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Abstract

Surface plasmon resonance (SPR)-based immunoassays have numerous applications and require high affinity reagents for
sensitive and reliable measurements. We describe a quick approach to turn low affinity antibodies into appropriate capture
reagents. We used antibodies recognizing human ephrin type A receptor 2 (EphA2) and a ProteOn XPR36 as a model
system. We generated so-called ‘bi-epitope’ sensor surfaces by immobilizing various pairs of anti-EphA2 antibodies using
standard amine coupling. The apparent binding affinities to EphA2 and EphA2 detection sensitivities of the bi-epitope and
‘single-epitope’ surfaces were then compared. For all antibody pairs tested, bi-epitope surfaces exhibited an ,10–100-fold
improvement in apparent binding affinities when compared with single-epitope ones. When pairing 2 antibodies of low
intrinsic binding affinities (,1028 M) and fast dissociation rates (,1022 s21), the apparent binding affinity and dissociation
rate of the bi-epitope surface was improved up to ,10–10 M and 1024 s21, respectively. This led to an ,100–200-fold
enhancement in EphA2 limit of detection in crude cell supernatants. Our results show that the use of antibody mixtures in
SPR applications constitutes a powerful approach to develop sensitive immunoassays, as previously shown for non-SPR
formats. As SPR-based assays have significantly expanded their reach in the last decade, such an approach promises to
further accelerate their development.
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Introduction

Surface plasmon resonance (SPR) is an optical technique used

for characterizing molecular interactions. It offers real-time and

label-free detection and quantitation of complex formation and

dissociation over time, a key advantage over traditional methods

such as fluorescent or radiolabeled binding assays. Since Liedberg

et al. first immobilized an antibody on a sensor surface [1,2], a

variety of SPR-based immunoassays have been developed for

detecting biomarkers or characterizing molecular interactions in

medical diagnostics, drug discovery, food safety, and environmen-

tal monitoring [3–10].

Being the recognition component of many SPR immunoassays,

antibodies play a key role in assay sensitivity and performance.

Various antibody immobilization strategies have been developed

and their impacts on performance compared [11–18], including (i)

simple adsorption, (ii) covalent attachment using heterobifunc-

tional cross-linkers, (iii) non-covalent coating using streptavidin/

biotin, and (iv) oriented capture using Fc region-binding proteins

(e.g. protein A or G) or affinity tags (e.g. polyhistidine-tag).

Amongst these, non-covalent oriented capture methods usually

result in the most functional surfaces. However, these are not

desired in many applications, due to lesser surface stability and

additional capturing steps needed after every regeneration cycle.

Covalent immobilization approaches, such as amine coupling,

yield the most stable surfaces. In particular, amine coupling

usually entails protein immobilization via their amine groups to

the 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide (EDC) and

N-hydroxysuccinimide (NHS)-activated carboxyl groups of sensor

surfaces.

Antibody affinity ultimately dictates immunoassay sensitivities

[19–21]. High affinity antibodies are preferred as they can rapidly

produce the greatest number of stable immune complexes,

therefore allowing for sensitive detection. Reliable immunoassays

usually require affinity constants in the ,10–10 M range [22].

When using a sandwich format, dissociation rates for the capturing

antibodies typically need to be as slow as,1024 s21, thus allowing

captured antigens from crude samples to remain bound for

detection using a secondary antibody. However, antibodies rarely

possess such high affinity or slow dissociation rates when directly

derived from standard selection methods (e.g. phage or yeast

libraries) or purchased as commercial reagents. Thus, new

identification and/or affinity maturation campaigns are often

needed [23–26]. Considering the time and effort required for such

an endeavor, we sought a quick alternative approach to turn

inferior antibodies with intrinsically low affinities and fast

dissociation rates into robust capture reagents for immuno-SPR

applications.

Mixing antibodies binding to different epitopes results in higher

apparent binding affinities and assay sensitivities when compared

with individual antibodies in solid-phase radioimmunoassays and
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enzyme-linked immunosorbent assays [27–30]. However, such an

approach is still under-appreciated for SPR applications. Notably,

it was reported that epitope synergy did not exist when antibodies

were directly immobilized using amine coupling, and only

occurred when captured through their Fc region (e.g. with protein

G or anti-Fc antibodies) [28]. Such observations have limited the

usage of so-called ‘bi-epitope’ sensors in SPR immunoassays. To

explore this further, we have generated various bi-epitope sensor

surfaces using standard amine coupling, and compared the

corresponding apparent binding affinities and assay sensitivities

with those measured using single-epitope surfaces. We used the

multiplexed SPR instrument ProteOn XPR36 platform [31] and

soluble human ephrin type A receptor 2 (EphA2) as a model

system. EphA2 plays a key role in the formation and progression of

various cancers, and its overexpression predicts poor prognosis in

ovarian and esophageal carcinoma [32–34]. Furthermore, it was

suggested that measuring soluble circulatory EphA2 levels could

have utility in patients who may benefit from EphA2-based

therapies [35].

Materials and Methods

Kinetics and affinity measurements on low density
single-epitope surfaces
A ProteOn XPR36 instrument (Bio-Rad, Hercules, CA) was

used to determine the kinetics of anti-EphA2 monoclonal

antibodies (mAb) 3B10, 3F2, 3B2 and 1C1 (MedImmune) to

human EphA2 (MedImmune). Standard amine coupling was used

to immobilize each antibody (20 nM in 10 mM sodium acetate

buffer, pH 5.0) to the EDAC/Sulfo-NHS activated surface of a

GLC biosensor chip (Bio-Rad) at a density of ,200–600

resonance units (RU) according to the manufacturer’s instructions.

This corresponds to a density of ,20–60 ng/cm2. EphA2 was

prepared in phosphate buffered saline (PBS), pH 7.4, containing

0.005% Tween-20 (PBS-T) and injected at 100 ml/min for 200 s

at concentrations of 100–6.25 nM and 20–1.25 nM (1:2 dilutions)

for antibodies 3B10/1C1 and 3F2/3B2, respectively. The

dissociation phase was followed for 600 s. Surfaces were regener-

ated by injecting 10 mM glycine HCl, pH1.5, for 30 s. All

sensorgram data were processed using ProteOn Manager 3.1

software (Bio-Rad) and fitted to a 1:1 interaction model.

Epitope binning
Epitope binning for mAbs 1C1, 3F2, 3B10 and 3B2 was

performed using competition binding using a ProteOn XPR36

instrument. The ability of mAbs 1C1, 3F2, 3B10 and 3B2 to bind

to immobilized human EphA2 in the presence of another antibody

was assessed as follows: EphA2 was immobilized onto a GLC

sensor chip at density level of ,800 RU (,80 ng/cm2) using

standard amino coupling chemistry (see above). For a given

antibody pair, the first antibody at a concentration of 1 mM in

PBS-T buffer was injected at 30 ml/min for 150 s to the EphA2-

immobilized surface. A mixture of this same antibody with the

second antibody (1 mM each in PBS-T buffer) was then passed

over the same surface. The extent of competition was derived from

the additional binding detected. This process was repeated for all 6

antibody pairs (namely 3B10 vs. 3F2, 3B10 vs. 1C1, 3B2 vs. 3F2,
3B10 vs. 3B2, 1C1 vs. 3F2 and 1C1 vs. 3B2).

Figure 1. Binding and epitope characterization of various anti-EphA2 mAbs. (A) Binding kinetics of mAbs 1C1, 3F2, 3B10 and 3B2.
Measurements were conducted using a ProteOn XPR36. Each antibody was immobilized at low density (,200–600 RU or ,20–60 ng/cm2) using
amine coupling and EphA2 injected over the resulting surfaces. All 4 antibodies exhibit fast dissociation rates in the 102221023 s21 range. (B)
Epitope binning. Cross-competition binding studies between any pair of mAbs 1C1, 3F2, 3B10 and 3B2 was performed using a ProteOn XPR36
instrument. Injections are indicated by arrows. A response from the second injection indicated that each mAb in a given pair binds to a different
epitope. (C) 3 distinct epitopes were identified, including 1 shared between mAbs 3B10 and 3F2.
doi:10.1371/journal.pone.0112070.g001
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Figure 2. Generation and characterization of high density bi-epitope SPR sensor surfaces. (A) Immobilization sensorgrams of mAbs 3B10,
1C1 and 3B10-1C1 mixture. The immobilization profiles are comparable and yielded a high density surface (,5,000–5,500 RU or ,500–550 ng/cm2).
(B) Confirmation of the co-existence of functional antibodies on the bi-epitope surfaces. Excess of mAbs 3B10 or 1C1 (1 mM) inhibited EphA2 binding
to the single-epitope 3B10 or 1C1 surfaces, respectively, but not to the bi-epitope 3B10-1C1 surface.
doi:10.1371/journal.pone.0112070.g002

Table 1. Binding kinetics and affinities measured on high density bi-epitope sensors.

Anti-EphA2 mAbs Ligand density (RU)a Association rate (kon) (105 M21 s21) Dissociation rate (koff) (1024 s21) KD (nM)

3B10-1C1 5,502 6.561.2b 1.460.2 0.2260.04

3B10-3B2 5,402 6.961.3 1.160.1 0.1660.04

3F2-3B2 5,291 5.961.6 0.660.2 0.1060.06

3F2-1C1 5,256 4.060.8 1.260.5 0.3060.05

1C1-3B2 5,186 6.660.7 1.660.5 0.2460.05

aLigand density can also be expressed in ng/cm2, with 1 RU corresponding to 0.10 ng/cm2 [38,39].
bErrors were estimated as the standard deviations of 3–4 individual measurements.
doi:10.1371/journal.pone.0112070.t001
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Generation of high density single- and bi-epitope
surfaces
In order to identify optimal conditions for immobilization,

various parameters were tested, including pH (4.0–5.5) and

antibody concentrations (50–150 nM). The most favorable condi-

tion was then identified. In summary, all immobilizations were

performed at high density (.5,000 RU, or .500 ng/cm2), using

an injection rate of 30 ml/min for 300 s, and 100 nM individual

mAbs or mAb mixtures in 10 mM sodium acetate buffer, pH 5.0.

Kinetics and apparent affinity measurements on high
density single- and bi-epitope surfaces
EphA2 was prepared in PBS-T and injected at 100 ml/min for

150 s at concentrations of 10–0.625 nM (1:2 dilutions) over high

density bi- or single-epitope surfaces. The dissociation phase was

followed for 600 s. Surfaces were regenerated by injecting 10 mM

glycine HCl, pH 1.5, for 30 s. All sensorgram data were processed

using ProteOn Manager 3.1 software and fitted to a 1:1 interaction

model.

EphA2 detection using a sandwich SPR assay
A sandwich SPR assay was used to detect and quantify EphA2

in crude cell supernatants. EphA2 dilutions series (50 nM-2 pM)

spiked in conditioned mammalian cell culture medium were

injected at 30 ml/min for 400 s over the 3B10-1C1 bi-epitope or

its corresponding 3B10 and 1C1 single-epitope surfaces. Captured

EphA2 was then detected by injecting 100 nM of mAb 3B2 that

recognizes a distinct EphA2 epitope at 100 ml/min for 150 s.

Binding response was plotted against EphA2 concentrations.

Results and Discussion

Kinetics, affinity and epitope characterization of anti-
EphA2 mAbs
Kinetics and affinity measurements, as well as epitope binning

were performed on the 4 anti-EphA2 mAbs 1C1, 3F2, 3B10 and

3B2. All mAbs exhibited fast dissociation rates ranging from

1.361022 to 1.061023 s21 (Figure 1A). These fast dissociation

rates would prevent their usage as capture reagents in sensitive

immunoassays. Additionally, mAbs 3B10 and 3F2 were found to

recognize the same or largely overlapping epitope(s) (Figure 1B)

and as such were not paired to generate a bi-epitope surface. mAbs

1C1 and 3B2 each recognized a distinct epitope from 3B10 and

3F2, as shown in Figure 1B. In summary, 3 distinct epitopes were

identified (Figure 1C).

Generation of high density single- and bi-epitope
surfaces
To identify an optimal amine coupling condition, we tested

various pH and mAb concentrations. We found that 100 nM IgGs

in 10 mM sodium acetate buffer, pH 5.0, yielded the highest

density levels (.5,000 RU or .500 ng/cm2) for all individual

IgGs and their respective pairs (see Figure 2A for mAbs 3B10 and

1C1). The functionality of each antibody when immobilized

together was assessed by injecting EphA2 (5 nM) in the presence

of an excess of each individual mAb (1 mM). As shown in

Figure 2B, the presence of excess mAb 3B10 or 1C1 inhibited the

binding of EphA2 to the corresponding single-epitope surface, but

not to the bi-epitope surface. This indicated that both mAb 3B10

Figure 3. EphA2 binding to individual mAbs 3B10 (A), 1C1 (B) and corresponding mixture (C) immobilized at high density levels.
When using the single-epitope high density surfaces, dissociation rates were fast and similar to that of the corresponding low density surfaces.
Surfaces immobilized with the antibody pair allowed for an ,100-fold increase in the apparent dissociation rate (,1024 s21).
doi:10.1371/journal.pone.0112070.g003
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and 1C1 were functional on the bi-epitope surface. The same

observation was made for all mAb pairs (data not shown).

Bi-epitope surfaces lead to substantial improvement in
apparent dissociation rate and detection sensitivity
For any of the single-epitope high density surface, captured

EphA2 quickly decayed with a similar dissociation rate to that of

the corresponding low density surface (see Figure 3A–B with

mAbs 3B10 and 1C1 as an example). In contrast, bi-epitope

surfaces showed an ,10–100-fold enhancement in their apparent

dissociation rates (,1024–1025 s21, Table 1) when compared

with that of the corresponding high density single-epitope surfaces.

In particular, mixing mAbs 3B10 and 1C1, each possessing a very

fast dissociation rate of ,1022 s21, yielded a biosensor surface

with an apparent dissociation rate of 1.461024 s21 (Figure 3C

and Table 1), an ,100-fold improvement.

The tighter binding of bi-epitope surfaces led to a significant

improvement in EphA2 detection sensitivity. We compared the

respective ability of the bi-epitope 3B10-1C1 and single-epitope

3B10 and 1C1 surfaces to detect EphA2 in crude supernatant

using a sandwich format. Under the same conditions, EphA2

spiked in conditioned mammalian cell culture medium was

injected over the bi- or single-epitope surfaces, followed by the

injection of a secondary antibody recognizing a different epitope

on EphA2 (mAb 3B2; Figure 1C). Binding responses using the bi-

epitope surface were much higher than that of the corresponding

single-epitope surfaces (Figure 4A). A concentration as low as

15.6 pM EphA2 in crude supernatant could be detected with a

binding signal of 6 RU (or ,0.6 ng/cm2), an ,100- and 200-fold

improvement in detection limits when compared with the 3B10

(1.3 nM) and 1C1 (3.1 nM), respectively, single-epitope surfaces

(Figure 4B). Thus, low affinities antibodies exhibiting fast dissoci-

ation rates can be turned into robust capture reagents to develop

sensitive SPR immunoassays.

Although the amine coupling method is expected to result in the

random orientation of antibodies on the sensor surfaces, we

showed here that it can be quickly optimized to generate

functional high density bi-epitope surfaces. Because of their large

size (,150 kDa) and flexibility, IgGs retain satisfactory ligand

functionality regardless of random orientation upon immobiliza-

tion. Indeed, their Fv domain (smallest antigen binding portion) is

only ,25 kDa, a small portion of the large ,150 kDa IgG. Thus,

a good proportion of Fvs will be spared from amine coupling

modifications and thus remain functional. Additionally, IgGs are

highly flexible molecules; their Fab arms can rotate by as much as

158u and the angles between Fab/Fc and Fab/Fab can range from

66–123u and 115–172u, respectively [36,37]. Such flexibility likely

also contributes to retain functionality in non-oriented coupling

methods.

Conclusion

This study introduces a quick method to turn low affinity

antibodies into appropriate capture reagents for SPR-based

immunoassays. Creating bi-epitope sensor surfaces using standard

amine coupling leads to an ,10–100-fold improvement in

apparent binding affinities when compared with the individual

antibody-coated surfaces. Antibodies exhibiting fast dissociation

rates could be used to generate robust sensor surfaces. In the one

example shown here, this led to up to an ,100–200-fold

improvement in antigen detection limits when compared with

the corresponding single-epitope surface. Our approach extends to

SPR applications the use of antibody mixtures in an effort to

develop robust immunoassays.
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