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Simple Summary: The oriental fruit fly Bactrocera dorsalis (Hendel) is a pest species in the Tephritidae
family that damages many fruits and vegetables. Dispersal of B. dorsalis is mediated by human
activities (e.g., trade) and climate change, and it can cause serious damage to crops in newly in-
vaded regions. Previous studies mainly focused on the areas potentially suitable for year-round
reproduction, but it is unclear where the seasonal and year-round suitable areas are in the world.
We used ecological niche models to predict the potential seasonal and year-round distribution areas
of B. dorsalis. Bioclimate factors contributed differently to these two kinds of distributions. In the
future, the areas suitable for B. dorsalis will increase, and the range will likely expand northward
from existing locations. The spread of B. dorsalis in the seasonally suitable areas could threaten the
production of some temperate fruits, including apples, peaches, pears, and oranges.

Abstract: Bactrocera dorsalis (Hendel) is an important pest to fruits and vegetables. It can damage
more than 300 plant species. The distribution of B. dorsalis has been expanding owing to international
trade and other human activities. B. dorsalis occurrence is strongly related to suitable overwintering
conditions and distribution areas, but it is unclear where these seasonal and year-round suitable
areas are. We used maximum entropy (MaxEnt) to predict the potential seasonal and year-round
distribution areas of B. dorsalis. We also projected suitable habitat areas in 2040 and 2060 under
global warming scenarios, such as SSP126 and SSP585. These models achieved AUC values of 0.860
and 0.956 for the seasonal and year-round scenarios, respectively, indicating their good prediction
capabilities. The precipitation of the wettest month (Bio13) and the mean diurnal temperature range
(Bio2) contributed 83.9% to the seasonal distribution prediction model. Bio2 and the minimum
temperature of the coldest month (Bio6) provided important information related to the year-round
distribution prediction. In future scenarios, the suitable area of B. dorsalis will increase and the
range will expand northward. Four important temperate fruits, namely, apples, peaches, pears, and
oranges, will be seriously threatened. The information from this study provides a useful reference for
implementing improved population management strategies for B. dorsalis.

Keywords: Bactrocera dorsalis; invasive pests; potential distribution; risk assessment; early prediction

1. Introduction

Biological invasions threaten food safety and biodiversity, and such threats are ex-
pected to increase with increased international trade and shifts in suitable habitats associ-
ated with climate change [1,2]. Billions of dollars in economic losses have resulted from
agricultural pest invasions worldwide [3,4]. Fruits are often attacked by tephritid fruit
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flies, which are invasive worldwide and can cause severe losses [5]. Infested fruits are
not suitable for sale, consequently reducing marketability. The oriental fruit fly Bactrocera
dorsalis (Hendel) is a serious pest species in the family Tephritidae. This species is highly
polyphagous and attacks many species of fruits and vegetables, such as orange, apple,
pumpkin, and cucumber species [6]. It overwinters in the soil as pupae and its survival
rate is related to winter temperature. B. dorsalis typically occurs in tropical and subtropical
areas [7,8]. In mainland China, it is distributed in provinces located south of the Yangtze
River [9]. Defining the geographic distribution of pest species and their cryptic variation is
important for understanding and managing their movement and dispersal potential [10].

Detection and eradication of B. dorsalis is necessary, and often needs to be repeated,
e.g., the situation in California [11]. To prevent their establishment, information about a
species’ likelihood of invasion is necessary. Ecological niche models (ENMs) have often
been used to predict the potential distributions of species [12]. When modeling the habitat
suitability of B. dorsalis population, researchers usually refer to population survival in terms
of year-round occurrence, and neglect the seasonal occurrence [10]. However, seasonal
populations of B. dorsalis, without control measures, during favorable seasons can also
cause substantial losses to fruits; for example, B. dorsalis damaged peaches in autumn 2019
but did not survive in winter in Heze city, Shandong Province, China (field observations).
Therefore, when using ENMs to predict their potential distribution, it is necessary to
consider the seasonal distribution alongside year-round distribution.

Climate change has caused substantial modifications in the geographical distribution
of many species [13]. The Sixth Assessment Report (AR6) produced by the Intergovern-
mental Panel on Climate Change (IPCC) states that global warming of 1.5 ◦C and 2 ◦C will
be exceeded during the 21st century unless major reductions in CO2 and other greenhouse
gas emissions occur in the coming decades [14]. Under this climate forecast, the potential
damage risk to temperate fruits caused by B. dorsalis has not currently been assessed.

The purpose of this study was to evaluate (1) the potential distribution of B. dorsalis,
both in terms of seasonal and year-round occurrence, and (2) the risk areas of seasonal oc-
currence of B. dorsalis on temperate fruits. This information will be valuable for determining
how to manage the invasion and spread of B. dorsalis to suitable regions.

2. Materials and Methods
2.1. Databases Used in Modeling
2.1.1. Species Occurrence Data of B. dorsalis

Distribution records of B. dorsalis were obtained from the literature [7–10], as well
as from online databases such as the Global Biodiversity Information Facility (GBIF, http:
//www.gbif.org/, accessed on 1 June 2021) and CAB International (https://www.cabi.
org/isc/datasheet/17685, accessed on 1 June 2021). We eliminated duplicates and reduced
the effects of spatial autocorrelation by rarefying records with a distance of 50 km, which
meant the nearest two record sites were more than 50 km [15–18]. A total of 397 unique
occurrence records were retained. Spatial thinning was conducted using SDMtoolbox 2.3 for
ArcGIS [19]. Occurrence records in Northern China represent occurrences during favorable
seasons, and do not indicate persistence throughout the year. Therefore, we divided the
occurrence data into seasonal and year-round occurrence. We excluded seasonal occurrence
sites when modeling suitable year-round habitats.

2.1.2. Environmental Data

Current bioclimatic variables were obtained from the WorldClim database at a resolu-
tion of 10 arcmin (http://www.worldclim.org, accessed on 1 June 2021). The WorldClim
dataset is derived from measurements of monthly climate data collected from weather
stations across the world between 1950 and 2000 [20]. These climate data were used to
gain a stable description of the sites. The predictor variables used to assess current climate
conditions were selected among 19 bioclimatic variables (see the supplementary file for
details of these variables). These variables capture annual climatic ranges and limiting

http://www.gbif.org/
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factors that are known to influence species geographic distributions. Selecting important
predictor variables is an essential step for model fitting. Two sets of variables (set 1: Bio1,
Bio2, Bio5, Bio6, Bio12, Bio13, and Bio14; set 2: Bio1, Bio2, Bio5, Bio6, Bio12, and Bio15)
were selected following the procedure suggested by [21]. These variables are mainly used
to describe temperature variation and precipitation variation. The first set of bioclimatic
variables was selected based on a previous study that successfully modeled the distribution
of other Bactrocera species [21]. The second set of bioclimatic variables was a modified
version of set 1, created by replacing the variables Bio13 and Bio14 with Bio15. Since we
did not know which variable set would be the best predictor for B. dorsalis, we tried these
two sets of variables to gain a reliable result.

We used the model data developed by the Coupled Model Intercomparison Project
(CNRM-CM6-1) of two Shared Socio-economic Pathways (SSPs: 126 and 585) for future
climate scenarios. According to the Intergovernmental Panel on Climate Change (IPCC),
there are four Shared Socio-economic Pathways (SSPs: 126, 245, 370, and 585) which
comprise high-priority scenarios for the Sixth Assessment report by the IPCC [14]. These
data refer to the low greenhouse gas emission scenarios (SSP126) and the high emission
scenario (SSP585). We downloaded these data at a resolution of 10 arcminutes from
https://www.worldclim.org/, accessed on 1 June 2021.

2.2. Protocol of MaxEnt Modeling
2.2.1. Background Selection

MaxEnt uses pseudo-absence data drawn randomly from a geographically defined
background instead of actual absence records to define environmental conditions where the
species has not been recorded. The background from which pseudo-absences are drawn
can, however, significantly influence the model results [22]. Due to this, it is recommended
that the background be restricted to the region in which the species would reasonably be
expected to occur [23].

For broadly distributed invasive species (where dispersal measures are largely un-
known), it may be best to select backgrounds based on bioclimatic zones representing
little inhibition to the accessible area beyond broad climate types [22]. We selected the
background study area by intersecting the occurrence localities with Köppen climatic zones
downloaded from CliMond (http://www.climond.org, accessed on 2 June 2021) at the
spatial resolution of 10 arc-minutes [24,25]. Climate zones containing one or more dis-
tribution records were used to restrict the background during model training (Figure 1).
Ten thousand pseudo-absences were then drawn from an area defined by Köppen–Geiger
polygons, within which one or more distribution records were located.

2.2.2. Parameter Set and Model Evaluation

MaxEnt has two main modifiable parameters: (1) feature classes and (2) regularization
multiplier. Feature classes can be used to build very complex and highly nonlinear response
curves [26]. A feature is a function of an environmental variable and, in MaxEnt, it can
be a combination of six classes: linear (L), quadratic (Q), product (P), hinge (H), and
threshold (T). As parsimonious models can be generated using different combinations of
feature classes, five of these combinations were tested in this study: L, H, LQ, LQH, and
LQHPT. The regularization multiplier is a parameter that adds new constraints [27]. It has
been demonstrated that less complex and transferable models can be built by tuning the
regularization multiplier to values higher than the default of MaxEnt [28,29]. Therefore, in
addition to the MaxEnt default setting, regularization multiplier values of 3 and 5 were
also tested in the development of the models. We combined regularization multipliers and
feature classes to assess a total of 186 models for two environmental datasets.

The performance of the models was assessed using partial receiver operating charac-
teristic (ROC), omission rates, and AICc [30]. Partial ROC was calculated instead of the full
area under the ROC curve because the latter is not appropriate in ecological niche model-
ing [31], and partial ROC represents a more suitable indicator of statistical significance [30].

https://www.worldclim.org/
http://www.climond.org
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Best models were selected according to the following criteria: (1) significant models with
(2) omission rates ≤ 5%. Then, models with delta AICc values of ≤2 were chosen from
among this model set as the final models.
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Cfb: temperate oceanic climate; Cwa: monsoon; Cwb: subtropical highland climate or temperate 
oceanic climate with dry winters; Dwa: monsoon-influenced, hot summer, humid continental cli-
mate. Details of the calculation of the Köppen–Geiger climate classification are described in [25]. 
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Figure 1. Seasonal and year-round occurrence points of populations of Bactrocera dorsalis used in
the modeling process. Colors refer to Köppen–Geiger classifications, while the grey areas represent
areas not used in models. The letter codes for climate classes are as follows. Af: equatorial rainforest,
fully humid; Am: equatorial monsoon; Aw: equatorial savannah with dry winter; BSh: hot semi-arid
climate; BSk: cold semi-arid climate; BWh: hot desert climate; Cfa: humid subtropical climate;
Cfb: temperate oceanic climate; Cwa: monsoon; Cwb: subtropical highland climate or temperate
oceanic climate with dry winters; Dwa: monsoon-influenced, hot summer, humid continental climate.
Details of the calculation of the Köppen–Geiger climate classification are described in [25].

2.2.3. Model Projection to Predict the Potential Distribution

Once the parameter combination yielding the best model was determined, the MaxEnt
model was run with all the known occurrences from native and invaded areas and projected
onto the remaining parts of the world to predict the potential distribution of B. dorsalis.
The final model was run for 10 replications and the output provided in a logistic format to
increase the accuracy and reliability of modeling results. After using the current climatic
data to model the spatial extent of suitable habitat for B. dorsalis, modeling projections were
performed for future climate scenarios to predict the extent of suitable habitats in the future
(2040 and 2060).

The final model was run with the logistic output and maps were built using the 10%
training presence threshold (TP10). Areas above the TP10 were referred to as suitable,
and below were unsuitable. The potential distribution ranges of suitable habitats were
divided into three levels between the above threshold, and one with Jenks natural breaks,
corresponding to low, medium, and high suitable habitats. We used the tool “reclassify” in
ArcGIS (v.10, ESRI 2011) to create the figure of the analysis result.

2.3. Spatial Analyses for Quantifying the Area at Risk of Damage

The worldwide acreages of orange Citrus sinensis, apple Malus domestica, pear Pyrus
communis, and peach Prunus persica were obtained from [31]. To quantify the production
areas at risk of attack, the suitability map of B. dorsalis was intersected against maps of
fruit acreage across the world. Areas that overlapped with the predicted distributions of
B. dorsalis were considered to be at risk of attack.
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3. Results
3.1. Model Evaluation

A total of 186 models were tested for each type of distributions. For the seasonal
distribution, 146 statistically significant models met the omission rate criterion, of which
two also met the AICc criterion at the same time. For the year-round distribution, three
significant models met the omission rate criterion, of which one also met the AICc criterion
at the same time. The best model had the lowest AICc values and omission rates (Table 1).
We selected the models in which set 1 participated as the best models for seasonal and
year-round occurrence, respectively. All of these models included seven variables (set 1:
Bio1, Bio2, Bio5, Bio6, Bio12, Bio13, Bio14). However, their feature class and regularization
multipliers differed. The mean AUC training values for both models were 0.860 and 0.956,
respectively, indicating that both models performed well.

Table 1. Summary of performance statistics of best models for predicting seasonal and year-round
distributions of Bactrocera dorsalis. The relative regularization multiplier (RM), feature classes (FC),
sets of predictors (Pred. Sets), and AICc values are shown. Delta AICc and weight AICc of models
with default settings are relative to the selected models.

RM FC Pred.
Sets

Partial
ROC

Omission
Rate AICc Delta

AICc
Weight
AICc

Seasonal 3 PH Set 1 0 0.04 7422.17 0.00 0.51
1 LQP Set 2 0 0.04 7423.00 0.82 0.34

Year-round 1 LQP Set 1 0 0.03 1385.06 0.00 0.99

The most important factors limiting the seasonal distribution of B. dorsalis were the
precipitation of the wettest month (Bio13, 56.7% variation) and the mean diurnal temper-
ature range (Bio2, 27.2% variation). The cumulative contributions of these factors were
as high as 83.9% (Table 2). In contrast to the seasonal model, the most important factors
limiting the year-round distribution were the mean diurnal temperature range (Bio2, 57.7%
variation), the minimum temperature of the coldest month (Bio6, 19.4% variation), and the
mean annual temperature (Bio1, 8% variation) (Table 2).

Table 2. Percentage contributions and permutation importance of the bioclimatic variables included
in the MaxEnt models for seasonal occurrence and year-round occurrence of Bactrocera dorsalis. Here
we list the results from best models based on set 1.

Seasonal Year-Round

Variable
Name Variable Description Contribution

(%)
Permutation
Importance

Contribution
(%)

Permutation
Importance

Bio1 Annual mean temperature 5.3 13.7 8.0 20.5
Bio2 Mean diurnal temperature range 27.2 32.3 57.7 26.9
Bio5 Max temperature of warmest month 2.6 0.8 5.0 11
Bio6 Min temperature of coldest month 1.6 8.4 19.4 30.9
Bio12 Annual precipitation 1.3 7.3 2.7 7.3
Bio13 Precipitation of wettest month 56.2 36.2 5.0 2
Bio14 Precipitation of driest month 5.9 1.3 2.2 1.4
Bio15 Precipitation seasonality - - - -

The thresholds of suitable habitat (predicted probability, TP10) were above 0.288 for
seasonal distribution and 0.2548 for year-round distribution. The response curve shows
how each environmental variable affects the prediction (Figures S1 and S2). For seasonal
distribution, Bio13 higher than 143.56 mm, and Bio2 lower than 12.19 ◦C were suitable.
For year-round distribution, Bio2 lower than 11.04 ◦C and a Bio6 ranging from −11.48 to
15.28 ◦C were suitable.



Insects 2022, 13, 550 6 of 12

3.2. Current Potential Distributions

The seasonal distribution model for B. dorsalis showed that suitable areas covered
parts of Southeast Asia, Australia, Central America, South America, and Africa (Figure 2).
Habitats that are currently highly suitable for seasonal distribution were concentrated in
Southern China, Southeast Asia, and coastal areas of other continents. For year-round
distribution, highly suitable areas were mainly in Southern China, Eastern India, and a
small part of Central Asia. Some coastal areas of Brittany and the British Isles were also
predicted to be suitable, although only at a low level (Figures S3 and S4).
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With the current environmental variables, the total area of potentially suitable habitat
for seasonal distribution was estimated to be 28.6 × 106 km2. Among these areas, about
5.11 × 106 km2 (about 17.87% of the total suitable area) exhibited high habitat suitability
(Table 3). The potentially suitable year-round habitat area was 7.10 × 106 km2, which
accounted for only 24.84% of the seasonal distribution.

Table 3. Portions of different classes of potential distribution area for seasonal and year-round
occurrence under current and four future climate scenarios/years (×106 km2).

Seasonal Year-Round

Unsuitable Low Medium High Unsuitable Low Medium High

Current 248.74 11.83 11.66 5.11 270.35 3.21 1.91 1.86
SSP126-2040 242.24 12.58 13.83 8.69 268.46 4.01 2.77 2.10
SSP126-2060 241.08 12.81 14.26 9.19 268.32 4.12 3.07 1.83
SSP585-2040 240.13 13.16 14.43 9.63 267.96 4.20 2.57 2.60
SSP585-2060 236.79 13.30 15.03 12.21 268.07 4.13 2.72 2.41

SSPs are the Shared Socio-economic Pathways that provide a range of distinct end-of-century climate change
outcomes; the years refer to the monthly values averaged over 20-year periods (2021–2040, 2041–2060).

3.3. Future Changes in Suitable Areas

Future climate changes will be generally favorable for B. dorsalis (Table 3), and ad-
ditional suitable areas will be available under two climate change scenarios (SSP126 and
SSP585). The potential range will primarily expand north from the currently occupied
areas. Under the SSP126 climate scenario, MaxEnt predicted that B. dorsalis would have
increased areas of suitable habitats by 2040 and 2060 (Figures S3 and S4). In addition,
the Mediterranean would become suitable for B. dorsalis in the future. Under the SSP585
climate scenario, MaxEnt predicted that B. dorsalis gains suitable habitat areas in North
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America, Africa, and the Mediterranean by 2040 and 2060 (Figure S3). The suitability of
habitats in Asia would also increase. Overall, we saw an increasing pattern in suitable
habitats compared with current habitats (Table 3).

3.4. Risks to Global Fruit Production

The four temperate fruits (apple, peach, pear, and orange) are at risk of B. dorsalis. The
production of orange is the one that is at higher risk, with almost 78% of its production
area within the suitable range of B. dorsalis, followed by apple (51%), pear (38%), and peach
(30%). Brazil, the United States, Mexico, and China had more than 50% of orange area
at risk. China also had the largest areas at risk in terms of the apple, peach, and pear
production (Figures 3 and 4).
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in terms of attack by B. dorsalis for four important fruit species: (A) apple; (B) orange; (C) peach;
(D) pear. The number on each bar refers to the harvested area (hectare). Countries in each plot are
ordered according to the harvested area, from largest to smallest.

Under SSP126–2040, SSP126-2060, SSP585-2040, and SSP585-2060 climate scenarios,
the areas in which all these fruits would be at risk of attack were predicted to increase
(Figure 5).
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Figure 5. Percentage increase in area at risk of attack by B. dorsalis for four temperate fruit species,
comparing four future climate scenarios/years to the current situation. Under the current situation,
risk area for orange is 1.96 million hectares, apple 1.75 million hectares, pear 0.78 million hectares,
and peach 0.52 million hectares.



Insects 2022, 13, 550 9 of 12

4. Discussion

In this study, we performed a detailed analysis of the seasonal and year-round suit-
ability of areas for B. dorsalis under different climate scenarios. The results obtained could
be an important step in formulating a feasible strategy for pest management. Our models
show that B. dorsalis has a wide range of potential seasonal distribution, including Southern
and Southeastern Asia, Central and South America, and parts of Africa, as well as coastal
Australia and New Zealand. In China, parts of Hebei, Henan, and Shandong provinces are
also predicted to be suitable for seasonal distribution. In contrast, the potential year-round
distribution was mainly in Southern and Southeastern Asia, South America, and Australia.
The seasonal distribution of B. dorsalis usually refers to places that are suitable only in
the warm season because the coldest month and length of day impact survival. During
the warm season, temperate fruit (e.g., apple) is ripe, so the risk of damage to these fruits
should be noted.

Distinguishing the seasonal and year-round distributions of B. dorsalis is crucial for
its management. For example, in seasonal distribution areas, control strategies can fo-
cus on preventing the invasion of this pest through trade or transport; for instance, the
detection and eradication efforts in California show that the prevention work may need
to be performed constantly [11]. Monitoring efforts should emphasize the corridors or
routes connecting the current overwintering areas to each other or to all suitable habitats.
On the other hand, in year-round distribution areas, control strategies need to focus on
reducing overwintering populations. When invasions occur in some seasonal distribution
areas, molecular tools can be used to trace their dispersal pathways and determine which
year-round distribution areas are the sources of invasive populations [9]. Further research
should focus on a regional scale to figure out the accurate borders of year-round distribution
and develop strategies to prevent the dispersal of B. dorsalis from year-round distribution
areas to seasonal areas.

B. dorsalis is endemic and widespread in tropical areas of Southeast Asia [6,32]. The risk
of infestation by this species on temperate fruits may be overlooked when it is considered
only as a tropical pest. We believe that the seasonal distribution of this pest may also
cause damage. The four temperate fruits analyzed (apples, peaches, pears, and oranges)
are at risk of being attacked by B. dorsalis outside tropical areas. The adults of B. dorsalis
have been reported to be mobile (about 50 km travelling distance), and their larvae spread
mainly through human activities (e.g., fruit trade) [8]. Therefore, this pest is highly likely
to move from year-round to seasonal areas. Detection and eradication programs need to be
prepared in suitable seasonal areas.

Previous models showed the high percentage of climatically suitable areas in South
America and Africa [32–34]. Compared with these previous studies, our results predicted a
lower percentage of suitable habitats in South America and Africa. In addition, our seasonal
model shows more northern distributions in China, Europe, Korea, and Japan. According
to previous studies [32–34], there is also a current risk of B. dorsalis establishment in the
coastal regions of the Mediterranean. In contrast, our model shows low suitability for B.
dorsalis along the Mediterranean coast. However, our results show that parts of the coastal
areas in Western Europe are predicted to be suitable for B. dorsalis (Figure 2). It is hard
to attribute the differences to certain factors. Different modeling methods may generate
different results. Our predicted year-round distribution matched that of previous studies,
but covered slightly smaller areas. It may be due to our limited year-round occurrence data.
Some occurrence records in Africa and South America were not included in our year-round
modeling because of the lack of verification of their year-round status. Future work should
focus on the details of seasonal and year-round distribution patterns of B. dorsalis.

The spread of B. dorsalis has motivated the implementation of risk assessments and
control measures [35]. In China, B. dorsalis began spreading northward in the early 21st
century, and this expansion continues [34]. B. dorsalis is now moving into central areas
of China that were previously considered climatically unsuitable because of cold winter
conditions [36]. Distribution records from Central and Northern China were not included
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in the model validation process [6]; it has been hypothesized that these records may repre-
sent transient populations. The MaxEnt model used by [34] included records from central
provinces (Jiangsu, Anhui, and Hubei). Our model also included some locations in North-
ern China (Beijing, Hebei, and Shandong), where B. dorsalis is occasionally reported (GBIF,
https://www.gbif.org/, accessed on 1 June 2021). In Central China, a small proportion
of overwintering pupae may result in a small number of adults early in the season and
ensure population survival. This survival may constitute selection pressure for increased
cold tolerance of B. dorsalis and future range expansion [37]. The northern boundary of the
overwintering sites in China (Jiangsu, Anhui, and Hubei) would benefit from increased
monitoring.

Finally, we found that the precipitation of the wettest month and mean diurnal tem-
perature range were important factors for predicting seasonal distribution. In contrast,
the minimum temperature of the coldest month and mean diurnal temperature range
were most useful for predicting year-round distribution (Table 2). It is not surprising that
different bioclimatic predictors contribute to predicting seasonal and year-round distribu-
tions. However, the mean diurnal temperature range provided useful information for both
distribution predictions. This predictor uses recorded temperature fluctuations within a
month to capture the diurnal temperature range, and it can provide information related to
the relevance of temperature fluctuations [38].

5. Conclusions

Our model predicted a significantly high risk of B. dorsalis seasonal infestations to
apples, peaches, and pears in China, and oranges in Brazil, the United States, and China.
The spread of B. dorsalis in seasonally suitable areas could result in significant economic
losses to producers, since more than a half of the planting areas are within these areas
(Figure 4). China accounts for almost 54.6% of global apple production, and 62.77% of its
planted area is within the potential seasonal distribution of B. dorsalis. In India, 89.39%
of apple planting areas are at risk of B. dorsalis infestation. Future climate changes will
generally be favorable for B. dorsalis, and additional suitable areas will be available. We also
found the percentage of risk area for the four studied fruits would increase in the future
(Figure 5). Preventing invasions is more cost-effective than eradicating or controlling the
invading species once it has become established in a region [39]. Our results show areas
where B. dorsalis is most likely to invade. Future research should be focused on developing
priority areas for interception or guidance for the installation of detection traps.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/insects13060550/s1, Supplementary material 1: Figure S1: Response
curves showing the relationship of MaxEnt predicted probability of seasonal occurrence of Bactrocera
dorsalis to environmental variables. Figure S2: Response curves showing the relationship of MaxEnt
predicted probability of year-round occurrence of Bactrocera dorsalis to environmental variables.
Figure S3: Predicted seasonal distribution of B. dorsalis under two climate scenarios (SSP126 and
SSP585) and two future years (2040 and 2060). Figure S4: Predicted year-round distribution of
B. dorsalis under two climate scenarios (SSP126 and SSP585) and two future years (2040 and 2060).
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