

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Crystal structure of 3-bromo-9-ethyl-9Hcarbazole

Mykola Bezuglyi,^a* Gintare Grybauskaite,^b Gintautas Bagdziunas^b and Iuozas Vidas Grazulevicius^b

^aDepartment of Chemistry, National Taras Shevchenko University, 62a Volodymirska st., Kyiv, Ukraine, and ^bDepartment of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Road 19, LT-50254, Kaunas, Lithuania. *Correspondence e-mail: nikolay_bezugliy@ukr.net

Received 29 July 2015; accepted 11 December 2015

Edited by G. S. Nichol, University of Edinburgh, Scotland

In the title compound, $C_{14}H_{12}BrN$, the tricyclic ring system is essentially planar (r.m.s. deviation 0.026 Å). The carbon atoms of the ethyl group deviate from the mean plane by 0.148 (9) (CH₂) and 1.59 (1) Å (CH₃). In the crystal, $H \cdot \cdot \pi$ contacts [2.698–2.898 Å] shorter than the van der Waals contact distance of 3.70 Å are observed. A scalable to gram quantities selective synthesis of mono-bromine-substituted carbazole derivatives was developed.

Keywords: crystal structure; carbazole; C—H $\cdots \pi$ interactions.

CCDC reference: 1442215

1. Related literature

N-substituted carbazole derivatives are important for anticancer research (Caulfield et al., 2002) and as materials for opto-electronic devices (Niu et al., 2011; Miyazaki et al., 2014; Grigalevicius et al., 2002). The crystal structure of 1,3,6,8tetrabromo-9-ethyl-9H-carbazole was reported by Bezuglyi et al. (2015).

2. Experimental

OPEN a ACCESS

2.1. Crystal data

M 07416
$M_r = 2/4.10$
Orthorhombic, Pbca
a = 15.263 (16) Å
b = 7.745 (8) Å
c = 20.41 (2) Å

2.2. Data collection

Rigaku XtaLAB mini
diffractometer
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
$T_{\rm min} = 0.450, T_{\rm max} = 0.763$

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.078$ $wR(F^2) = 0.236$

2721 reflections

S = 1.05

V = 2413 (5) Å³ Z = 8Mo $K\alpha$ radiation $\mu = 3.39 \text{ mm}^-$ T = 293 K $0.40 \times 0.09 \times 0.08 \text{ mm}$

8316 measured reflections 2721 independent reflections 1383 reflections with $F^2 > 2.0\sigma(F^2)$ $R_{\rm int} = 0.056$

145 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 1.37 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.46 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

Cg1 are the centroids of the N1/C1/C6/C7/C12 and C1-C6 rings, respectively.

$D-H\cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C8-H8\cdots Cg1^{i}$ $C11-H11\cdots Cg2^{ii}$	0.93 0.93	2.81 3.01	3.637 (7) 3.922 (8)	149 167

Symmetry code: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, z.

Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM *Expert*; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Acknowledgements

This research was supported by FP7 REGPOT-2012-2013-1 ICT project CEOSeR under grant agreement No 316010. The authors are grateful to Dr Vasyl Kinzhybalo from the Institute of Low Temperature and Structure Research, Polish Academy of Sciences, for valuable recommendations.

Supporting information for this paper is available from the IUCr electronic archives (Reference: NK2233).

References

Bezuglyi, M., Grybauskaite, G., Bagdziunas, G. & Grazulevicius, J. V. (2015). Acta Cryst. E71, 0373.

Caulfield, T., Cherrier, M. P., Combeau, C. & Mailliet, P. (2002). Eur. Patent No. 1 253 141.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

- Grigalevicius, S., Ostrauskaite, J., Grazulevicius, J. V., Gaidelis, V., Jankauskas, V. & Sidaravicius, J. (2002). Mater. Chem. Phys. 77, 281-284.
- Miyazaki, T., Shibahara, M., Fujishige, J., Watanabe, M., Goto, K. & Shinmyozu, T. (2014). J. Org. Chem. 79, 11440–11453.
 Niu, F., Niu, H., Liu, Y., Lian, J. & Zeng, P. (2011). RSC Adv. 1, 415–423.

Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.

- Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2015). E71, o1067–o1068 [doi:10.1107/S2056989015023907]

Crystal structure of 3-bromo-9-ethyl-9H-carbazole

Mykola Bezuglyi, Gintare Grybauskaite, Gintautas Bagdziunas and Juozas Vidas Grazulevicius

S1. Synthesis and crystallization

9-ethyl-carbazole (1.00 g, 5.12 mmol) was added to a solution of *N*-bromosuccinimide (0.911 g, 5.12 mmol) in 10 ml of DMF. The reaction mixture was refluxed at room temperature for 24 h. When the reaction was completed (monitored *via* TLC) the solution was poured into a large amount of water with ice and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate followed by solvent evaporation in rotary evaporator. The product was crystallized from methanol to afford a white needle-like crystals. Yield: 0.88 g (62%), melting point 58–60°C. ¹H NMR (700 MHz, CDCl₃) δ 8.10 (d, *J* = 7.7 Hz, 1H), 7.63 (d, *J* = 2.5 Hz, 1H), 7.49 (ddd, *J* = 8.2, 7.1, 1.1 Hz, 1H), 7.42 (d, *J* = 8.2 Hz, 1H), 7.35 (d, *J* = 8.7 Hz, 1H), 7.25 – 7.22 (m, 1H), 7.16 (dd, *J* = 8.8, 2.5 Hz, 1H), 4.37 (q, *J* = 7.3 Hz, 2H), 1.45 (t, *J* = 7.3 Hz, 4H).

S2. Refinement

All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C —H = 0.930 Å for aromatic C—H, with 0.969 Å for methylene C—H, 0.957 Å for methyl distances and $U_{iso}(H) = 1.2$ U_{eq} .

Figure 1

The molecular structure of the title molecule with displacement ellipsoids drawn at the 50% probability level.

3-Bromo-9-ethyl-9H-carbazole

Crystal data

$C_{14}H_{12}BrN$	F(000) = 1104.00
$M_r = 274.16$	$D_{\rm x} = 1.509 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, Pbca	Mo <i>K</i> α radiation, $\lambda = 0.71075$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 3894 reflections
a = 15.263 (16) Å	$\theta = 3.1 - 27.5^{\circ}$
b = 7.745 (8) Å	$\mu = 3.39 \text{ mm}^{-1}$
c = 20.41 (2) Å	T = 273 K
V = 2413 (5) Å ³	Chip, colorless
Z = 8	$0.40\times0.09\times0.08~mm$
Data collection	
Rigaku XtaLAB mini	2721 independent reflections
diffractometer	1383 reflections with $F^2 > 2.0\sigma(F^2)$
Detector resolution: 13.653 pixels mm ⁻¹	$R_{\rm int} = 0.056$
ω scans	$ heta_{ m max} = 27.5^{\circ}$
Absorption correction: multi-scan	$h = -18 \rightarrow 18$
(<i>REQAB</i> ; Rigaku, 1998)	$k = -10 \rightarrow 7$
$T_{\min} = 0.450, \ T_{\max} = 0.763$	$l = -26 \rightarrow 21$
8316 measured reflections	

Refinement

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0926P)^2 + 4.1576P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 1.37 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.46 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1	0.28798 (6)	0.61687 (12)	0.45898 (4)	0.0841 (5)
N1	0.6116 (4)	0.2371 (7)	0.3684 (3)	0.0635 (15)
C1	0.5364 (5)	0.3073 (8)	0.3969 (4)	0.0570 (17)
C2	0.4935 (6)	0.2633 (10)	0.4542 (4)	0.0680 (19)
C3	0.4189 (6)	0.3557 (10)	0.4719 (4)	0.070 (2)
C4	0.3891 (5)	0.4915 (9)	0.4327 (4)	0.0629 (18)
C5	0.4317 (5)	0.5360 (9)	0.3759 (4)	0.0559 (16)
C6	0.5065 (5)	0.4456 (8)	0.3573 (4)	0.0527 (16)
C7	0.5643 (4)	0.4553 (8)	0.3016 (4)	0.0519 (16)
C8	0.5686 (5)	0.5583 (9)	0.2455 (4)	0.0608 (18)
C9	0.6333 (5)	0.5278 (10)	0.1987 (4)	0.071 (2)
C10	0.6935 (5)	0.3978 (11)	0.2092 (4)	0.072 (3)
C11	0.6939 (5)	0.2950 (10)	0.2632 (5)	0.067 (2)
C12	0.6283 (5)	0.3243 (9)	0.3100 (4)	0.0577 (17)
C13	0.6556 (6)	0.0790 (9)	0.3911 (4)	0.074 (3)
C14	0.6145 (6)	-0.0826 (9)	0.3648 (5)	0.083 (3)
Н3	0.4107	0.6258	0.3500	0.0671*
H8	0.7363	0.3795	0.1775	0.0866*
Н9	0.6358	0.5943	0.1608	0.0853*
H10	0.5139	0.1737	0.4803	0.0816*
H13	0.3888	0.3269	0.5100	0.0840*
H14	0.5283	0.6470	0.2394	0.0730*
H15	0.7358	0.2091	0.2688	0.0804*
H17A	0.6458	-0.1813	0.3809	0.0995*
H17B	0.6167	-0.0812	0.3178	0.0995*
H17C	0.5545	-0.0887	0.3789	0.0995*
H18A	0.6540	0.0757	0.4386	0.0894*
H18B	0.7166	0.0827	0.3778	0.0894*

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0778 (7)	0.0894 (7)	0.0852 (7)	0.0084 (5)	0.0147 (5)	-0.0107 (5)
N1	0.067 (4)	0.053 (3)	0.071 (4)	0.017 (3)	-0.015 (3)	-0.007 (3)
C1	0.071 (5)	0.043 (4)	0.056 (4)	-0.003 (4)	-0.017 (4)	-0.005 (3)
C2	0.080 (5)	0.059 (4)	0.065 (5)	0.004 (4)	-0.012 (4)	0.004 (4)
C3	0.091 (6)	0.063 (5)	0.056 (5)	-0.006(5)	0.001 (4)	0.001 (4)
C4	0.062 (5)	0.053 (4)	0.074 (5)	0.000 (4)	0.002 (4)	-0.008 (4)
C5	0.061 (4)	0.045 (4)	0.061 (4)	-0.003 (4)	-0.010 (4)	-0.001 (3)
C6	0.055 (4)	0.045 (4)	0.058 (4)	-0.003 (3)	-0.007(4)	-0.009 (3)
C7	0.049 (4)	0.043 (4)	0.063 (4)	0.000 (3)	-0.017 (3)	-0.007 (3)
C8	0.062 (4)	0.056 (4)	0.065 (5)	-0.001 (4)	-0.011 (4)	0.003 (4)
C9	0.069 (5)	0.069 (5)	0.075 (5)	-0.011 (5)	-0.001 (4)	-0.005 (4)
C10	0.064 (5)	0.083 (6)	0.070 (5)	-0.006 (5)	-0.002 (4)	-0.021 (5)
C11	0.054 (4)	0.060 (5)	0.087 (6)	0.007 (4)	-0.014 (4)	-0.019 (4)
C12	0.054 (4)	0.050 (4)	0.068 (5)	0.001 (4)	-0.007(4)	-0.004 (4)
C13	0.080 (5)	0.064 (5)	0.080 (5)	0.020 (4)	-0.023 (5)	0.007 (4)
C14	0.104 (7)	0.051 (4)	0.094 (6)	0.010 (5)	0.001 (5)	0.003 (4)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Br1—C4	1.901 (7)	C10—C11	1.358 (12)
N1—C1	1.396 (9)	C11—C12	1.403 (11)
N1-C12	1.393 (10)	C13—C14	1.499 (11)
N1—C13	1.471 (10)	C2—H10	0.930
C1—C2	1.382 (10)	С3—Н13	0.930
C1—C6	1.418 (9)	С5—Н3	0.930
C2—C3	1.392 (12)	C8—H14	0.930
C3—C4	1.397 (11)	С9—Н9	0.930
C4—C5	1.373 (10)	C10—H8	0.930
C5—C6	1.391 (9)	C11—H15	0.930
C6—C7	1.442 (10)	C13—H18A	0.970
С7—С8	1.397 (10)	C13—H18B	0.970
C7—C12	1.419 (9)	C14—H17A	0.960
C8—C9	1.394 (11)	C14—H17B	0.960
C9—C10	1.381 (11)	C14—H17C	0.960
N1…C5	3.594 (9)	C10····H3 ^{vi}	2.9041
N1…C8	3.594 (10)	C10…H15 ^{ix}	2.9077
C1…C4	2.761 (10)	C11····H3 ^{vi}	3.1000
C1…C14	3.311 (11)	C11····H14 ^{vi}	3.5811
C2…C5	2.811 (10)	C11…H15 ^{ix}	3.3834
C2…C13	3.133 (12)	C11····H17A ^{ix}	3.4343
C3…C6	2.781 (11)	C11····H17B ^{ix}	3.2429
C5…C8	3.388 (10)	C11···H18B ^{ix}	3.5072
C7…C10	2.764 (11)	C12···H14 ^{vi}	2.9363
C8…C11	2.819 (10)	C12···H18B ^{ix}	3.3937

C9…C12	2.767 (11)	C13···H17A ^{ix}	3.5602
C11…C13	3.156 (12)	C14…H13 ^{vii}	3.1805
C12…C14	3.351 (11)	C14…H14 ^x	3.5604
C2···C3 ⁱ	3.574 (11)	C14···H14 ^{vi}	3.5260
C2…C4 ⁱ	3.486 (11)	C14…H15 ^{xi}	3.4162
C3····C2 ⁱ	3.574 (11)	НЗ…С9іі	3.3372
C3···C3 ⁱ	3.527 (12)	H3…C10 ⁱⁱ	2.9041
C4…C2 ⁱ	3.486 (11)	H3…C11 ⁱⁱ	3.1000
Br1…H3	2.9084	H3····H8 ⁱⁱ	3.0356
Br1…H13	2.9144	H3…H8 ⁱⁱⁱ	3.3234
N1…H10	2.7717	H3…H15 ⁱⁱ	3.3615
N1…H15	2.7889	H3…H17C ^{viii}	3.1708
N1…H17A	3 2924	H8···Br1 ^{vi}	3 4695
N1…H17B	2.6741	H8···Br1 ^{xii}	3 4304
N1···H17C	2.6783	H8····C4 ^{xii}	3 3551
C1···H3	3 2683	H8···C5 ^{xii}	3 3993
C1H13	3 2280	H8····C9 ^{xi}	3 4012
C1H17C	3 1012		3.0356
C1H18A	2 6750		3.0330
	2.0759		2 0660
C2H17C	3.2709	110^{-117}	2.9009
C2H18A	2 9669		2 2766
C2H2	2.0000		2 2 1 0 0
	2 2612		2.2199
C5112	2.2457		2.2227
C5114	2.2437		5.4627 2.5000
C3H14	2.2004		2.0009
	5.2790 2.8892		2.9009
CoH14	2.8885		3.0795
C7H3	2.8662		3.3331
C7H9	3.2568		3.4/33
	3.3072		2.8396
C8H3	3.2607		3.1274
C8H8	3.2241	H13····Br1×···	3.3182
C9…H15	3.2540	H13····C1 ¹	3.5975
C10…H14	3.2341	H13…C14 ^{vn}	3.1805
С11…Н9	3.2440	H13…H17A ^{vn}	2.5518
С11…Н17В	3.3353	H13…H17C ^{vn}	3.0494
C11…H18B	2.8803	H13…H18A ^{vn}	3.3550
С12…Н8	3.1954	H13…H18B ^v	3.5574
C12…H14	3.2644	H14…N1"	3.1441
С12…Н17В	3.1500	H14···C1 ⁱⁱ	3.2025
C12…H18A	3.2783	H14····C6 ⁱⁱ	3.0863
C12…H18B	2.6882	H14····C7 ⁱⁱ	2.8977
C13…H10	2.9205	H14····C8 ⁱⁱ	3.5256
C13…H15	2.9579	H14····C11 ⁱⁱ	3.5811
C14…H10	3.4427	H14····C12 ⁱⁱ	2.9363
C14…H15	3.5181	H14····C14 ^{viii}	3.5604
H3…H14	2.8901	H14…C14 ⁱⁱ	3.5260

Н8…Н9	2.2887	H14…H17B ^{viii}	2.9697
H8…H15	2.2820	H14…H17B ⁱⁱ	3.0636
H9…H14	2 3299	H14····H17C ^{viii}	3 5302
H10…H13	2 3284	$H14\cdots H17C^{ii}$	3 2796
H10···H17C	2.9668	$H15\cdots C8^{xi}$	3 2416
H10H18A	2.9000	$H15 \cdots C9^{xi}$	2 8304
H15H17B	3 0595	$H15 \cdots C10^{xi}$	2.0304
H15H18B	2 4483	$H15 \cdots C11^{xi}$	3 3834
H17AH18A	2.1103	H15C1/ix	3 4162
H17AH18R	2.3135	H15H3 ^{vi}	3 3615
H17A H18D	2.3120		3 1884
H17DU18D	2.8071		3.1004
	2.3301	H15H17 Aix	2 0276
H17CH18A	2.3208	H15H17Dix	2.05/0
	2.0000		2.9308
	5.4095 2.4204	$H1/A = C3^{**}$	5.4591 2 4792
	3.4304		5.4785 2.4242
Br1····H9 ^{···}	3.3766		3.4343
Br1···H13··	3.3182		3.5602
Br1···HI8A	3.2895		2.5518
Br1···H18A ^v	3.2825		3.0376
	3.1441		2.7853
C1H9 ^{vi}	3.3199	H17B····C8 ^x	3.2433
C1…H13 ¹	3.5975	$H17B\cdots C8^{v_1}$	3.2915
$C1\cdots H14^{v_1}$	3.2025	H17B···C11 ^{x1}	3.2429
C2···H9 ^{vi}	3.3337	H17B…H14 ^x	2.9697
C3···H9 ^{vi}	3.4827	H17B···H14 ^{vi}	3.0636
C3…H17A ^{vii}	3.4391	H17B····H15 ^{xi}	2.9508
C4···H8 ⁱⁱⁱ	3.3551	$H17C\cdots C5^{x}$	3.4596
C4…H10 ⁱ	3.4733	H17C····C8 ^{vi}	3.3569
C5…H8 ⁱⁱⁱ	3.3993	H17C····C9 ^{vi}	3.3968
C5…H17C ^{viii}	3.4596	H17C····H3 ^x	3.1708
C6…H9 ^{vi}	3.5009	H17C····H9 ^{vi}	3.3331
C6…H14 ^{vi}	3.0863	H17C…H10 ^{vii}	3.1274
C7…H14 ^{vi}	2.8977	H17C…H13 ^{vii}	3.0494
C7…H17A ^{viii}	3.4783	H17C…H14 ^x	3.5302
C8…H14 ^{vi}	3.5256	H17C…H14 ^{vi}	3.2796
C8…H15 ^{ix}	3.2416	H18A…Br1 ⁱ	3.2895
C8…H17B ^{viii}	3.2433	H18A…Br1 ^{xiv}	3.2825
C8···H17B ⁱⁱ	3.2915	H18A…H13 ^{vii}	3.3550
C8…H17C ⁱⁱ	3.3569	H18B…C11 ^{xi}	3.5072
C9…H3 ^{vi}	3.3372	H18B…C12 ^{xi}	3.3937
C9…H8 ^{ix}	3.4012	H18B…H13 ^{xiv}	3.5574
C9…H15 ^{ix}	2.8304	H18B…H17A ^{ix}	2.7853
С9…Н17С ^{іі}	3.3968		
C1—N1—C12	108.6 (6)	C1—C2—H10	120.636
C1—N1—C13	124.6 (6)	C3—C2—H10	120.638
C12—N1—C13	126.1 (6)	C2—C3—H13	119.841
	(-)		

N1—C1—C2	130.3 (7)	C4—C3—H13	119.848
N1—C1—C6	108.7 (6)	С4—С5—Н3	120.246
C2—C1—C6	121.0 (7)	С6—С5—Н3	120.252
C1—C2—C3	118.7 (7)	C7—C8—H14	120.069
C2—C3—C4	120.3 (7)	C9—C8—H14	120.061
Br1—C4—C3	119.2 (6)	С8—С9—Н9	120.379
Br1—C4—C5	119.7 (6)	С10—С9—Н9	120.368
C3—C4—C5	121.2 (7)	С9—С10—Н8	118.092
C4—C5—C6	119.5 (6)	С11—С10—Н8	118.084
C1—C6—C5	119.3 (6)	C10—C11—H15	121.478
C1—C6—C7	107.0 (6)	C12—C11—H15	121.484
C5—C6—C7	133.7 (6)	N1—C13—H18A	108.980
C6—C7—C8	134.8 (6)	N1—C13—H18B	108.983
C6—C7—C12	106.8 (6)	C14—C13—H18A	108.979
C8—C7—C12	118.4 (6)	C14—C13—H18B	108.984
C7—C8—C9	119.9 (7)	H18A—C13—H18B	107.770
C8—C9—C10	119.3 (8)	C13—C14—H17A	109.478
C9—C10—C11	123.8 (8)	C13—C14—H17B	109.463
C10-C11-C12	117.0 (7)	C13—C14—H17C	109.470
N1—C12—C7	108.9 (6)	H17A—C14—H17B	109.470
N1-C12-C11	129.5 (7)	H17A—C14—H17C	109.473
C7—C12—C11	121.6 (7)	H17B—C14—H17C	109.472
N1—C13—C14	113.0 (7)		
C1—N1—C12—C7	1.4 (7)	Br1-C4-C5-C6	179.0 (4)
C1—N1—C12—C11	-176.9 (6)	C3—C4—C5—C6	-0.8 (10)
C12—N1—C1—C2	179.1 (6)	C4—C5—C6—C1	1.0 (9)
C12—N1—C1—C6	-2.1 (7)	C4—C5—C6—C7	178.2 (6)
C1—N1—C13—C14	83.0 (8)	C1—C6—C7—C8	178.2 (6)
C13—N1—C1—C2	8.6 (11)	C1—C6—C7—C12	-1.1 (7)
C13—N1—C1—C6	-172.6 (6)	C5—C6—C7—C8	0.7 (13)
C12—N1—C13—C14	-85.8 (8)	C5—C6—C7—C12	-178.6 (7)
C13—N1—C12—C7	171.7 (6)	C6—C7—C8—C9	-177.5 (6)
C13—N1—C12—C11	-6.5 (11)	C6—C7—C12—N1	-0.1 (7)
N1—C1—C2—C3	179.7 (6)	C6—C7—C12—C11	178.3 (5)
N1—C1—C6—C5	179.9 (5)	C8—C7—C12—N1	-179.6 (6)
N1—C1—C6—C7	2.0 (7)	C8—C7—C12—C11	-1.2 (9)
C2-C1-C6-C5	-1.2 (10)	C12—C7—C8—C9	1.7 (9)
C2—C1—C6—C7	-179.1 (6)	C7—C8—C9—C10	-1.3 (10)
C6-C1-C2-C3	1.1 (10)	C8—C9—C10—C11	0.1 (12)
C1—C2—C3—C4	-0.8 (11)	C9—C10—C11—C12	0.4 (12)
C2-C3-C4-Br1	-179.2 (6)	C10-C11-C12-N1	178.1 (7)
C2—C3—C4—C5	0.6 (11)	C10-C11-C12-C7	0.1 (10)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+1, *y*+1/2, -*z*+1/2; (iii) *x*-1/2, *y*, -*z*+1/2; (iv) -*x*+1/2, *y*+1/2, *z*; (v) *x*-1/2, -*y*+1/2, -*z*+1; (vi) -*x*+1, *y*-1/2, -*z*+1/2; (vii) -*x*+1, -*y*, -*z*+1; (viii) *x*, *y*+1, *z*; (ix) -*x*+3/2, *y*+1/2, *z*; (x) *x*, *y*-1, *z*; (xi) -*x*+3/2, *y*-1/2, *z*; (xii) *x*+1/2, *y*, -*z*+1/2; (xiii) -*x*+1/2, *y*-1/2, *z*; (xiv) *x*+1/2, -*z*+1.

Hydrogen-bond geometry (Å, °)

Cg1 are the centroids of the N1/C1/C6/C7/C12 and C1-C6 rings, respectively.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
С8—Н8…Сg1 ^{іі}	0.93	2.81	3.637 (7)	149
C11—H11··· <i>Cg</i> 2 ^{ix}	0.93	3.01	3.922 (8)	167

Symmetry codes: (ii) -x+1, y+1/2, -z+1/2; (ix) -x+3/2, y+1/2, z.