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Abstract

Both in DNA and protein contexts, an important method for modelling motifs is to utilize posi-

tion weight matrix (PWM) in biological sequences. With the development of genome

sequencing technology, the quantity of the sequence data is increasing explosively, so the

faster searching algorithms which have the ability to meet the increasingly need are desired

to develop. In this paper, we proposed a method for speeding up the searching process of

candidate transcription factor binding sites (TFBS), and the users can be allowed to specify

p threshold to get the desired trade-off between speed and sensitivity for a particular

sequence analysis. Moreover, the proposed method can also be generalized to large-scale

annotation and sequence projects.

Introduction

Transcription factors (TFs) can suppress or activate gene expression by binding to specific

DNA sites (TFBS),[1] and therefore play a central role in transcription regulation. Previous

researches have concluded that TFs are inclined to bind to DNA sequences that follow specific

patterns, called TF motifs.[2] Recently, the recognition of candidate TFBS on chromatin with a

given TF motif has become a fundamental step to initiate the transcription of its target genes.

The existing candidate TFBS searching algorithms can be generally divided into the index-

based algorithms and the online algorithms. The index-based algorithms commonly construct

some special index structures, such as suffix trees[3, 4] or suffix arrays,[5] to accelerate the

accessing of all the candidate’s locations on the target sequence. However, although these

index structures could improve the searching efficiency, their construction costs in the time

and space are remarkably huge. On the other hand, the traditional online approaches com-

monly scan a target sequence from left to right with a sliding window whose width is the same

as the given TF motif, then report its candidate TFBS. Although these methods avoid the costs

of constructing index structures, their time complexities still reach O(mn), where m and n are

the lengths of the target sequences and the TF motif respectively. Recently, many technologies

have been integrated into the traditional online algorithms, including matrix partitioning,[6,

7] Fast Fourier Transform[8], data compression[9] and other similar approaches to reduce the

time complexity. In those methods, the most representative algorithm is lookahead approach
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[10] which resolves the problem of repeated matching by using partial thresholds that allow

one to terminate the comparison of symbols when it is clear that no match will occur. How-

ever, it is unclear how efficient they can be in more challenging applications such as searching

on high-throughput datasets or dealing with wider motif or less conservative TF motif. Addi-

tionally, in the TF motif modeling community, position weight matrix(PWM)[2], modeling

the TF binding affinities with a matrix which describes the binding affinities as probability dis-

tributions over DNA alphabet, is one of the most commonly used TF models. And most of the

candidate TFBS searching algorithms are based on this TF model, including naive algorithm,

lookahead scoring algorithm, shift-add algorithm and so on.

Computationally, the given PWM can be regarded as the input features [11–13]. Motivated

by this, the target sequence can be converted as a queried feature sets, if we split it into subse-

quences with a sliding window from left to right. Then the task of candidate TFBS searching

can be abstracted as a classical k-Nearest Neighbor (KNN) problem, which is a widely studied

formulation in the field of machine learning. With the formulation of candidate TFBS search-

ing, there is no need to prepare index structures, in addition, it is anticipated that some

advanced KNN technologies can be adopted to this formulation for obtaining high-quality

solutions efficiently. In this paper, we will introduce a popular online search algorithm for

quickly searching the significant matches. The inspiration come from the study of maximum

all-pairs dot-product (MAD) searching problem which is the most complex part of the time

complexity in the KNN technologies[14].

The key of KNN technologies is how to determine the similarity between samples which are

represented by vectors with high-dimensional feature, i.e., w 2 Rd, for some large d in the real

world. Many studies of real world calculate dot product as a criterion for judging similarity,

hence, v � w is a usually useful measure of distance between v and w. Through MAD searching,

the corresponding center point of every sample can be found, however, all-pairs dot-product

takes a lot of time and in fact we only need to care about the large dot-product, not all-pairs

dot-product. Diamond sampling algorithm[15] which is a new randomized approach is crea-

tively promoted to solve the MAD problem by applying index sampling methods to avoid cal-

culating all-pairs dot-product[16]. Designing a sampling procedure according to the relevant

weights for the MAD problem is the key to the execution of diamond sampling algorithm.

The task of candidate TFBS searching is to find the max matching between position weight

matrix and sequences. Using the idea of sampling according to the weights of diamond sam-

pling algorithm, in the task of candidate TFBS searching, the original standard ordering which

matches between position weight matrix and sequences in left-to-right order can be changed

to a given permuted ordering[17]. The permuted ordering is given according to the matching

failed expectation of every column in the position weight matrix and the corresponding expec-

tation can be calculated through considering the distribution of background in the sequences,

the information content of every column and so on.

In Results part, we demonstrated a series of experimental comparisons among the proposed

algorithm and other current methods.

Methods

Notations and problem definition

The task of candidate TFBS searching is to find some appropriate subsequences for a given

PWM in the sequences consisting of symbols in the four-nucleotide alphabet < ¼ fA;C;G;Tg.
In some literatures, the position weight matrix which is a real valued n� j<jmatrix M =

(M(i,a)) is also called position-specific scoring matrix, profile, and position weighted pattern.

In this paper, we use PWM or pattern as for the abbreviation of position weight matrix for
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convenience. In the PWM, the coefficient (M(i,a) represents the probability of alphabet a at

each position i. The length and the alphabet of the M can be represented n and<, respectively.

Table 1 is an example of pattern M.

The given pattern M can match any segments Seq = s1s2. . .sn where si represents a symbol

in the alphabet <. The significant of match is calculated by the match score GM(s) of s with

corresponding M. The match score is defined as

GMðSÞ ¼
Xn

i¼1

Mði; siÞ: ð1Þ

Given some biological sequences Seq = s1s2. . .sm which consists of m symbols from the

alphabet <. For any subsequences sisi+1. . .si+n-1 (call a k-mer) of length n in the sequence Seq,

the significant of match can be obtained with given the pattern M. The significant of match at

location i in the M can be denoted as

gi ¼ GMðsisiþ1 . . . siþn� 1Þ ð2Þ

In this paper, the problem of candidate TFBS searching can be described as follows: given a

real-valued significance threshold k, the searching problem with threshold k is to find all loca-

tion i in the sequence Seq such that gi� k. In addition to getting all location i, the values gi

should also be provided for many applications. Note that the traditional studied problem of

exact string matching is just a special case of this search problem. The problem of exact string

matching can be simply described as finding all the positions i which are the start position of

the expectant string s = s1s2. . .sn where all si is in the alphabet <. We can generate a weight

matrix M meeting the following conditions: M(i,si) = 1, and M(i,a) = 0 if a 6¼ si, to solve easily

the exact pattern search problem. The significant threshold k in this case can be explained for

finding the exact positions where the alphabets of s match the corresponding alphabets of Seq

in at least k positions. The problem of exact string matching can be solved easily when the sig-

nificant threshold k be set to the same as the length of s.

Preprocessing of pattern and significant threshold

If the background sequence distributions is different, the conservativeness of the correspond-

ing PWM is also different, even if the pattern is the same as each other[18]. In order to make

effective use of this nature, the values M(i,a) are in fact the log-odds scores of a probabilistic

model of a signal to be detected against the background, such as finding putative binding sites

of transcription factors in DNA. The signal model can be normally represented by a n� j<j
matrix I where I(i,a) is the probability of the alphabet symbol a occurring in the position i.
There are many ways to obtain those probabilities such as from the corresponding empirically

constructed count matrix and some of those probabilities may need to add pseudocounts to

avoid logarithm with zero.

Table 1. A position weight matrix in the nucleotide sequence databases.

position 1 2 3 4 5 6

A 0.14 -4.16 1.03 -4.16 0.58 -0.36

C 0.17 -2.31 -4.16 -4.16 -2.31 -1.32

G -1.06 1.64 -2.32 -0.85 -1.06 1.12

T 0.12 -4.16 -2.64 1.18 0.07 -0.77

The pattern was obtained from the count matrix GATA-3 of JASPAR which was transformed into log-odds matrix using background distribution qA = 0.278,qC = 0.312,

qG = 0.212, qT = 0.198. A pseudocount qs was first added to the counts for each alphabet symbol s.

https://doi.org/10.1371/journal.pone.0198922.t001
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In order to facilitate the calculation, the background is usually constructed as a n� j<j
matrix B and every row of matrix B has the same probability vector which equal to the proba-

bility of background probability distribution at corresponding the alphabet symbols. Since the

probabilities of every row is the same, we use qa to denote the background probability distribu-

tion for a 2 <. Hence, B(i,a) = qa for all i.
According to the log-odds score that consider the probability both in the signal model M and

the background B, the match score between a subsequence and a matrix can be calculated as:

ScoreðSÞ ¼ log
Yn

i¼1

Iði; SiÞ

Bði; SiÞ
¼
Xn

i¼1

log
Iði; SiÞ

Bði; SiÞ

¼
Xn

i¼1

log
Iði; SiÞ

qSi

ð3Þ

Once the background B which is usually estimated from the sequence S is fixed, the model

I can be translated into a position weighted matrix M:

Mði; aÞ ¼ log
Iði; aÞ
Bði; aÞ

ð4Þ

Then, the score computed by (1) equals the above Score(S).

The significance threshold k for the search is normally not easy to get, such that the stan-

dard statistical approach that use the p-values to control the confidence of the searching is

more commonly used. When the p-value p is given, then the corresponding threshold is a

value k = k(p) and the probability of subsequence s is p such that GM(s)� k in the background

distribution. In order to convert p-value p to the significance threshold k more quickly, we use

a well-known pseudopolynomial time dynamic programming algorithm [10, 19, 20] to evalu-

ate the corresponding k = k(p).

The faster lookahead scoring algorithm

In this section, some theoretical analysis is firstly used to compare our fast searching algorithm

with some well-known searching algorithms.

When S, M and k are given, the TFBS searching problem can be solved by evaluating wi using

(1) and (2) for each i = 1,2,. . .,m-n+1, then reporting all location i and corresponding wi such that

wi� k. This primitive method is called as the naive algorithm (NA). For the time complexity of it,

evaluating each wi from (1) takes O(n) such that the total searching time approximates to O(mn),

where n is width of the given pattern and m is the length of the given sequence S.

The main reason for which the low searching efficiency for the naïve algorithm is that the

NA ignores the significant relationship between the score of segment wi and the significance

threshold k. When the NA algorithm process the subsequence, the NA algorithm does not end

the matching process until it matches the end of the subsequence, even if it had been known

some important information that the current subsequence cannot be matched successfully

according to the currently matched information. In order to overcome the shortcoming of the

NA algorithm, the lookahead scoring algorithm[10] is proposed as an improved algorithm of

the NA algorithm, which utilize the significant relationship between wi and the significance

threshold k to speed up matching process. In order to guarantee each prefix of a candidate seg-

ment to decide quickly whether candidate segment match successfully, the lookahead scoring

algorithm computes the intermediate score thresholds in advance. When the sequence S, the

matrix M and the threshold k are given, although the score of the prefix of every candidate sub-

sequences is fixed, the intermediate score thresholds cannot be directly computed by the score

FLS based on diamond sampling
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of the prefix candidate segment. Through the evaluation for the maximal score of the suffix of

a candidate subsequent, the intermediate score thresholds can be defined for 1� t� n as

Pt ¼
Xn

i¼t

max
a2<

Mði; aÞ ð5Þ

Obviously, pt is the maximum score of all possible matches for the suffix which starts at

position t+1 of any given candidate k-mer Si. . .Si+n−1. The segment ending at position t of can-

didate k-mer Si. . .Si+n−1 is the prefix and its match score can be computed as:

Rt ¼ GMðsi . . . siþt� 1Þ ¼
Xt

j¼1

Mðj; siþj� 1Þ ð6Þ

When a segment is being matched at the position t, if Rt+Pt is less than the matching signif-

icance threshold k, then we can draw a definite conclusion immediately that this k-mer cannot

be matched successfully even if the matching score of suffix reach maximum. That reason of

such decision can be interpreted as that the final match score is impossible for more than k for

any possible k-mers which have the same prefix as the given sequence Seq.

When we have prior information about the possible match failure of currently matching

segment, the matching process between sequences and model can be speeded up. In order to

avoid the frequent calculation of intermediate score thresholds, all the intermediate thresholds

can be calculated firstly as

Tt ¼ k � Pt ð7Þ

And saved as an array for t = 1,. . .,n. The actual matching subsequence is generated by the

sliding window with the length n on the given sequence, and the starting position of the sliding

window increment by 1 for next match, for example, the subsequence Si. . .Si+n−1 is the current

matching k-mer and the next match k-mer will be Si+1. . .Si+n. For the strategy of match, the

current matching score is initialized to zero before matching the next subsequence and the

accumulated score will add the value M(t,Si+t) of the matching alphabet at the position t only if

the current accumulated score Rt is not less than Tt. Once the above-mentioned conditions are

not satisfied, the process of subsequence searching can be stopped at the current i and resumed

next match at position i+1.

In the first section, we introduced that the task of candidate TFBS searching can be abstracted

as a classical k-Nearest Neighbor (KNN) problem and the KNN problem can be viewed as a spe-

cial case of maximum all-pairs dot-product (MAD) searching problem which can be solved by the

diamond sampling algorithm. However, the diamond sampling algorithm provides an approxi-

mate result with the maximum probability rather than the precise result that we need in the task

of candidate TFBS searching. Although the diamond sampling cannot be used directly to solve

searching problem in the task of candidate TFBS searching, we can speed up the process of candi-

date TFBS searching with the weight sampling part of the diamond sampling algorithm.

Actually, the matching failed expectations at each position in the model is different from

the task of candidate TFBS searching and those matching failed expectations can be viewed as

some special weights to decide the order of the match. To speed up the task of candidate TFBS

searching, we expect that the matching failed subsequence can be detected as early as possible

by utilizing these special weights while the lookahead scoring algorithm ignores the informa-

tion. Although the matching failed probability at each position can help us to speed up search-

ing process indeed, it takes a very high cost to get the precise matching failed expectations. In

this paper, we propose a further improved method based on the lookahead scoring algorithm,

FLS based on diamond sampling
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called the faster lookahead scoring algorithm (FLS), which utilize an approximate expectation

to replace the precise matching failed expectations and the position with higher matching

failed expectation should be matched firstly. The matching failed expectation at each position

is influenced by many factors including the information content of each position in the PWM,

the background distribution for the given sequences and so on. The approximate matching

failed expectation at position i can be defined as

Ei ¼ jmin
a2<

Mði; aÞj þmax
a2<

Mði; aÞ

�
X

a2<

qaMði; aÞ
ð8Þ

Where q is the background distribution and qa is the background probability of the alpha-

bet a. The matching order can be defined as the decreasing order of the approximate matching

failed expectation Ei for 1� i� n in the matrix.

Due to the effect of permuted order for matching, the gap of maximum possible score and

the actual score at position i will be widened by Ei. So the partial score of matching subse-

quence, when evaluated in permuted order, will drop below the intermediate threshold Ti as

much as possible on average. As a result, the failed matches in all subsequences will be detected

as early as possible and the task of candidate TFBS searching will also take the minimal average

time. Before the task of candidate TFBS searching, the intermediate score thresholds should be

recalculated by the permuted order rather than by the original left-to-right order, and the per-

muted order is determined by decreasing all approximate matching failed expectations.

Implementation

Computing significance threshold

In our method, the significance threshold is not given directly but transformed from a specified

probability threshold, called p-value, using quantile function. Its advantage is that the user can

give a p-value to trade off the speed and sensitivity of the task TFBS candidate searching explic-

itly. Thus, the researcher can utilize the specified threshold to adjust the level of statistical signifi-

cance for a particular analysis. A low p-value will reduce hits that are statistically very significant

and lead to a high specific analysis. The advantage of this analysis is that the result can be rela-

tively low false positives, but its disadvantage is that the result may miss much more distant

sequence relationships. On the other hand, a high p-value is specified by user can analyze the

particular sequence with high sensitivity. The calculation of significance threshold is difficult

and a specific analysis usually requires a trade-off between relatively high speed and high sensi-

tivity. Therefore, we utilize p-value to give a significance threshold indirectly in our method.

In order to calculate the quantile function more easily, some assumptions are declared as:

the alphabet at each position in a random k-mer is independent and the background distribu-

tion is identical. The quantile function is not calculated directly, but by its inverse function,

called the complementary cumulative distribution function (complementary CDF). On the

other hand, the complementary CDF can be calculated by performing a summation over the

probability mass function (PMF).[10]

We defines the segmental score as the random variable X, and the PMF of X by f(x). Then,

if we give a particular segmental score γ, the p value can be defined as

GðgÞ ¼ PrfX � gg ¼
X1

x¼g

f ðxÞdx ð9Þ

FLS based on diamond sampling
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Obviously, while the subsequence is assumed to be random in the task of TFBS candidate

searching, the value of G(γ) is the probability of a score of k-mer, which the matching score is

not less than γ in the given sequence.

For calculating the PMF, several methods have been proposed. In this paper, the adopted

method is to compute the probability recursively with each column of the scoring matrix.[19,

21, 22] We defined a background frequency vector as

q ¼ hqð1Þ; . . . qðj<jÞi ð10Þ

Where < is a set of possible alphabets. In our method, each position in a random k-mer is

represented by a background frequency vector q. The background frequencies can be obtained

by scanning the given sequence and counting number of various alphabets. Then, the PMF

can be computed recursively, column by column:

f ð0ÞðxÞ ¼ dðxÞ

f ðiÞðxÞ ¼
X

a2<

qðaÞf ði� 1Þðx � Mði; aÞÞ

i ¼ 1; . . . ;m

f ðxÞ ¼ f ðmÞðxÞ

ð11Þ

Where the function δ(x) is initialized to 0 for x 6¼ 0 and 1.0 otherwise. However, the entire

probability mass is usually initialized by score x = 0. Then, the revised version of the PMF,

f(i)(x), is based on the previous PMF at each column i. In the process of computing PMF, sim-

ply (x−M(i,a)) is the score for all possible alphabet a. The desired PMF f(x) is generated at the

final iteration.

Once we have the PMF f(x), the complementary CDF G(γ) can be computed by performing

a summation over the PMF. Thus, the inverse function, G-1(γ), is expected as the quantile

function. The quantile function generates a significance threshold T� = dG−1(γ�)e after given a

γ threshold γ�. The computed G(γ) contain all possible k-mers score, such that the significance

threshold can be calculated readily for any given thresholds.

The overview of searching strategy

The workflow of the proposed algorithm is presented in Fig 1. Since the length of a given

sequence usually stand at hundreds of millions, as a saved-time technique, the corresponding

background distribution can be calculated at the same time when the sequence is streaming to

memory. In addition, the process of log-odds of matrix will produce error message when the

matrix of model contain zeros. Thus, the probabilistic matrix needs to add a pseudocounts

firstly at the position whose corresponding probability is zero before log-odds of matrix.

The process of matching between the given sequence and the model can be proceed after

the significance threshold, matching order and the array of intermediate thresholds are all

computed. In addition, the order of match is not left-to-right but following the matching order

in (8).

Results

In order to demonstrate the performance of our FLS (faster lookahead scoring algorithm), we

implemented LS (lookahead scoring algorithm) and the well-known base-line algorithms NA

(naive algorithm) as our contrast experiments from the original paper. The code of all experi-

ments is written in C/C++ and the all tasks of candidate TFBS searching run for single-

threaded. The running environment includes 3.2GHz Intel1 Core™ i7-2600 processor with 3
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gigabytes of main memory, running under Ubuntu 16.04, and gcc is the only compiler used in

the experiments. We also repeat same experiments with 2.5GHz Intel1 Xeon1 CPU e5-2650

v2, and get essentially similar results which slight differences explained by different cache

memory size.

Datasets

With the development of gene sequencing, the size of the sequence database is increased explo-

sively.[13, 22–24] In order to analyze these large number of sequence data, the efficient mathe-

matical methods and computer algorithms used in the task of candidate TFBS searching need

simple, logical and self-consistent. Information theory[25–27] that was created by Shannon is

such mathematic tool that meets those requirements, and related theory comes directly from

the physics underlying molecular binding interactions. In many researches, information the-

ory play an import role in quantifying the sequence conservation in protein sequences and

nucleotide.[28–35] The information content (IC) which is an import concept in the informa-

tion theory will be used in the task of candidate TFBS searching to provide to assist in quantita-

tive analysis[36]. Since the total information content of a model represents the distinguishable

capability of the given model between a binding site (represented by the matrix) and the back-

ground model, therefore the information content of the given model in gene database should

Fig 1. Overview of faster lookahead scoring algorithm with main steps.

https://doi.org/10.1371/journal.pone.0198922.g001
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be fixed to a series of specified information content or fit some relationship in the experiment

of quantitative analysis[37]. However, searching those models that meet those requirements is

almost impossible in larger gene databases, so we generate a series of model meeting those

requirements based on the theory of information content. We also make some contrast experi-

ments on real-world datasets to show the universality of FLS algorithm. Related real-world

and artificial datasets can be described as

• Datasets of Artificial Sequence SEQ1: the most sequences in the gene database usually are

non-uniform background distribution. For contrast with sequences in gene databases, we

generate some artificial sequences with approximate uniform background distribution to

contrast the performance of three algorithms. The generated sequence is consisted of 55

megabases amino acid that every amino acid is randomly created and the corresponding

background distribution is guaranteed to approximate to a uniform distribution.

• Datasets of Artificial Model MOD1: based on the theory of information content, Staden pro-

posed an efficient method which can numerically estimate the probability-generating func-

tion for model with the given information content. When we get the probability-generating

functions for each column of an alignment matrix, the probability-generating function for a

multi-column alignment matrix[33] can be approximate replaced by the Staden’s approach.

In order to contrast the influence of the different information content, we generate 26

matrixes which the length of all matrixes is fixed as 22 and information content of all matrix

are increased gradually from 5 to 30. The single performance test is influenced seriously by

the random error, so we generate 100 sets of the models using the same way and the averaged

run time is viewed as the real performance of corresponding the algorithm.

• Datasets of Artificial Model MOD2: to contrast the influence of the different length of mod-

els on the performance of the three algorithms and eliminate the influence of the different

information content of each model, the information content value of each model is set as

70% of the maximal information content of the corresponding model, and the lengths of all

model are increased gradually from 5 to 30. We also generate 100 sets of the models using

the same way and the averaged run time is approximately equal to the real performance of

the corresponding algorithm.

• Datasets of Real-world Sequence SEQ2: to contrast with the artificial sequence, we concate-

nate to a 55 megabases long DNA sequences that all subsequences of DNA sequence are col-

lected from the mouse and human genome.

• Datasets of Real-world Model MOD3: we collect 368 models about DNA from the known

JASPAR database (JASPAR CORE REDUNANT 2016).[38, 39] the lengths of all models are

also increased gradually from 5 to 21 and their average length is 13.2. In the real dataset, the

number of models which their length exceed this range is very rare, so we left out specific

modes. These models are divided into 25 groups which the model lengths in each group are

increased from 5 to 21. In some group, due to the amount of some models having the same

length are less than 25, so some models need to be repeated and divided into multiple groups

at the same time.

Time and accuracy performance

The average running time on different artificial models or real-world model can be summa-

rized in Figs 2–4. In those experiments, the p-values of all significant thresholds are set to the

same value 0.0001.
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The significant threshold k of each experiments is not given but is calculated indirectly

through a given p-value. To evaluate performance of algorithms on varying significant thresh-

olds, we have some experiments which the real-world models collect from JASPAR and the

sequences are real-world SEQ2 with varying p-value. The average running times are summa-

rized in Table 2. It’s obvious that the faster lookahead scoring algorithm outperforms others

and has better performance with the smaller γ, on the other hand, the average running time of

the naive algorithm almost be keep at 33

The various information content of models will produce different influence on the search-

ing speed, so that we evaluate three algorithms on the artificial datasets contained the models

MOD1 and the sequence SEQ1. The p-value is set to 0.0001 and the average running times are

depicted as Fig 2. Obviously, the faster lookahead scoring algorithm is always the fastest

searching one among three algorithms when the information content is same. Otherwise, the

Fig 2. Average running times (in Seconds, Preprocessing excluded) of different algorithms for model MOD1 with

p-value γ = 0.0001.

https://doi.org/10.1371/journal.pone.0198922.g002

Fig 3. Average running times (in Seconds, Preprocessing excluded) of different algorithms for model MOD2 with

p-value γ = 0.0001.

https://doi.org/10.1371/journal.pone.0198922.g003
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average running time also slow-growth when the information content of models increase grad-

ually. There is a reasonable explanation for this phenomenon that the amount of the matching

subsequence’s prefixes which their matching score is above the corresponding intermediate

threshold will increase as containing more information content, such that the corresponding

running time will also deteriorate.

The various length of models will produce different influence on the searching speed, so

that we evaluate three algorithms on the artificial datasets contained models MOD2 and

sequence SEQ1. The p-value is set to 0.0001 and the average running times are depicted as Fig

3. The faster lookahead scoring algorithm is still the fastest searching one among three contras-

tive algorithms. Although the average running times of three algorithms increase at the same

time with the longer length of models, the running time of the faster lookahead scoring algo-

rithm increases more slowly compared with the other algorithms.

To evaluate the performance of three algorithm on the real-world databases, we experi-

mented on the dataset contained the models MOD3 and the sequence SEQ2. The p-value is

also set to 0.0001 and the average running times are depicted as Fig 4. The faster lookahead

scoring algorithm is still the fastest one with the other ones. Note that the average running

time of FLS is more than LS’s one when the length of model is less than 8. The possible reason

of this phenomenon can be described as that the advantage of permuted order of match will be

disadvantage by adding additional operations compared with the LS algorithm when the

length of model is too short.

Fig 4. Average running times (in Seconds, Preprocessing excluded) of different algorithms for real-world model

MOD3 and sequence SEQ2 with p-value γ = 0.0001.

https://doi.org/10.1371/journal.pone.0198922.g004

Table 2. Average running times of various p-value.

γ = 10−1 10−2 10−3 10−4 10−5 10−6

NA 34.83 32.53 32.48 32.99 33.85 34.02

LS 30.48 24.06 21.22 19.30 18.08 17.19

FLS 22.39 16.43 13.26 11.67 9.92 9.32

Average running times (in Seconds, Preprocessing excluded) of different algorithms for DNA pattern (m = 21) from JASPAR and varying p-Values, and each reported

time is an average of 10 runs.

https://doi.org/10.1371/journal.pone.0198922.t002
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Conclusions

It should be emphasized that the results of all algorithms in above experiments are same so

that we ignore contrast of results and all algorithms in our experiments can find out the precise

result. Moreover, the faster lookahead scoring algorithm has a clear speed-up advantage com-

pared with the lookahead searching algorithm. Through above contrasting experiments, the

searching performance of FLS is better for dealing with real-world datasets and artificial data-

sets. As the exponential growth of both DNA and protein sequence databases, the searching

speed of the faster lookahead scoring algorithm will be more significance and more concerned.
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