑎 ∈ [0,1], there is 𝑠(𝑎) ∈ 𝑥𝑓𝑟𝑒𝑒, satisfying 𝑠(0) = 𝑥𝑖𝑛𝑖𝑡,
𝑠(1) = 𝑥𝑔𝑜𝑎𝑙 , which means that a continuous path devoid of obstacles from the initial point to the goal point satisfying the robot’s
own constraints can be planned as the solution of the problem. The solution merges the benefits of RRT-Connect and RRT* and
finds solutions faster and converges to the theoretical optimum [12]. The optimal planning problem can be described as the task
of locating a route s* [13], which makes a specified cost function 𝑐 ∶

∑
↦ 𝑅𝑛′ , and satisfies the conditions 𝑠(0), 𝑠(1). Then there

is 𝑠∗𝑎𝑟𝑔𝑚𝑖𝑛 = 𝑐(𝑠)|𝑠(0) = 𝑥𝑠𝑡𝑎𝑟𝑡, 𝑠(0) = 𝑥𝑠𝑡𝑎𝑟𝑡, ∀𝑎 ∈ [0,1], 𝑠(𝑎) ∈ 𝑥𝑓𝑟𝑒𝑒. The flowchart of the model for path planning in this paper is
based on the traditional informed RRT* algorithm for improvement. The algorithm flow is shown in Fig. 1.

2.2. RRT algorithm

The basic principle is introduced: as shown in Fig. 2, the search process of RRT algorithm is like the growth process of a tree,
which keeps spreading in all directions. The algorithm uses 𝑋𝑖𝑛𝑖𝑡 as the initial point of the route and as the origin node of the
stochastic tree 𝑇 . It creates a random 𝑋𝑟𝑎𝑛𝑑 point in the robot configuration space 𝑋𝑓𝑟𝑒𝑒, finding the nearest point 𝑋𝑛𝑒𝑎𝑟 in the tree,
3

growing in the direction of with step u. Adding the generated branches and endpoints 𝑋𝑛𝑒𝑤 to the tree if no obstacle is encountered.

Heliyon 10 (2024) e26403H. Fan, J. Huang, X. Huang et al.

Fig. 3. Choose the least cost path.

Random points are generally uniformly distributed, when there are no obstacles, the tree will growing approximately uniformly in
all directions, so that the space can be explored quickly [14].

The RRT algorithm is efficient and adaptive. By means of random sampling and fast expansion of the tree structure, the RRT
algorithm has the capability to discover viable paths quickly, especially in computationally complex environments where the per-

formance advantages are obvious. Compared to traditional route formulation techniques, like A* and Dijkstra algorithms, the RRT
algorithm is more applicable to a wide range of problems and environments. It can be utilized in both 2D and 3D environments and
can handle environments with complex geometries and dynamic obstacles.

The RRT algorithm is extensively employed in the domain of robotic route planning. It provides effective path planning solutions
for diverse categories of robotic systems, including mobile robots, industrial robots, and UAVs, by searching large configuration
spaces and generating feasible paths.

In the realm of autonomous vehicles, path planning is a key issue. RRT algorithms can be used for route planning in autonomous
vehicle navigation to generate safe and efficient driving paths considering factors such as traffic rules and obstacles [15]. This is of
great significance for realizing autonomous driving technology.

In addition, RRT algorithms also play an important role in virtual character motion planning. In video games and virtual reality,
autonomous character motion planning is essential, and RRT algorithms can be used to generate intelligent paths for virtual characters
to steer clear of obstacles and reach the desired destination.

2.3. RRT* algorithm

Although the RRT algorithm is a relatively efficient approach that can adeptly address route formulation challenges with partial
constraints and offers numerous benefits. The RRT algorithm yields relatively poor feasible paths and the RRT* algorithm is founded
on this improvement [16].

The primary characteristic of the RRT* algorithm is its ability to rapidly determine the initial route. As the quantity of sampled
points rises, it keeps optimizing until it locates the destination point or reaches a predefined maximum cycle count. The RRT*
algorithm optimizes asymptotically, as the number of cycles grows, the resulting path is more and more optimal, and achieving
an optimal route in a finite time frame is unattainable. In simpler terms, a certain duration of computational time is necessary to
obtain a reasonably satisfactory optimized route. The convergence time of the RRT* algorithm is a fairly significant area of research.
However, it is indisputable that the expense of the route computed by the RRT* algorithm is considerably reduced compared to that
of the RRT. The distinction between the RRT* algorithm and the RRT algorithm primarily resides in two recalculation procedures
for the new node 𝑋𝑛𝑒𝑤, which the process of rechoosing the parent node for 𝑋𝑛𝑒𝑤 and the process of rewiring [17].

The procedure of re-picking the parent node: the closest neighbors are located within a specified radius around the recently
generated node 𝑋𝑛𝑒𝑤 as a substitute for replacing 𝑋′

𝑛𝑒𝑤
s parent node. The path cost of the “near neighbor” node back to the initial

position is calculated in turn, adding the path cost of 𝑋𝑛𝑒𝑤 to each “near neighbor”. The shortest path 𝑋𝑚𝑖𝑛 is selected, as shown in
Fig. 3. Rewiring process. The resulting 𝑋𝑛𝑒𝑤 is connected to the least costly parent node and the branching operation is performed.
The cost function is further reduced. As shown in Fig. 4.

2.4. Informed RRT*

The informed RRT* algorithm was proposed to overcome the slow convergence of the RRT* algorithm. Informed RRT* is an
improvement of the RRT* algorithm, which uses an elliptic sampling method instead of global uniform sampling. The elliptic region
is represented as follows: the elliptic equation is 𝑥

2

𝑎2
+ 𝑦2

𝑏2
= 1, the coordinates of the focal point are (±𝑐,0), the long axis measures a in

length, while the short axis measures b, and the sum of the focal distance between them satisfies the distance from any the distance
from the points on the ellipse to the two points totals 2a; We can get: 𝑎2 = 𝑏2 + 𝑐2 in the informed RRT *. In the algorithm, we take
the starting point xstart and the target point 𝑋𝑔𝑜𝑎𝑙 as the foci of the ellipse, and let half of the initial path be the long axis a, that is

𝑎 = 𝑐𝑏𝑒𝑠𝑡

2 . We have 𝑐 = 𝑐𝑚𝑖𝑛

2 , 𝑏 =
√
𝑎2+𝑏2
2 . So we get all the variables in the elliptic equation. The following Fig. 5:

In subsequent iterations, whenever a shorter route is discovered, the length of this shorter route is employed as the new 𝑐𝑏𝑒𝑠𝑡, the
4

sampled ellipse updated.

Heliyon 10 (2024) e26403H. Fan, J. Huang, X. Huang et al.

Fig. 4. Rewiring process.

Fig. 5. Informed RRT* elliptical region.

Then the sampling takes place within the sampling region shaped like an ellipse. The sampled points are first sampled in the
standard equation and rotated and translated to the actual sampling region. Two matrices are needed in this transformation process:
the translation vector, and the rotation matrix. These two parameters only require calculation during the initialization phase [18].

The transformed coordinates are
[
𝑥′

𝑦′

]
=𝑅

[
𝑥

𝑦

]
+𝑇 , where 𝑅 =

[
cos𝜃 sin𝜃
−sin𝜃 cos𝜃

]
is the rotation matrix, 𝜃 represents the angle

between the line that connects the starting point 𝑥𝑠𝑡𝑎𝑟𝑡 and the target point 𝑥𝑔𝑜𝑎𝑙 and the x-axis.
[
𝑥𝑐𝑒𝑛𝑡𝑒𝑟
𝑦𝑐𝑒𝑛𝑡𝑒𝑟

]
is the translation vector,

which can be expressed as the midpoint 𝑥𝑠𝑡𝑎𝑟𝑡 and the target point 𝑥𝑔𝑜𝑎𝑙 . The process of Informed RRT* is the same as RRT* except
for the sampling process.

2.5. Comparative analysis of related work

Although the Informed RRT* algorithm has greatly enhanced the velocity in comparison to the RRT* algorithm, further efforts
are needed to enhance algorithm efficiency. In this paper, three optimization ideas are suggested for the informed RRT* algorithm:
the expansion of obstacles, the establishment of the initial path using a bidirectional search strategy, the pruning operation of the
initial route to acquire the optimal long axis, and the optimization of the route using elliptic space.

2.5.1. Expansion of environment model

During the mobile robot route planning procedure, robot obstacle avoidance is an important indicator of path feasibility. The
robot is generally treated as a mass in simulation experiments, but in practice, the size of the robot is a factor that cannot be ignored.
To guarantee the robot’s safety, to make the simulation more practical, and to make it more feasible and convincing to treat the
robot as a mass point, the obstacle area is expanded to half the width of the mobile robot in real operation [19].

2.5.2. Bidirectional search

The traditional RRT search method uses a tree 𝑇 to search between the start and target points. RRT-Connect searches by using a
bidirectional search strategy. A secondary tree is constructed within the vicinity of the target point for expansion, and each iteration
is expanded by random sampling as in the original RRT algorithm, but the bidirectional expansion is improved in the direction of
random sampling, where the first tree 𝑇1 built at the start point has a direction to search from the starting point to the destination, and
the tree 𝑇2 built at the target point has a direction to search from the destination to the starting point until these two trees converge,
which means the path search is successful. The whole algorithm ends. Each iteration needs to consider the balance of the two trees,
i.e., the number of nodes of the two trees, exchange the measurement order, and choose the tree with fewer nodes to continue the
5

expansion. This bidirectional search RRT technique possesses favorable search qualities and has substantially enhanced the speed

Heliyon 10 (2024) e26403H. Fan, J. Huang, X. Huang et al.

Fig. 6. Rewiring process.

Fig. 7. Rewiring process.

and efficiency of the search over the original RRT algorithm. This expansion driven by inspiration renders the tree expansion more
avaricious and unambiguous, making the two-way search RRT algorithm more efficient than the single-tree algorithm. The initial
path can be obtained faster.

2.5.3. Path smoothing strategy

Cubic Spline interpolation is a segmentation function which has the following characteristics: the error on the nodes is kept within
a small range [20]; the inherent high stability and the overall high smoothness make this interpolation function suitable for doing tra-

jectory line algorithms [21]. The segmentation function means that [𝑎, 𝑏] is divided into 𝑛 intervals
[(
𝑥0, 𝑥1

)
,
(
𝑥2, 𝑥3

)
, ...,

(
𝑥𝑛−1, 𝑥𝑛

)]
,

with a total of 𝑛 +1 points, where two endpoints 𝑥0 = 𝑎, 𝑥𝑛 = 𝑏. The cubic spline implies that the curve within each small interval is a
cubic equation and adheres to the following conditions: 𝑆 (𝑥) = 𝑠𝑖 (𝑥) is a cubic equation on [𝑥𝑖, 𝑥𝑖+1] in each small segment interval;
the interpolation condition is satisfied, that is 𝑆(𝑥𝑖) = 𝑦𝑖(𝑖 = 0, 1..., 𝑛); the curve is smooth, i.e., 𝑆(𝑥), 𝑆′(𝑥), 𝑆′′(𝑥) is continuous. Then
the constructive equation of the cubic equation is as follows: 𝑦 = 𝑎𝑖 + 𝑏𝑖𝑥 + 𝑐𝑖𝑥

2 + 𝑑𝑖𝑥
3. We transform this equation into the cubic

spline function 𝑆𝑖(𝑥). From 𝑆𝑖(𝑥) we can see that each small interval has four unknown (𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖). There are 4𝑛 unknowns between
𝑛 small intervals. To solve these unknowns, we need to solve the 4𝑁 equation. Since the 𝑛 −1 interior points are all consecutive, i.e.,
the end point in the 𝑖 + 1𝑠𝑡 interval and the beginning point in the 𝑖 + 1𝑠𝑡 interval are the same point. Their first-order derivatives
should also be the same, i.e., 𝑆′

𝑖
(𝑥𝑖+1) = 𝑆′

𝑖+1(𝑥𝑖+1) hen there are 𝑛 − 1 equations; The second order derivatives of the interior points
have to be continuous, i.e. 𝑆′′

𝑖
(𝑥𝑖+1) = 𝑆′′

𝑖+1(𝑥𝑖+1), which also has 𝑛 −1 equations, and all points must meet the interpolation require-

ment 𝑆(𝑥𝑖) = 𝑦𝑖(𝑖 = 0, 1, ..., 𝑛). All interior points except the endpoints satisfy 𝑆𝑖(𝑥𝑖+1) = 𝑦𝑖+1, 𝑆𝑖+1(𝑥𝑖+1) = 𝑦𝑖+1. There are 2𝑛 equations
and there are a total of 4𝑛 −2 equations. The lack of two equations can be solved for all unknown variables, with these two equations
obtained using boundary conditions. There are three kinds of boundary conditions: natural boundary, fixed boundary, and non-nodal
boundary. Natural boundary: the second-order derivatives at the endpoints are 0; Fixed boundary: the first-order derivatives at the
designated endpoints are A and B; non-nodal boundary: the third order derivative of the first interpolation point is forced to be
equal to the third order derivative value of the second point, and the third order derivative of the last point is identical to the third
bounded inverse value of the penultimate point. From this we can create the equation 𝑔𝑖(𝑥) = 𝑎𝑖 + 𝑏𝑖(𝑥 −𝑥𝑖) + 𝑐𝑖(𝑥 −𝑥𝑖)2 + 𝑑𝑖(𝑥 −𝑥𝑖)3
in each subinterval 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1. After smoothing, the path is shown in the Fig. 6, you can clearly see from the figure that the path
6

has become smooth. Fig. 7 shows the path after smoothing.

Heliyon 10 (2024) e26403H. Fan, J. Huang, X. Huang et al.

Fig. 8. BI-RRT*structure plan.

Fig. 9. Comparison between RRT planning and RRT-Connect planning.

2.5.4. Optimization steps

Utilize a bidirectional search approach to swiftly explore potential path solutions within the state space. This minimizes the time
required for solving the initial path. The initially generated solution is adjusted by expanding and truncating it to optimize the path.
By inflating the obstacle space and testing for collisions between sampled points on the initial path [22], points lacking obstacles
in-between are merged with the subsequent sampled point, thereby improving the path’s length optimization.

In conjunction with existing informed sampling techniques, a subset of ellipsoidal spaces within the state space is obtained after
optimizing the initial path, resulting in fewer iterations.

Subsequently, a path smoothing operation employing the Cubic Spline interpolation method is performed on the obtained paths
to enhance their stability and smoothness. Finally, the paths undergo testing in real-world scenarios [23]. BI-RRT* structure plan as
shown in Fig. 8.

3. Optimization strategies and related pseudo-algorithms

As shown, Fig. 9(a) shows the way of path planning shows the way of path planning using RRT algorithm, and Fig. 9(b) shows
the way of path planning using RRT-Connect search [24]. Elliptic space search strategy: to enhance the convergence rate of RRT* to
reach the asymptotic optimal path planning a bounded elliptic space 𝑋𝑒 ⊆ 𝑋 is proposed so that 𝑋𝑟𝑎𝑛𝑑 the sampling range falls in
𝑋𝑒. For the issue of locating the optimal route length in 𝑅𝑛 space, we use the Euclidean distance as a heuristic for this algorithm:
this state subset 𝑋𝑓 can be depicted as 𝑋𝑓 =𝑋𝑒 ∈𝑋| ∥ 𝑥 − 𝑥𝑠𝑡𝑎𝑟𝑡 ∥2 + ∥ 𝑥 − 𝑥𝑔𝑜𝑎𝑙 ∥⊆ 𝑐𝑏𝑒𝑠𝑡, for representation. As shown in Fig. 5 𝑋𝑓

is the ellipse sampling domain for finding the minimum path cost in 𝑅2 path sampling space, where 𝑋𝑠𝑡𝑎𝑟𝑡 is the start point, 𝑋𝑔𝑜𝑎𝑙 is
the target point, and the initial shape of the ellipse depends on the positions of the initial and destination points and the dimension
of 𝑐𝑏𝑒𝑠𝑡. The algorithm deviates from RRT* in that once a solution is discovered, it directs its search towards enhancing the planning
problem aspect of the solution. We add a bidirectional search strategy to the search strategy in elliptic space to rapidly locate the
initial solution, enabling the search to be quickly focused on improving the path planning.

3.1. Pseudo-algorithm

First for the obstacle to r-length expansion, for whether there exists a route from the starting point to the destination point using
7

IsFeasibleSolution() function to determine, if there is a return path 𝜏 , if the path planning is not successful then return Failure. If the

Heliyon 10 (2024) e26403H. Fan, J. Huang, X. Huang et al.

path planning is successful, we use PrunningOperation() to prune the existing path to obtain the minimum cost of cbest, and then
bring cbest into the function OptimizeTree() to obtain the optimal initial ellipse space for path planning.

Algorithm 1 Advanced Informed RRT*.

1: 𝑉1 ← 𝑥𝑠𝑡𝑎𝑟𝑡, 𝐸1 ← ∅; 𝑉2 ← 𝑥𝑔𝑜𝑎𝑙 , 𝐸2 ← ∅;

2: 𝜏1 ← (𝑉1, 𝐸1); 𝜏←(𝑉2, 𝐸2);
3: 𝑉 ← 𝑥𝑠𝑡𝑎𝑟𝑡, 𝐸 ← ∅;

4: 𝑐𝑏𝑒𝑠𝑡 ←∞; 𝜏 ← (𝑉 , 𝐸);
5: 𝐸𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑟);
6: 𝜏 ← 𝐼𝑠𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝜏1 , 𝜏2);
7: if 𝑠𝑡𝑎𝑡𝑢𝑠 ≠ 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 then

8: 𝑐𝑏𝑒𝑠𝑡 = 𝑃𝑟𝑢𝑛𝑖𝑛𝑔𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝜏)
9: 𝜏 ←𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑇 𝑟𝑒𝑒(𝑥𝑠𝑡𝑎𝑟𝑡, 𝑥𝑔𝑜𝑎𝑙 , 𝑐𝑏𝑒𝑠𝑡

10: end if

11: return 𝜏

The algorithm uses a Bidirectional search RRT to determine if a feasible path exists and returns the path if it does. In k iterations,
random sampling is conducted within the unoccupied space, and if the extended point is not in the obstacle space, it determines if it
intersects with another tree, and returns the entire path if it produces an intersection. If it does not intersect with another tree at the
end of the iteration count, the pathfinding fails and returns Failure.

Pruning of the obtained path. To put it simply, if no obstacle exists between two path nodes then extend the next path node until
an obstacle exists at both path nodes, preserving the initial point and the prior path node where an obstacle node exists to attain the
minimum path cost.

Algorithm 2 IsFeasibleSolution().

Input: 𝜏1 , 𝜏2 ;

Output: 𝑝𝑎𝑡ℎ𝑚𝑎𝑝𝑜𝑟𝐹𝑎𝑖𝑙𝑢𝑟𝑒;

1: 𝑉1 ← 𝑥𝑠𝑡𝑎𝑟𝑡, 𝐸1 ← ∅ 𝑉2 ← 𝑥𝑔𝑜𝑎𝑙 , 𝐸2 ← ∅
2: 𝜏1 ← (𝑉1, 𝐸1); 𝜏2 ← (𝑉2, 𝐸2);
3: for 𝑘 = 1 to 𝑘 do

4: 𝑥𝑟𝑎𝑛𝑑 ←𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑎𝑚𝑝𝑙𝑒(𝑘); 𝑘 ← 𝑘 + 1;

5: if 𝑁𝑜𝑡𝐶𝑒𝑥𝑡𝑒𝑛𝑑(𝜏1, 𝑥𝑟𝑎𝑛𝑑) ← 𝑇 𝑟𝑎𝑝𝑝𝑒𝑑 then

6: if 𝑐𝑜𝑛𝑛𝑒𝑐𝑡(𝜏2, 𝑥𝑛𝑒𝑤) ←𝑅𝑒𝑎𝑐ℎ𝑒𝑑 then

7: return 𝑃𝑎𝑡ℎ(𝜏1, 𝜏2);
8: end if

9: end if

10: return 𝐹𝑎𝑖𝑙𝑢𝑟𝑒;

11: end for

In 𝑖 iterations, firstly, the elliptic region of 𝑐𝑏𝑒𝑠𝑡 is sampled for a given long axis. If the extended point is not in the obstacle space,
judging whether the generated point reaches the target point. Saving the generated path node and finding its path cost if it does. If
the new route cost is less than the route cost from the previous step, setting the new route cost to cbest to obtain the best search
space and returning the optimized path after the number of iterations [25].

3.2. Analysis

For finding the minimum path in 𝑥 ⊆ℝ𝑛 space, the Euclidean distance is a heuristic that can be accepted. This use of bidirectional
search in a portion of the state space can improve existing solutions, and then this subset of states 𝑥𝑓 , 𝑋𝑓 ⊇𝑋𝑓 can be expressed in
terms of the cbest closure of the current solution as: 𝑋𝑓 = 𝑥 ∈𝑋|‖𝑥 − 𝑥𝑠𝑡𝑎𝑟𝑡‖2 + ‖𝑥 − 𝑥𝑔𝑜𝑎𝑙‖2 ≤ 𝑐𝑏𝑒𝑠𝑡.

Algorithm 3 PruningOperation().

Input: 𝜏

Output: 𝑐𝑏𝑒𝑠𝑡
1: 𝑙𝑒𝑓 𝑡 ← 0, 𝑟𝑖𝑔ℎ𝑡 ← 1
2: while 𝑙𝑒𝑓 𝑡 < 𝑙𝑒𝑛(𝜏) do

3: while 𝑟𝑖𝑔ℎ𝑡 < 𝑙𝑒𝑛(𝜏)𝑎𝑛𝑑𝑓𝑟𝑒𝑒𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛(𝜏 [𝑙𝑒𝑓 𝑡]) do

4: 𝑟𝑖𝑔ℎ𝑡 + 1;

5: end while

6: 𝑙𝑒𝑓 𝑡 ← 𝑟𝑖𝑔ℎ𝑡;

7: 𝑝𝑎𝑡ℎ.𝑎𝑑𝑑(𝜏 [𝑙𝑒𝑓 𝑡]);
8: end while

9: 𝑐𝑏𝑒𝑠𝑡 ← 𝑔𝑒𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝𝑎𝑡ℎ);
10: return 𝑐𝑏𝑒𝑠𝑡

For a positive cost function, then the cost of the optimal route from 𝑥𝑠𝑡𝑎𝑟𝑡 to 𝑥𝑔𝑜𝑎𝑙 is bounded by the expense of the optimal route
8

through 𝑥 ∈𝑋, ℎ(𝑥) denoted as the expense of the optimal route from 𝑥𝑠𝑡𝑎𝑟𝑡 to 𝑥𝑔𝑜𝑎𝑙 , where 𝑓 (𝑥) denotes the optimal cost from 𝑥𝑠𝑡𝑎𝑟𝑡

Heliyon 10 (2024) e26403H. Fan, J. Huang, X. Huang et al.

to 𝑥 and 𝑔(𝑥) denotes the optimal cost from 𝑥 to 𝑥𝑔𝑜𝑎𝑙 . Because the algorithm uses RRT* to converge asymptotically to the optimal
route for each state, the function 𝑓 (.), which evaluates the optimal cost, must estimate sufficient conditions for acceptability �̂�(.) and
ℎ̂(.). These two parts are separate admissibility heuristics for 𝑔(), ℎ() respectively.

Also because the admissibility of 𝑓 (.) makes the addition of a state to 𝑋𝑓 required to enhance the solution. Due to the capacity
to fill space of RRT’s sampling, we learn that adding a state (which can be added to 𝑋𝑓 with a sample other than a portion until it’s
filled within the RRT growth constraint parameter 𝜂 of its boundaries.) becomes the likelihood of sampling a state like that. Thus, in
any iteration, the probability of enhancing the solution by uniformly sampling a more extensive subset, 𝑥𝑖+1 𝑈 (𝑋𝑠), 𝑋𝑠 ⊇𝑋𝑓 , is no
greater than or equal to the established metric 𝜆(.).

𝑃 (𝐶𝑖+1
𝑏𝑒𝑠𝑡

< 𝐶𝑖
𝑏𝑒𝑠𝑡

) ≤ 𝑃 (𝑥𝑖+1 ∈𝑋𝑓) ≤ 𝑃 (𝑥𝑖+1 ∈𝑋𝑓) =
𝜆(𝑋𝑓)
𝜆(𝑋𝑠)

. (1)

Algorithm 4 OptimizeTree().

Input: 𝑥𝑠𝑡𝑎𝑟𝑡, 𝑥𝑔𝑜𝑎𝑙 , 𝑐𝑏𝑒𝑠𝑡
Output: 𝜏

1: for 𝑖 = 1 to 𝑖 do

2: 𝑥𝑟𝑎𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑆𝑎𝑚𝑝𝑙𝑒(𝑥𝑠𝑡𝑎𝑟𝑡, 𝑥𝑔𝑜𝑎𝑙 , 𝑐𝑏𝑒𝑠𝑡)
3: if (𝜏, 𝑥𝑟𝑎𝑛𝑑 ← 𝑡𝑟𝑎𝑝𝑝𝑒𝑑) then

4: if 𝑥𝑛𝑒𝑤 ∈ 𝑥𝑔𝑜𝑎𝑙 then

5: 𝑥𝑠𝑜𝑙𝑛 ← 𝑥𝑠𝑜𝑙𝑛 ∪ 𝑥𝑛𝑒𝑤

6: end if

7: end if

8: 𝑛𝑒𝑤𝑐𝑏𝑒𝑠𝑡 ←𝑚𝑖𝑛𝐶𝑜𝑠𝑡(𝑋𝑠𝑜𝑙𝑛)
9: if 𝑛𝑒𝑤𝑐𝑏𝑒𝑠𝑡 < 𝑐𝑏𝑒𝑠𝑡 then

10: 𝑐𝑏𝑒𝑠𝑡 = 𝑛𝑒𝑤𝑐𝑏𝑒𝑠𝑡
11: end if

12: end for

13: return 𝜏

Using the elliptic volume sampled in ℝ𝑛 then we have 𝑃 (𝐶𝑖+1
𝑏𝑒𝑠𝑡

< 𝐶𝑖
𝑏𝑒𝑠𝑡

) ≤
𝑐𝑖
𝑏𝑒𝑠𝑡

(𝑐𝑖2
𝑏𝑒𝑠𝑡

−𝑐2
𝑚𝑖𝑛

)
𝑛−1
2

𝛿𝑛
where 𝛿𝑛 is the volume of the n-

dimensional unit sphere and 𝑋𝑠 be a hyperrectangle that snugly encloses the informed subset [26]. The sample probability of
sampling uniformly from 𝑥𝑓 in the above equation (1) is 𝛿𝑛2𝑛 , when n=3. Irrespective of the solution, algorithm parameters, etc.,
the likelihood of enhancing the solution through rejection sampling in each iteration is at most 32%. The expense of the optimal
solution, 𝑐𝑏𝑒𝑠𝑡, will then linearly approach a theoretical minimum, 𝑐𝑚𝑖𝑛, if the subset is sampled uniformly without barriers [27]. In
the scenario of uniform sampling, the expected value is

𝐸[𝑓 (𝑥)] =
𝑛𝑐2

𝑏𝑒𝑠𝑡
+ 𝑐2

𝑚𝑖𝑛

(𝑛+ 1)𝑐𝑏𝑒𝑠𝑡
(2)

We assume that 𝜂 is larger greater than the planning problem’s diameter by assuming that the RRT* reconnection parameter is
larger than the radius of the informed sampling space, similar to the proof of RRT* asymptotic optimality. Then it follows from the
above equation (2) the convergence rate of the solution cost follows a linear pattern with a rate 𝜇 that is solely determined by the
state dimension:

𝜂 =
𝜕𝐸[𝑐𝑖

𝑏𝑒𝑠𝑡
]

𝜕𝑐𝑖−1
𝑏𝑒𝑠𝑡

|
𝑐𝑖−1
𝑏𝑒𝑠𝑡

=𝑐𝑚𝑖𝑛
= 𝑛− 1

𝑛+ 1
(3)

For an unobstructed space, then the optimal solution path is conditioned on the line between 𝑥𝑠𝑡𝑎𝑟𝑡 and 𝑥𝑔𝑜𝑎𝑙 , i.e. 𝑥 ∈
𝑋

𝑓,𝑐(𝑠)=
√

𝑥2
𝑔𝑜𝑎𝑙

−𝑥2
𝑠𝑡𝑎𝑟𝑡

, which gives 𝑠∗ − 𝑐(𝑠) = 0; since RRT* equation (3) is itself an asymptotically optimal planning algorithm, the

process of suboptimal solution is a continuous search for the smallest 𝑐𝑏𝑒𝑠𝑡 in a finite time subset of state space sampling points, in
order to obtain a smaller informed space.

4. Simulation experiment

This paper uses Python for code implementation. The experimental environment is configured as follows: processor is Intel(R)
Core(TM) i7-4790 CPU@3.60 GHz, 16G RAM device, Win10 Professional 64-bit. To assess the effectiveness of the BI-RRT* algorithm
put forward [28] in this paper, a comparison is made between Informed-RRT* and the improved algorithm in this paper; The pink
boxes are inflated for obstacles and the original map has a resolution of 50*50; The fixed starting point (blue solid point in the
bottom-left corner) and the ending point (red solid point in the upper right corner), with coordinates [2,2] and [46,46] respectively.
In the diagram we use grey rectangles and circles to represent the obstacles, which are randomly generated in the diagram. Where
blue indicates the starting point, red indicates the target point and the red line is the planned path. The experiment is divided into
two parts: environment A Fig. 10(A) with a resolution of 50*50, a complex environment B Fig. 10(B) with a resolution of 100*100
9

and a simple environment C Fig. 10(C) with a resolution of 30*30, where environment A, B and C are shown in the Fig. 10 below.

Heliyon 10 (2024) e26403H. Fan, J. Huang, X. Huang et al.

Fig. 10. Comparison between Environment A, Environment B and Environment C.

Table 1

Infomed-RRT*.

Sampling size

Sampling rate 5%

Time used Path length

10%

Time used Path length

10%

Time used Path length

Mean

Time used Path length

1% 124.5 64.7 88 64.7 67.5 64 93.33 64.47

2% 54.3 64.5 37.9 69 32.5 69.3 41.57 67.6

4% 29.5 66.2 17.4 68.2 11.35 67.75 19.41 67.3

6% 38.4 66 9.65 69 14.15 69 20.73 68

8% 19.06 68.6 10.2 67.7 10.1 68.2 12.31 68.17

10% 16.63 67.5 11.3 69.4 9.4 72.4 12.44 69.77

20% 5.4 72.1 3.9 79.6 7.6 72.7 5.6 74.8

Mean 41.11 67.73 25.48 69.64 21.8 69.05

Table 2

BI-RRT*.

Sampling size

Sampling rate 5%

Time used Path length

10%

Time used Path length

10%

Time used Path length

Mean

Time used Path length

1% 125 64.6 90 65 67.3 64 94.1 64.53

2% 55.4 65.14 33.33 68.76 27.04 69.33 38.59 67.76

4% 13.4 65.9 7.07 68.8 7.0 68 9.16 67.57

6% 28.33 66.2 4.71 68.8 12.7 68.1 15.25 67.7

8% 14.62 69.2 7.2 69.7 4.55 68.5 8.79 69.13

10% 7.3 68.6 8.65 70.4 7.1 68.6 8.79 69.2

20% 3.1 72.1 3 73.3 3.3 72.15 3.13 72.52

Mean 35.3 67.39 23.23 69.26 18.42 68.37

4.1. Selecting parameters

We draw on the work of kiril soloveg* et al. [29]. To improve the sampling success as well as the efficiency of sampling by the
ordered radius induced in 𝑟𝑛 = 𝛾(𝑙𝑜𝑔(𝑛)

𝑛
)
1
𝑑 , where 𝑙𝑜𝑔(𝑛)

𝑛
is a function of sampling dispersion and decreases with the increase in the

number of sampled points, 𝑑 is the dimension of the configuration space, and 𝛾 is an environment-dependent parameter, and 𝑛 is the
quantity of samples in the sampling region.

Simulations were carried out in environment A shown in Fig. 10 to select the appropriate sampling step size as well as the target
sampling rate for BI-RRT* before comparing it with other algorithms. Setting the appropriate sampling step size and target sampling
probability is important because while a higher sampling step size can improve the time that BI-RRT* can take to solve, it can also
increase the length of the path, resulting in non-optimal path selection. We have tested Informed-RRT* against BI-RRT* at different
sampling step sizes and target point sampling rates to obtain Table 1 and 2. We normalize the sampling step lengths in the sampling
space using unit sampling steps of 1%, 2%, 4%, 6%, 8%, 10%, and 20%. The solutions generated using the BI-RRT* algorithm have
on average a 14.08% decrease in planning duration when compared to the Informed-RRT*, faster acquisition of the initial solution,
and faster convergence due to the use of a bidirectional search approach. The performance of robot navigation is typically impacted
by the initial solution, as the robot will follow the initial solution in an environment where there may be two or more possible paths
with different costs to reach the target. It is therefore essential to discover the initial solution at a reduced cost, and in the simulated
environment, we found that when sampling at larger sampling steps, the final path length is obtained in a slightly longer, although
the solution can be obtained in a shorter time. When analyzing the initial solution generated by BI-RRT*, we found that using a
target sampling rate of 20% and a sampling step size of 4% took, on average, 55.28% less time than Informed-RRT* to get closer
to the optimal solution, for essentially the same initial path length. In addition, the initial solution was found in only 48% of the
10

total time. The value of the radius 𝑟𝑛 also satisfies this theoretical range of values. As the Table 2 shows, it is recommended that the

Heliyon 10 (2024) e26403H. Fan, J. Huang, X. Huang et al.

Fig. 11. Simulation in environment C.

Fig. 12. Simulation Data in Environment C.

Table 3

Average Calculating costs in environment C.

Algorithm Average runtime Average Pathlength

Informed-RRT* 10.12 39.86

BI-RRT* 6.05 39.82

sampling step size of 4% and the target sampling rate of 20% be used for practical applications of more complex problems. Based on
this conclusion [30], an analytical comparison with other algorithms was carried out using the above parameters.

4.2. Environment C

In the more basic simulated setting, the simulated path outcomes are displayed in the Fig. 11(a). The simulation data used to
calculate the initial solution for each algorithm includes the mean execution time and mean route length for the 30 experiments
Fig. 11(b). In the Table 3, the average length of the proposed 30 experiments is 10.12 and the average run time is 6.05. Compared to
the informed-RRT* algorithm, the generated trajectories are on average 0.1% smaller and the average run time is 40.22% smaller. It
is clear from the Fig. 12 that although the route length of the algorithm in this paper is essentially the same as that of informed-RRT,
the time is reduced. The outcomes indicate that the algorithm reduces the cost of planning paths in a simple environment and reduces
11

the planning time by 40.22%.

Heliyon 10 (2024) e26403H. Fan, J. Huang, X. Huang et al.

Table 4

Average Calculating costs in environment B.

Algorithm Average runtime Average Pathlength

Informed-RRT* 32.31 150.45

BI-RRT* 27.07 147.31

Fig. 13. Simulation in environment B.

Fig. 14. Simulation Data in Environment B.

4.3. Environment B

Compared to environments A and C, environment B has more obstacles of different sizes and is a more complex environment,
making it more difficult to plan path trajectories. However, the algorithm presented in this paper has the capability to still plan paths
in complex environments more efficiently and with significant advantages Fig. 13(a). The simulation is shown in Fig. 13(b).

The suggested approach transmits fewer repetitive points, shorter paths and shorter planning times. Analyzing the Table 4, the
average path length of the algorithm in this paper is 147.31 and the average running time is 27.07. After testing the initial solution
30 times in environment B, the average path is reduced by 2.10%, and the average running time is reduced by 16.21%. By comparing
Fig. 14, the algorithm in this paper does not increase the running time as a result, although it uses the initial solution for ellipse
sampling, and these data also indicate an improvement in the performance metrics of the algorithm. Therefore the path designed by
the algorithm in this paper is superior.

4.4. Discussion

In this paper we propose an informed-RRT* based algorithm. Using a bi-directional search method, trajectory planning is per-

formed for the mobile agent. The algorithm quickly builds the initial solution by using a bidirectional search tree, using the initial
12

solution we build an elliptical sampling space, we inflate the obstacle space in order to avoid viewing the mobile agent as a prime,

Heliyon 10 (2024) e26403H. Fan, J. Huang, X. Huang et al.

Fig. 15. Overview of the car.

Fig. 16. Overview of the car.

Table 5

Hardware Description.

Sequences Description

1 Tank frame

2 Tank tracks

3 ASLONG-JGB37-520 Miniature

DC Geared Motor 12 V 1280rpm

4 4400 mAh Li-ion battery pack

5 Bottom control yahboom’s expansion board

6 Raspberry Pi 4b+

7 Slam A1 Lidar

8 Astra Pro depth camera

and finally the planned path is smoothed using the cubic spline method. When compared to other algorithms, the benefit of the
BI-RRT* algorithm employing a two-way search approach is its ability to plan a less expensive and smoother path in less time, which
can better meet the mobile agent’s movement requirements. Simultaneously, the algorithm presented in this paper has certain con-

straints. It only investigates the problem of trajectory planning for a single mobile agent in a 2D environment, and does not consider
path planning in dynamic obstacle space. For the problem of single mobile agent and multi-body mobile agent cooperation in 3D
environment, it will be our next research topic.

5. Real world case

The hardware platform utilized in this experiment is the Yahboom-Robot mobile robot. The overall body structure is shown in
Fig. 15. The hardware composition is shown in Fig. 16.

See Table 5 for detailed description. In this paper, the improved algorithm is ported to the Yahboom-Robot mobile robot hardware
platform. To implement the algorithm porting, the original navigation algorithm of the ROS function package was rewritten. In
addition, the AES algorithm has been incorporated to encrypt sensitive data, ensuring confidentiality during data transmission and
storage. This approach allows for the benefits of swift advancement and closer integration with other elements of the algorithm. The
initial and destination nodes are established in the physical environment. The robot uses the improved informed RRT* algorithm to
plan a collision-free path to the target location. This experimental procedure consists of three steps:

1) improved informed RRT* algorithm porting;
13

2) simultaneous localization and mapping (SLAM) testing;

Heliyon 10 (2024) e26403H. Fan, J. Huang, X. Huang et al.

Fig. 17. Environment Introduction.

Fig. 18. Overview of the car.

3) autonomous robot navigation testing.

Algorithm porting writes the Informed RRT* algorithm into the ROS robot. SLAM uses the radar on the robot to construct a
test map for real-world movement and navigation. Autonomous navigation tests verify the efficiency of the algorithm in real-world
scenarios. This section describes the implementation of an autonomous robot navigation experiment to validate the algorithm’s
efficacy in practical situations by means of algorithm adaptation and map creation. The real-world testing environment Fig. 17(a)
and the map created by SLAM are shown in Fig. 17(b). The feasible space after the expansion of the barrier is shown in Fig. 18. The
cyan part is the result of the expansion of the obstacles according to the body radius, and the pink part is the feasible domain of the
mobile robot. As shown in Fig. 19, the cart plots a smooth route from the initial location to the destination point.

The experimental results show that the robot can autonomously plan a dependable and seamless route to achieve self-guided
navigation from the initial node to the destination node. This experiment confirms the applicability of the enhanced algorithm for
mobile robots.

6. Conclusion

A path planning algorithm for mobile robots with BI-RRT* is proposed. The algorithm uses three strategies, namely extended
distance, bidirectional search and smoothing, to overcome the limitations of traditional sampling algorithms in regards to path
resilience and route planning effectiveness. Firstly, extended distances are configured for obstacles in the map to guarantee an error-

tolerant distance between the path and the obstacle. Secondly, the initial solution is quickly established using a bidirectional search
method, and the sampling space is constrained using the initial solution. Thirdly, the paths are smoothed and optimized.

The effectiveness and optimality of the algorithm are confirmed in two distinct environments and compared against alternative
algorithms. The simulation outcomes demonstrate that the algorithm still presents notable benefits in intricate environments. By
limiting the sampling space of random points, the algorithm greatly reduces CPU running time. Additionally, it generates high-

quality new nodes, enabling them to converge towards the target point faster than Informed-RRT*. The effectiveness of the proposed
algorithm, BI-RRT*, is verified through a comparison with other algorithms in numerical simulations. The algorithm can be applied
14

to path planning for mobile robots, especially in scenarios where obstacles need to be avoided, safe distances maintained and efficient

Heliyon 10 (2024) e26403H. Fan, J. Huang, X. Huang et al.

Fig. 19. Overview of the car.

paths planned. For example, areas such as self-guided vehicles in industrial automation, path planning for drones, and path planning
for warehouse robots can benefit from the algorithm. In addition, the algorithm can be applied to path planning in intelligent
transportation systems and in scenarios that require robots to navigate autonomously in complex environments.

While the BI-RRT* algorithm enables a more cost-effective initial solution and quicker convergence compared to existing
sampling-based planning algorithms, no further consideration is given to the dynamic obstacle space, which will be the direction
of our future topic. In practical applications, we will also pay further attention to the security, privacy, and reliability of trusted AI
systems, ensuring the stability and feasibility of the algorithm in compliance with stringent safety standards and regulations.

CRediT authorship contribution statement

Honghui Fan: Methodology, Funding acquisition, Formal analysis, Conceptualization. Jiahe Huang: Resources, Methodology,
Funding acquisition. Xianzhen Huang: Validation, Supervision, Software. Hongjin Zhu: Writing – original draft, Visualization,
Validation, Supervision. Huachang Su: Writing – review & editing, Investigation, Data curation.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] Edsger W. Dijkstra, A note on two problems in connexion with graphs, in: Edsger Wybe Dijkstra: His Life, Work, and Legacy, 2022, pp. 287–290.

[2] Jonathan D. Gammell, Siddhartha S. Srinivasa, Timothy D. Barfoot, Batch informed trees (bit*): sampling-based optimal planning via the heuristically guided
search of implicit random geometric graphs, in: 2015 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2015, pp. 3067–3074.

[3] Peter E. Hart, Nils J. Nilsson, Bertram Raphael, A formal basis for the heuristic determination of minimum cost paths, IEEE Trans. Syst. Sci. Cybern. 4 (2) (1968)
100–107.

[4] Yongjun Ren, Ding Huang, Wenhai Wang, Xiaofeng Yu, Bsmd: a blockchain-based secure storage mechanism for big spatio-temporal data, Future Gener. Comput.
Syst. 138 (2023) 328–338.

[5] Sertac Karaman, Matthew R. Walter, Alejandro Perez, Emilio Frazzoli, Seth Teller, Anytime motion planning using the rrt, in: 2011 IEEE International Conference
on Robotics and Automation, IEEE, 2011, pp. 1478–1483.

[6] Sebastian Klemm, Jan Oberländer, Andreas Hermann, Arne Roennau, Thomas Schamm, J. Marius Zollner, Rüdiger Dillmann, Rrt*-connect: faster, asymptotically
optimal motion planning, in: 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), IEEE, 2015, pp. 1670–1677.

[7] In-Bae Jeong, Seung-Jae Lee, Jong-Hwan Kim, Quick-rrt*: triangular inequality-based implementation of rrt* with improved initial solution and convergence
rate, Expert Syst. Appl. 123 (2019) 82–90.

[8] Marlin P. Strub, Jonathan D. Gammell, Advanced bit (abit): sampling-based planning with advanced graph-search techniques, in: 2020 IEEE International
Conference on Robotics and Automation (ICRA), IEEE, 2020, pp. 130–136.

[9] Louis Petit, Alexis Lussier Desbiens, Rrt-rope: a deterministic shortening approach for fast near-optimal path planning in large-scale uncluttered 3d environments,
in: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), IEEE, 2021, pp. 1111–1118.

[10] Bin Liao, Fangyi Wan, Yi Hua, Ruirui Ma, Shenrui Zhu, Xinlin Qing, F-rrt*: an improved path planning algorithm with improved initial solution and convergence
rate, Expert Syst. Appl. 184 (2021) 115457.

[11] Sertac Karaman, Emilio Frazzoli, Sampling-based algorithms for optimal motion planning, Int. J. Robot. Res. 30 (7) (2011) 846–894.

[12] Yongjun Ren, Fujian Zhu, Jin Wang, Pradip Kumar Sharma, Uttam Ghosh, Novel vote scheme for decision-making feedback based on blockchain in Internet of
vehicles, IEEE Trans. Intell. Transp. Syst. 23 (2) (2021) 1639–1648.

[13] Steven LaValle, Rapidly-exploring random trees: a new tool for path planning, Research Report 9811, 1998.

[14] Kiril Solovey, Michal Kleinbort, The critical radius in sampling-based motion planning, Int. J. Robot. Res. 39 (2–3) (2020) 266–285.

[15] Jiabo Feng, Weijun Zhang, An efficient rrt algorithm for motion planning of live-line maintenance robots, Appl. Sci. 11 (22) (2021) 10773.

[16] Jonathan D. Gammell, Siddhartha S. Srinivasa, Timothy D. Barfoot, On recursive random prolate hyperspheroids, arXiv preprint arXiv :1403 .7664, 2014.

[17] Zhuping Wang, Yunsong Li, Hao Zhang, Chun Liu, Qijun Chen, Sampling-based optimal motion planning with smart exploration and exploitation, IEEE/ASME
15

Trans. Mechatron. 25 (5) (2020) 2376–2386.

http://refhub.elsevier.com/S2405-8440(24)02434-4/bibC4CA4238A0B923820DCC509A6F75849Bs1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bibC81E728D9D4C2F636F067F89CC14862Cs1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bibC81E728D9D4C2F636F067F89CC14862Cs1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bibECCBC87E4B5CE2FE28308FD9F2A7BAF3s1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bibECCBC87E4B5CE2FE28308FD9F2A7BAF3s1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bibA87FF679A2F3E71D9181A67B7542122Cs1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bibA87FF679A2F3E71D9181A67B7542122Cs1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bibE4DA3B7FBBCE2345D7772B0674A318D5s1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bibE4DA3B7FBBCE2345D7772B0674A318D5s1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bib1679091C5A880FAF6FB5E6087EB1B2DCs1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bib1679091C5A880FAF6FB5E6087EB1B2DCs1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bib8F14E45FCEEA167A5A36DEDD4BEA2543s1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bib8F14E45FCEEA167A5A36DEDD4BEA2543s1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bibC9F0F895FB98AB9159F51FD0297E236Ds1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bibC9F0F895FB98AB9159F51FD0297E236Ds1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bib33E75FF09DD601BBE69F351039152189s1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bib33E75FF09DD601BBE69F351039152189s1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bib1FF1DE774005F8DA13F42943881C655Fs1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bib1FF1DE774005F8DA13F42943881C655Fs1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bib45C48CCE2E2D7FBDEA1AFC51C7C6AD26s1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bibD3D9446802A44259755D38E6D163E820s1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bibD3D9446802A44259755D38E6D163E820s1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bib6512BD43D9CAA6E02C990B0A82652DCAs1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bibC20AD4D76FE97759AA27A0C99BFF6710s1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bib4E732CED3463D06DE0CA9A15B6153677s1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bibC51CE410C124A10E0DB5E4B97FC2AF39s1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bib02E74F10E0327AD868D138F2B4FDD6F0s1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bib02E74F10E0327AD868D138F2B4FDD6F0s1

Heliyon 10 (2024) e26403H. Fan, J. Huang, X. Huang et al.

[18] Reza Mashayekhi, Mohd Yamani Idna Idris, Mohammad Hossein Anisi, Ismail Ahmedy, Ihsan Ali, Informed rrt*-connect: an asymptotically optimal single-query
path planning method, IEEE Access 8 (2020) 19842–19852.

[19] Deepesh Toshniwal, Hendrik Speleers, Thomas J.R. Hughes, Smooth cubic spline spaces on unstructured quadrilateral meshes with particular emphasis on
extraordinary points: geometric design and isogeometric analysis considerations, Comput. Methods Appl. Mech. Eng. 327 (2017) 411–458.

[20] Jian-ao Lian, Fast algorithms for generating parametric cubic spline interpolation curves, in: 2022 5th International Conference on Information and Computer
Technologies (ICICT), IEEE, 2022, pp. 100–109.

[21] Yongjun Ren, Jian Qi, Yepeng Liu, Jin Wang, Gwang-Jun Kim, Integrity verification mechanism of sensor data based on bilinear map accumulator, ACM Trans.
Internet Technol. 21 (1) (2021) 1–19.

[22] Qiang Wu, Zhaoyang Han, Ghulam Mohiuddin, Yongjun Ren, Distributed timestamp mechanism based on verifiable delay functions, Comput. Syst. Sci. Eng.
44 (2) (2023).

[23] Jonathan D. Gammell, Siddhartha S. Srinivasa, Timothy D. Barfoot, Informed rrt*: optimal sampling-based path planning focused via direct sampling of an
admissible ellipsoidal heuristic, in: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014, pp. 2997–3004.

[24] Huanwei Wang, Shangjie Lou, Jing Jing, Yisen Wang, Wei Liu, Tieming Liu, The ebs-a* algorithm: an improved a* algorithm for path planning, PLoS ONE 17 (2)
(2022) e0263841.

[25] Hewen Tao, Zhang Yi, Zhao Xiang, Research on Path Planning of Mobile Robot Based on Improved rrt* Algorithm, 2022 IEEE 6th Information Technology and
Mechatronics Engineering Conference (ITOEC), vol. 6, IEEE, 2022, pp. 666–670.

[26] Michael Otte, Nikolaus Correll, C-forest: parallel shortest path planning with superlinear speedup, IEEE Trans. Robot. 29 (3) (2013) 798–806.

[27] Yongjun Ren, Yan Leng, Yaping Cheng, Jin Wang, Secure data storage based on blockchain and coding in edge computing, Math. Biosci. Eng. 16 (4) (2019)
1874–1892.

[28] Jiankun Wang, Baopu Li, Max Q.-H. Meng, Kinematic constrained bi-directional rrt with efficient branch pruning for robot path planning, Expert Syst. Appl. 170
(2021) 114541.

[29] Jiale Hou, Zhitao Liu, Hongye Su, Obstacle based fast marching tree for global motion planning, in: IECON 2022–48th Annual Conference of the IEEE Industrial
Electronics Society, IEEE, 2022, pp. 1–6.

[30] Yongjun Ren, Yan Leng, Jian Qi, Pradip Kumar Sharma, Jin Wang, Zafer Almakhadmeh, Amr Tolba, Multiple cloud storage mechanism based on blockchain in
16

smart homes, Future Gener. Comput. Syst. 115 (2021) 304–313.

http://refhub.elsevier.com/S2405-8440(24)02434-4/bibAAB3238922BCC25A6F606EB525FFDC56s1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bibAAB3238922BCC25A6F606EB525FFDC56s1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bib9BF31C7FF062936A96D3C8BD1F8F2FF3s1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bib9BF31C7FF062936A96D3C8BD1F8F2FF3s1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bibC74D97B01EAE257E44AA9D5BADE97BAFs1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bibC74D97B01EAE257E44AA9D5BADE97BAFs1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bib70EFDF2EC9B086079795C442636B55FBs1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bib70EFDF2EC9B086079795C442636B55FBs1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bib6EA9AB1BAA0EFB9E19094440C317E21Bs1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bib6EA9AB1BAA0EFB9E19094440C317E21Bs1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bib34173CB38F07F89DDBEBC2AC9128303Fs1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bib34173CB38F07F89DDBEBC2AC9128303Fs1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bib6F4922F45568161A8CDF4AD2299F6D23s1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bib6F4922F45568161A8CDF4AD2299F6D23s1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bib1F0E3DAD99908345F7439F8FFABDFFC4s1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bib1F0E3DAD99908345F7439F8FFABDFFC4s1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bib98F13708210194C475687BE6106A3B84s1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bib3C59DC048E8850243BE8079A5C74D079s1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bib3C59DC048E8850243BE8079A5C74D079s1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bib8E296A067A37563370DED05F5A3BF3ECs1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bib8E296A067A37563370DED05F5A3BF3ECs1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bib37693CFC748049E45D87B8C7D8B9AACDs1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bib37693CFC748049E45D87B8C7D8B9AACDs1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bibB6D767D2F8ED5D21A44B0E5886680CB9s1
http://refhub.elsevier.com/S2405-8440(24)02434-4/bibB6D767D2F8ED5D21A44B0E5886680CB9s1

	BI-RRT*: An improved path planning algorithm for secure and trustworthy mobile robots systems
	1 Introduction
	2 Background
	2.1 Problem definition
	2.2 RRT algorithm
	2.3 RRT* algorithm
	2.4 Informed RRT*
	2.5 Comparative analysis of related work
	2.5.1 Expansion of environment model
	2.5.2 Bidirectional search
	2.5.3 Path smoothing strategy
	2.5.4 Optimization steps

	3 Optimization strategies and related pseudo-algorithms
	3.1 Pseudo-algorithm
	3.2 Analysis

	4 Simulation experiment
	4.1 Selecting parameters
	4.2 Environment C
	4.3 Environment B
	4.4 Discussion

	5 Real world case
	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	References

