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Transfection of rat skeletal muscle in vivo is a widely used research model. However, gene electrotransfer
protocols have been developed for mice and yield variable results in rats. We investigated whether
changes in hyaluronidase pre-treatment and plasmid DNA delivery can improve transfection efficiency in
rat skeletal muscle. We found that pre-treating the muscle with a hyaluronidase dose suitable for rats
(0.56 U/g b.w.) prior to plasmid DNA injection increased transfection efficiency by 4200% whereas
timing of the pre-treatment did not affect efficiency. Uniformly distributing plasmid DNA delivery across
the muscle by increasing the number of plasmid DNA injections further enhanced transfection efficiency
whereas increasing plasmid dose from 0.2 to 1.6 mg/g b.w. or vehicle volume had no effect. The optimized
protocol resulted in �80% (CI95%: 79–84%) transfected muscle fibers with a homogenous distribution.
We also show that transfection was stable over five weeks of regular exercise or inactivity. Our findings
show that species-specific plasmid DNA delivery and hyaluronidase pre-treatment greatly improves
transfection efficiency in rat skeletal muscle.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Direct plasmid DNA injection into skeletal muscle is a simple
method to perform gene transfer in vivo. However, a major lim-
itation is the very low transfection efficacy. Manipulating with a
number of factors, such as plasmid dose, plasmid construct design,
injection volume, injection vehicle, number of injections and in-
jection technique have been tested with some success [1,2], but
the advent of electroporation has resulted in the most dramatic
improvements in transfection efficiency [3,4]. DNA electrotransfer
has developed into an effective means to carry out gene transfer
in vivo [3,4]. DNA electrotransfer is widely used as a research tool
for studying the biological effects of proteins in skeletal muscle [5–
11] and it has been successfully introduced in the clinic to facilitate
intramuscular plasmid delivery in cancer patients [12]. In order to
acquire reliable data or an effective treatment the transfection
efficiency needs to be high. Different electroporation protocols
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have been developed and a combination of one short high-voltage
pulse followed by one or more microsecond-long low-voltage
pulses have been shown to result in efficient transfection in mice
skeletal muscle [13–15].

Rats are commonly used in electrotransfer studies for in-
vestigating the effect of different proteins on a wide variety of
areas such as: angiogenesis [16], muscle hypertrophy [17] and
atrophy [18], glucose uptake [11] and lipid metabolism [7,10].
However, high transfection efficiencies with low variability have
only been achieved in mice [19]. In larger animals such as rats [11],
dogs [20] and non-human primates [21,22], the available trans-
fection protocols lead to moderate transfection success and great
variability in the percentage of transfected muscle fibers. Similar
electroporation parameters seem to be effective in large [20,23]
and small animals [13], suggesting that other factors such as in-
tramuscular plasmid delivery and distribution might influence
transfection efficiency.

Hyaluronidase is thought to enhance the distribution of plas-
mid DNA in the muscle by catalyzing the hydrolysis of hyaluronan,
a constituent of the extracellular matrix. Hyaluronidase has been
shown to increase protein expression in dose-dependent manner
in mice and rabbits [24]. However, the hyaluronidase dose re-
sulting in the highest transfection efficiency is much lower in
rabbits compared with mice, suggesting that the optimal
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. The figure depicts the pattern that was drawn on the skin to guide the injections. Tibialis anterior muscle was injected at a right angle to the muscle with a depth of
3 mm. Plasmid DNA was injected at 1, 3, 5 or 7 sites indicated by a filled circle. Hyaluronidase or vehicle, marked with an open circle, was injected at 2 sites in all
experiments.
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hyaluronidase dose might be species-specific [24]. When pre-
treating the muscle with hyaluronidase [24], the concentration
[25] and dose of plasmid DNA administered [21,26,27] as well as
the injection technique [2] all affect transfection efficiency in mice
skeletal muscle, but these parameters have never systematically
been tested in rats.

When other interventions, such as a period of exercise training,
are added in conjunction with plasmid transfection, stability over
time is important to ensure that changes in transgene expression
are maintained throughout the intervention period. Although
skeletal muscle cells are terminally differentiated and individual
fibers are long-lived there is a small degree of muscle fiber turn-
over [28], which can increase slightly with exercise training [29].
Whether stability of transfection is affected by a period of exercise
training has not previously been tested.

In this study, we investigated whether changes in hyalur-
onidase pre-treatment and plasmid DNA delivery can improve
transfection efficiency in rat skeletal muscle. Specifically, we ma-
nipulated with dose and timing of hyaluronidase pre-treatment,
plasmid dilution volume, number of plasmid injections and dose
of plasmid DNA injected. Using the optimized protocol we have
also tested whether exercise training affects transfection stability.
2. Materials and methods

2.1. Animals

All procedures were approved by the Danish Animal Experi-
mental Inspectorate (License number: 2012-15-2934-00406) and
were performed in accordance with the European Convention for
the Protection of Vertebrate Animals Used for Experiments and
Other Scientific Purposes. Male Sprague Dawley rats (200–250 g;
Taconic Europe A/S, Lille Skensved, Denmark) were housed at a
constant temperature (22–23 °C) and 35–55% relative humidity on
a 12/12 h light/dark cycle with free access to food (Altromin
#1324, Brogaarden, Denmark) and water. The animals were ac-
climatized for one week before being allocated into their re-
spective groups and interventions. Animals were anaesthetized
with a 2 ml/kg b.w. injection (s.c.) of an anesthetic cocktail (Hyp-
norm, 5 mg/ml, Vetapharma, UK and Midazolam, 2.5 mg/ml, Ha-
meln pharmaceuticals, Germany) prior to harvesting of Tibialis
anterior muscle (TA) and euthanasia by cervical dislocation of the
neck.
2.2. Plasmid

A plasmid encoding green fluorescent protein (GFP) under the
control of a cytomegalovirus (CMV) promoter (PS100048, Origene
Technologies Inc., USA) was used to assess transfection efficiency
in skeletal muscle. The plasmid was amplified in Escherichia coli
and purified using EndoFrees Giga Kits (QIAGENs, Life technolo-
gies, Thermo Fisher Scientific, USA) according to the manufac-
turer's instructions. The only deviation from this protocol was the
use of sterile de-mineralized water (pH 7.1) for the plasmid sus-
pension. The concentration and purity of plasmid DNA suspension
was determined spectrophotometrically (NanoDrop 1000, Thermo
Scientific, USA). The absorbance ratio at 260 and 280 nm was used
to assess the purity of suspended plasmid DNA. All suspensions
had a ratio of 41.8.

Prior to injection additional sterile demineralized water and
sterile saline was added to create the desired plasmid concentra-
tion (see below) dissolved in a 75 mM NaCl solution as has pre-
viously been recommended [30]. A saline solution containing
75 mM NaCl was used as a vehicle in all experiments.

2.3. Injection and electroporation procedure

In all experiments, the animals were anesthetized with gaseous
Isoflurane (Baxter A/S, Allerød, Denmark) mixed with 100% oxygen
(Air Liquide, A/S, Denmark) in a 5.5 l induction-chamber (Midmark
Animal Health, Stockholm, Sweden). The Isoflurane was adminis-
tered with an Isoflurane-vaporizer (E-Vet, Manchester, United
Kingdom). When anesthetized, the rat was placed on a heating
plate (Peco Services Ltd., Brough, United Kingdom) in the supine
position. The hind legs were shaved and swabbed with 0.5%
Chlorohexidine (Ceduren, Mediq, Denmark).

The muscle was pre-treated with hyaluronidase (Type IV-S,
Sigma-Aldrich, Denmark) diluted in vehicle (0.8 ml/g b.w.) or ve-
hicle alone (0.8 ml/g b.w.) delivered by 2 injections in all experi-
ments as depicted in Fig. 1. Following the pre-treatment, the
plasmid was injected into the TA as described below (Fig. 1). For
pre-treatment and plasmid injections, we used a disposable sterile
plastic syringe with a 27-gauge needle (0.5 ml, Myjector U-100
Insulin, Terumo, Leuven, Belgium). The syringe needle was fitted
with a 9 mm collar cut from plastic tubing (Tygon S-54-HL Mi-
crobore Tubing, i.d.: 0.41 mm, Norton Performance Plastics, Ohio,
USA) effectively reducing the injection depth to 3 mm. The depth
of needle penetration is important for the transfection efficacy
[31]. In preliminary experiments, we had found that 3 mm is the
optimal injection depth resulting in the most homogenous
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distribution of Brilliant Blue in the TA muscle (data not shown). All
injections were performed at a right angle to the muscle.

Immediately following the injections, a pair of 30�8 mm2

plate electrodes (P-30-8B, Cliniporation, IGEA Clinical Biophysics,
Italy) was applied covering the ventral and dorsal sides of the
distal hind limb. A conductive gel (Combiscan Ultrasound & Tens
Gel, Lina Medical Aps., Denmark) was applied to the skin to im-
prove contact with the electrodes and reduce electrical im-
pedance. The electrical pulse was generated with an electropora-
tion pulse generator (EPS01, Clinivet, IGEA Clinical Biophysics,
Italy) and comprised a single pulse of 800 V/cm amplitude lasting
100 μs followed by a time lag of 1 s and a series of four 80 V/cm
pulses lasting 100 ms interspersed by pauses of 900 ms as has
previously been shown to be very effective [14] and result in
minimal disturbance in muscle function [23].

2.4. Tissue harvesting

Following the treatment period, the animals were anaes-
thetized with a 2 ml/kg b.w. injection (s.c.) of an anesthetic cock-
tail (Hypnorm, 5 mg/ml, Vetapharma, UK and Midazolam, 2.5 mg/
ml, Hameln pharmaceuticals, Germany) and had both of their TA
muscles excised. The TA muscles were immediately frozen in li-
quid nitrogen and stored at �80 °C until further analysis. Subse-
quently, all animals were euthanized with cervical dislocation.

2.5. Interventions

2.5.1. Hyaluronidase dose
To test for an optimal hyaluronidase pre-treatment dose, TA

muscles of 23 Sprague Dawley were transfected with 0.8 mg/g b.w.
plasmid solution diluted in vehicle (1.5 ml/g b.w.) delivered with
seven injections 1 min following 0.06 (n¼10), 0.28 (n¼10), 0.56
(n¼10), 1.12 (n¼10) U/g b.w. hyaluronidase or vehicle (n¼6) pre-
treatment. The muscles were electroporated immediately after
plasmid injection and harvested 7 days later as described above.

2.5.2. Pre-treatment time
To investigate the effect of timing of pre-treatment, both TA

muscles of 14 rats were pre-treated with either hyaluronidase
(0.56 U/g b.w.) or vehicle. In 8 rats, we injected hyaluronidase
(0.56 U/g b.w.) and vehicle 10 min prior to plasmid injection and
6 rats were injected with hyaluronidase (0.56 U/g b.w.) and vehicle
1 min prior to plasmid injection. We injected a plasmid solution
0.8 mg/g b.w. diluted in a low volume (1.5 ml/g b.w.) into the
muscles with 7 injections (Fig. 1) and electroporated. Muscles
were harvested after 7 days as described above.

2.5.3. Vehicle volume
We investigated the effect of plasmid vehicle volume by

transfecting both TA muscles of 14 rats. The muscles were pre-
treated with 0.56 U/g b.w. hyaluronidase 10 min prior to plasmid
injection. We injected a plasmid DNA solution 0.8 mg / g b.w. di-
luted in a large volume (3 ml/g b.w.) of vehicle into the TA of one
leg and in a low volume (1.5 ml/g b.w.) into the contralateral leg.
The large and low volume injections were equally distributed
between the right and left legs. In half of the rats we used 3 in-
jections and in the other half we used 5 injections (Fig. 1). The
injections were immediately followed by electroporation. Muscles
were harvested after 7 days as described above.

2.5.4. Number of injections
To investigate the effect of the number of injections, both TA

muscles of 10 rats were injected with plasmid (0.8 mg/g b.w.) di-
luted in vehicle (1.5 ml/g b.w.) distributed evenly over 1, 3, 5, or
7 sites (Fig. 1) 1 min following hyaluronidase pre-treatment
(0.56 U/g b.w.). The muscles were electroporated immediately
after plasmid injection and harvested 7 days later as described
above.

2.5.5. Plasmid DNA dose
We investigated the relationship between plasmid dose and

transfection in 16 rats. Both TA muscles were injected with either
0.2 (n¼8), 0.4 (n¼8), 0.8 (n¼8) or 1.6 (n¼8) mg/g b.w. plasmid in
vehicle (1.5 ml/g b.w.) delivered with seven injections (Fig. 1) 1 min
following hyaluronidase pre-treatment (0.56 U/g b.w.). The mus-
cles were electroporated immediately after plasmid injection and
harvested 7 days later as described above.

2.5.6. Distribution of transfection
To investigate the distribution of transfection, both TA muscles

of 2 rats were pre-treated with hyaluronidase (0.56 U/g b.w.)
1 min prior to plasmid (0.8 mg/g b.w.) injection in vehicle (1.5 ml/g
b.w.) delivered by 7 injections (Fig. 1) and electroporated im-
mediately after. The muscles were removed one week later and a
proximal, mid-belly, and distal portion of the muscle were cut and
immediately embedded in mounting medium, frozen in pre-
cooled isopentane and stored at �80 °C until further analysis.

2.5.7. Effect of exercise training on transfection stability
We investigated whether transfection stability is affected by

exercise training by transfecting the right TA muscle of 22 rats and
comparing the percentage of transfected muscle fibers against the
mid-belly portion of the 4 TA muscles used to investigate dis-
tribution of transfection. All rats were pre-treated with hyalur-
onidase (0.56 U/g b.w.) 1 min prior to plasmid (0.8 mg/g b.w.) in-
jection in vehicle (1.5 ml/g b.w.) delivered by 7 injections (Fig. 1)
and electroporated immediately after. Seven days later, 11 rats
were allocated to exercise training, while 11 rats remained se-
dentary. The rats trained on a motorized treadmill at a speed of
25 m min�1 and an incline of 8% 5 times per week for 5 weeks.
During the first 5 days of training we increased the duration from
20 min to 60 min in 10 min increments. During the remaining
4 weeks the rats ran for 60 min during each training session. The
training intensity corresponded to approximately 75% of VO2 max
[32] and all training was supervised. The muscles were harvested
48 h after the last training session under pentobarbital anesthesia
(55 mg/kg b.w., i.v.). Since we had found that the transfection
distribution was homogenous in the muscle (Fig. 5), only a mid-
belly portion of the muscle was cut and immediately embedded in
mounting medium, frozen in pre-cooled isopentane and stored at
�80 °C until further analysis. Subsequently, the animals were
euthanized with an overdose of pentobarbital (110 mg/ kg b.w.,
i.v.).

2.6. Western blotting

GFP expression was determined by western blotting in TA on
whole muscle lysates. Frozen muscle samples were pulverized and
a sample of approximately 95 mg muscle was collected and
homogenized (Qiagen Tissuelyzer II, Retsch GmbH, Haan, Ger-
many) in a fresh batch of buffer containing (in mM): 10% glycerol,
20 mM Na-pyrophosphate, 150 mM NaCl, 50 mM HEPES (pH 7.5),
1% NP-40, 20 mM β-glycerophosphate, 2 mM Na3VO4, 10 mM NaF,
2 mM PMSF, 1 mM EDTA (pH 8), 1 mM EGTA (pH 8), 10 mg/ml
Aprotinin, 10 mg/ml Leupeptin and 3 mM Benzamidine. Samples
were rotated end over end for 1 h at 4 °C and centrifuged at
18,320 g for 20 min at 4 °C to exclude non-dissolved structures,
and the supernatant (lysate) was used for further analysis. Total
protein concentration in each sample was determined by a BSA
standard kit (Pierce), and samples were mixed with 6 x Laemmli
buffer (7 ml 0.5 M Tris-base, 3 ml glycerol, 0.93 g DTT, 1 g SDS and
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1.2 mg bromophenol blue) and ddH2O to reach equal protein
concentration before protein expression were determined by
western blotting.

Equal amount of total protein were loaded in each well of pre-
casted 10% gels (Bio-Rad Laboratories, USA). All samples from each
experiment were loaded on the same gel. Proteins were separated
by SDS page gel electrophoresis and semi-dry transferred to a
PVDF membrane (BioRad, Denmark). The membranes were
blocked in 2% skimmed milk in Tris-buffered saline including 0.1%
Tween-20 (TBST) before an overnight incubation in primary anti-
body (AB121, Evrogen JSC, Russia) at 4 °C and a subsequent 1 hour
incubation in horseradish-peroxidase conjugated secondary goat
anti-rabbit antibody (4010-05, Southern Biotech, USA or P-0448,
DAKO, Denmark) at room temperature. The bands were visualized
with ECL (Millipore) and recorded with a digital camera (Chemi-
Doc MP Imaging System, Bio-Rad Laboratories, USA). Densitometry
quantification of the western blot band intensity was done using
Image Lab version 4.0 (Bio-Rad Laboratories, USA) and determined
as the total band intensity adjusted for background intensity.

2.7. Transfection efficiency quantification

Transverse sections (8 mm) of the proximal, mid-belly, and
distal muscle regions were cut using a microtome (Mikron HM
500 M, Zeiss, Denmark). Transfection efficiency was determined
from a series of four images per sample consisting of 8673
muscle fibers per image and totaling 345714 muscle fibers per
sample acquired using a High-Resolution Interline CCD Camera
(CoolSNAP cf. Photometrics, Tucson, USA) through a light micro-
scope (Axioplan 2 Imaging, Zeiss, Denmark) and bandpass filters
limiting excitation and emission wavelength ranges to 450–490
and 505–530 nm, respectively. The excitation and emission max-
imum of mGFP are 483 and 506 nm, respectively. No auto-
flourescence was detected in sections of non-transfected muscle
samples (data not shown). The images were analyzed by counting
the number of fluorescent structures using the computer program
ImageJ (National Institute of Health, Maryland, USA). Transfection
efficiency was represented as percentage of transfected fibers,
which was calculated by dividing the number of transfected fibers
by the total number of counted fibers and multiplying by 100.

2.8. Statistics

Distribution of data was evaluated using probability plots and
Kolmogorov-Smirnov tests. Data are presented as means7SEM or
95% confidence interval. The effect of plasmid dilution volume was
tested using a paired t-test (PROC TTEST). The effect of pre-treat-
ment time was analyzed using a 2-way mixed model analysis
(PROC MIXED) and to investigate the effect of hyaluronidase dose,
plasmid dose, number of plasmid injections, transfection dis-
tribution or training a 1-way mixed model analysis (PROC ANOVA)
was used (SAS version 9.2, SAS Institute, Cary, NC). Post hoc ana-
lysis was performed using Tukey-adjusted t-tests as appropriate.
Distribution and variance homogeneity of the residuals derived
from the variance analysis were evaluated using probability plots
and scatter plots. Significance for all tests was set at Po0.05.
Fig. 2. The figure depicts western blot band intensity, which represents GFP pro-
tein content in arbitrary units (A.U.) in Tibialis anterior (TA) muscles of Sprague-
Dawley rats 1 week after transfection. A) Dose-response relationship between
hyaluronidase pre-treatment dose and GFP expression. Both TA muscles of 23 rats
were pre-treated with either 0.06 (n¼10), 0.28 (n¼10), 0.56 (n¼10), 1.12 (n¼10)
U/g b.w. Hyaluronidase or vehicle (0 U/g b.w., n¼6). B) Effect of timing of hyalur-
onidase pre-treatment on GFP expression. TA muscles of 14 rats were pretreated 1
(n¼6) or 10 min (n¼8) prior to plasmid injection with hyaluronidase (0.56 U/g b.
w.) in one TA muscle and vehicle in the other. The data are presented as mean7SE.
*: effect of hyaluronidase pre-treatment, Po0.05, **: effect of hyaluronidase dose,
Po0.01, þ: different from 0.06 U/g b.w. Hyaluronidase, Po0.05, þþ: different
from all doses of hyaluronidase, Po0.05.
3. Results

3.1. Hyaluronidase dose affects transfection efficiency

All hyaluronidase doses increased transfection efficiency com-
pared with vehicle pre-treatment (po0.01, Fig. 2A), and the effect
with 0.56 U/g b.w. was greater than 0.06 U/g b.w. (po0.05,
Fig. 2A). The dose-dependent increase that was observed from low



Fig. 3. The figure depicts western blot band intensity, which represents protein
content of GFP in arbitrary units (A.U.) in Tibialis anterior (TA) muscles of Sprague-
Dawley rats 1 week after transfection. (A) Effect of plasmid dilution volume and
GFP expression. The muscles of 12 rats were pre-treated with 0.56 U/g b.w. Hya-
luronidase 10 min prior to plasmid injection. The plasmid (0.8 mg/g b.w.) was in-
jected in one TA muscle diluted in a small (1.5 ml/g b.w., n¼12) and in the other in a
large (3 ml/g b.w., n¼12) vehicle volume. (B) Effect of the number of plasmid in-
jection sites and GFP expression. Both TA muscles of 10 rats were injected with
DNA plasmid (0.8 mg/g b.w.) diluted in vehicle (1.5 ml/g b.w.) at either 1 (n¼5), 3
(n¼5), 5 (n¼5), or 7 (n¼5) evenly spaced sites 1 min following hyaluronidase pre-
treatment (0.56 U/g b.w.). The data are presented as mean7SE. þ: different from
1 and 3 injections, Po0.05 *: effect of number of injections, Po0.05.
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(0.06 U/g b.w.) to high (0.56 U/g b.w.) doses of hyaluronidase
disappeared when the dose was increased to 1.12 U/g b.w. The
highest hyaluronidase dose (1.12 U/g b.w.) tended to result in
lower transfection efficiency than the second highest dose (0.56 U/
g b.w.) (p¼0.08, Fig. 2).

3.2. Timing of hyaluronidase pre-treatment does not affect trans-
fection efficiency

Pre-treating the muscle with hyaluronidase significantly in-
creased transfection efficiency compared to vehicle pre-treatment
(po0.05, Fig. 2B). However, transfection efficiency was not af-
fected by whether the pre-treatment was administered 1 or
10 min prior to plasmid injection (p¼0.78, Fig. 3). There was no
interaction between pre-treatment and time (p¼0.15). Due to
these findings we decided to administer hyaluronidase 1 min prior
to plasmid injection in all subsequent experiments.

3.3. No effect of plasmid dilution volume on transfection efficiency

There was no difference in muscle GFP expression when plas-
mid was delivered in a small (1.5 ml/g b.w.) or large (3 ml/g b.w.)
volume of vehicle using 3 or 5 injection sites (p¼0.37, Fig. 3A).

3.4. Increasing the number of plasmid injection sites increases
transfection efficiency

Increasing the number of plasmid solution injections, thereby
lowering the plasmid solution amount of every injection site and
increasing the total tissue coverage, increased transfection effi-
ciency in a dose-dependent manner (po0.05, Fig. 3B). Delivering
the plasmid using 7 evenly spaced injection sites was superior to
1 or 3 injections (po0.05), but not significantly different from 5
(p¼0.20).

3.5. Plasmid dose does not affect transfection efficiency

The injected plasmid dose did not affect transfection efficiency
significantly (p¼0.47, Fig. 4). There was no difference in GFP ex-
pression of muscle that was injected with either 0.2, 0.4, 0.8 or
1.6 mg/g b.w. plasmid.

3.6. The percentage of transfected fibers was equally distributed
across the whole length of the muscle

The optimized transfection protocol resulted in a high per-
centage of transfected muscle fibers in all three evaluated parts,
i.e. the proximal, mid-belly and distal portions of the muscle and
in all areas the percentage of transfected fibers was �80% with no
difference between the different regions of the muscle (p¼0.97,
Fig. 5).

3.7. Exercise does not affect transfection stability

After 5 weeks of exercise training or sedentary life, the per-
centage of transfected muscle fibers were still �80% and was not
different from 1 week after transfection with the optimized pro-
tocol (p¼0.94, Fig. 6). The within group variability was low, in-
dicated by a range of 77–83, 70–90 and 76–90% transfected fibers
in the baseline, sedentary and training groups, respectively. In
addition, the 95% confidence intervals of percentage of transfected
fibers were low both at baseline (CI95%: 79–84%, n¼4) and after
5 weeks of training (CI95%: 76–87%, n¼11) or sedentary life
(CI95%: 78–86%, n¼11). Importantly, 5 weeks of exercise training
had no effect on transfection stability, suggesting that exercise
training lasting up to 5 weeks can be combined with DNA



Fig. 4. Effect of plasmid dose and GFP expression in Tibialis anterior (TA) muscles
of Sprague-Dawley rats (n¼16). Bar graph depicts western blot band intensity,
which represents GFP expression 1 week after transfection by electroporation in
arbitrary units (A.U.). Both TA muscles were injected with either 0.2 (n¼8), 0.4
(n¼8), 0.8 (n¼8) or 1.6 (n¼8) mg/g b.w. plasmid in vehicle (1.5 ml/g b.w.) delivered
with 7 evenly spaced injections 1 min following hyaluronidase pre-treatment
(0.56 U/g b.w.). The data are presented as mean7SE.

Fig. 6. The graph depicts the percentage (%) of transfected muscle fibers (A) and
representative cross-sections (B) in the mid-belly portion of the Tibialis anterior
muscle of Sprague-Dawley rats (n¼24). All rats were pre-treated with hyalur-
onidase (0.56 U/g b.w.) 1 min prior to plasmid (0.8 mg/g b.w.) injection in vehicle
(1.5 ml/g b.w.) delivered by 7 evenly spaced injections and electroporated im-
mediately after. Muscles were harvested 1 week after transfection (B, n¼4) or after
an additional 5 weeks of sedentary life (S, n¼11) or exercise training on a motor-
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electrotransfer for functional studies without concerns of changes
in transgene expression.
ized treadmill (T, n¼11). The data are presented as mean7SE.
4. Discussion

The present study investigated whether improvements in
plasmid DNA delivery and hyaluronidase pre-treatment can im-
prove transfection efficiency in rat skeletal muscle. We found that
a hyaluronidase dose suitable for rats (0.56 U/g b.w.) injected into
Fig. 5. The graph depicts the percentage (%) of transfected muscle fibers (A) and represe
n¼4) portions of the Tibialis anterior muscle of Sprague-Dawley rats (n¼2) 1 week after
in vehicle (1.5 ml/g b.w.) delivered with 7 evenly spaced injections 1 min following hyal
the muscle immediately prior to plasmid DNA injection increased
transfection efficiency by 4200%. Increasing the number of plas-
mid DNA injections further enhanced transfection efficiency
whereas increasing plasmid dose from 0.2 to 1.6 mg/g b.w. or ve-
hicle volume from 1.5 to 3.0 ml/g b.w. had no effect. The optimized
protocol resulted in �80% of muscle fibers transfected with a low
ntative cross-sections (B) in the proximal (P, n¼4), mid-belly (M, n¼4) or distal (D,
transfection by electroporation. TA muscles were injected with 0.8 mg/g b.w. plasmid
uronidase pre-treatment (0.56 U/g b.w.). The data are presented as mean7SE.
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animal to animal variability. The transfection was homogenously
distributed throughout the muscle and stable over five weeks of
regular exercise or inactivity. Our findings show that hyalur-
onidase pre-treatment and plasmid DNA delivery adapted to rat
skeletal muscle greatly improves transfection efficiency.

The abundant connective tissue surrounding the muscle in the
extracellular matrix is a barrier for adequate DNA plasmid dis-
tribution and transfer to the muscle [33]. Hyaluronidase degrades
the extracellular matrix, which is thought to enhance distribution
of fluids and soluble molecules in the tissue. This notion is sup-
ported by the dose-dependent increase in transgenic protein ex-
pression observed with hyaluronidase pre-treatment in rats
(Fig. 2A), mice and rabbits [24]. However, in the present study the
effect leveled off at the highest dose (1.12 U/g b.w.), which tended
to be less effective than a dose of 0.56 U/g b.w. (p¼0.08). It has
been postulated that the extracellular matrix is a major limitation
to plasmid gene transfer especially in larger animals [33]. In mice,
the dose-dependency continuum stretches to very high doses of
hyaluronidase [24], but this is not the case in rats (Fig. 2A) or
rabbits [24]. When comparing the results of the present study
(Fig. 2A) to previous results in mice [24], the most effective dose is
�3 times larger in mice than rats when size has been corrected
for. Doing the same calculation using data from rabbit TA muscle
[24], the most effective hyaluronidase dose is only one tenth and
one quarter of the most effective dose in mice and rats, respec-
tively. When a dose equivalent to the most effective dose in the
present study (Fig. 2A) was used in rabbits the positive effect of
hyaluronidase on transfection efficacy disappeared [24]. This
suggests that there is a species difference in the optimal hyalur-
onidase dose and that larger hyaluronidase doses might have
detrimental effects on transfection efficiency in larger animals
when pre-treatment with hyaluronidase is combined with elec-
troporation. In mice, the effect of hyaluronidase pre-treatment on
transfection efficacy is also dependent on strain and age [34], in-
dicating that it might be necessary to determine an optimal hya-
luronidase dose for each experimental set-up depending on the
species and characteristics of the animal used.

Pre-treatment with hyaluronidase is typically performed 1–4 h
prior to injection of the plasmid in both mice [24,31,34–36] and
rats [7,8,11]. The rationale is that the enzyme needs time to act on
the extracellular matrix in order to have the desired effect. This
requires anesthetizing the animal twice, which can be stressful for
the animal, as well as being impractical and time-consuming for
the operator. However, pre-treating the muscle only 10 min prior
to plasmid injection elicits comparable effects [24], suggesting that
the positive effect of hyaluronidase is achieved rapidly. In line with
this, we show in the present study that a pre-injection of hyalur-
onidase only 1 min prior to plasmid injection is just as effective as
injecting hyaluronidase 10 min prior to plasmid delivery (Fig. 2B).
Using a shorter pre-injection time will save undue stress to the
animals and time for the operator.

The exact mechanism of DNA electrotransfer is not fully eluci-
dated, but it is clear from experiments both in vitro [37] and
in vivo [21] that DNA has to be present for electroporation to
enhance transfection efficiency. Increasing the proximity of plas-
mid DNA to the cell membrane [38] and the surface of interaction
with the cell membrane leads to higher gene expression [39], but
plasmid DNA only distributes a few hundred mm from the site of
injection in muscle [40]. A better distribution of plasmid within
the muscle using guided injections enhances transfection in
combination with electroporation [2]. In an attempt to achieve
better distribution of the plasmid prior to electroporation, we
manipulated the volume of vehicle the plasmid was diluted in and
the number of injection sites. Injecting plasmid diluted in a larger
volume of vehicle had no effect on expression of GFP within the
muscle (Fig. 3A), which is in line with previous observations in
mice [1]. On the other hand, the number of injection sites had a
clear effect on reporter expression (Fig. 3B). Others have not been
able to find the same association in mice [1], but in that study
electroporation was not used to enhance transfection efficiency.
However, the delivery of electric pulses does not affect in-
tramuscular plasmid DNA distribution [40] and is therefore an
unlikely explanation for the observed difference. Thus the differ-
ence in size between the rat and mice TA muscle seems a more
likely explanation. Rats are in the range of 5–9 times larger than
mice and the size of the TA muscle is proportional to body size
[41,42]. With 7 evenly spaced injections of plasmid DNA, which we
find to be most effective (Fig. 3B), the number of injections per mg
of muscle weight is approximately the same as 1 injection in a
mouse and the distribution of plasmid DNA can therefore be ex-
pected to be comparable to that in mice. Increasing the number of
plasmid DNA injection sites does not seem to be warranted in mice
[1,43], but we show that increasing the number of plasmid DNA
injection sites in rats increases total expression of reporter protein
several fold (Fig. 3B).

Dose of plasmid DNA is another parameter that has previously
been shown to have a large impact on transfection efficacy. Many
studies show a clear dose-response between the amount of plas-
mid injected and the transfection efficacy [21,26,27]. In our study,
the dose of plasmid DNA had no effect on transfection efficiency
(Fig. 4). However, the dose response relationship between plasmid
dose and gene expression has not previously been investigated
after other transfection parameter have been optimized. We used
an effective electroporation protocol [14] and plasmid vehicle so-
lution [30] in addition to the most effective number of injections
(Fig. 3B) and hyaluronidase dose (Fig. 2A) arrived at in the present
study. The result is a very high percentage of transfected fibers in
all parts of the muscle (Fig. 5). Thus, plasmid dose might be of
lesser important for the transfection efficacy when other para-
meters of the protocol are optimal. For effective gene electro-
transfer, it is important that an adequate amount of DNA plasmid
is in close proximity to the cell [38], which increases the prob-
ability of a high number of transfected muscle fibers. It is possible
that the amount of DNA plasmid in close proximity to most muscle
fibers was adequate for successful transfection at all doses in the
present study. In that case, further increasing the plasmid dose
might have a negative impact on the transfection efficacy. Some
studies have shown that transfection with excessive doses of
plasmid can have deleterious effects on protein expression [27]
and induce muscle damage [44].

Injection of plasmid without electroporation causes a limited
[44,45] inflammatory response, but does not result in muscle da-
mage or loss of function. However, the combination of plasmid
injection and electroporation has frequently been reported to in-
duce small [23,46,47] to moderate [36,44] inflammatory re-
sponses, muscle damage and a transient loss of function. In the
present study, muscle damage was not assessed, but we used a
gene electrotransfer protocol consisting of a single high voltage
pulse followed by low voltage pulses which has been shown to
only cause a small and brief inflammatory response [23,26,47]. In
addition, any detectable muscle damage, reduction in force gen-
eration or functional limitation following the procedure subsides
within 6–7 days [23,26,47]. Pre-treating the muscle with hyalur-
onidase has been reported to cause an increased inflammatory
response [35], but it does not increase muscle damage [31] and
using a 50% vol/vol saline solution as vehicle for the plasmid DNA
[30] reduces muscle damage. Although muscle damage was not
assessed it seems unlikely due to the nature of the gene electro-
transfer protocol that there would be remnants of inflammation or
muscle damage at the 1 and 5 week time-points when muscles
were harvested [23,26,46,47].

Our transfection protocol resulted in �80% transfection in the
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proximal, mid-belly and distal portions of the TA muscle (Fig. 5),
indicating that the number of transfected muscle cells was high
and homogenously distributed throughout the muscle. There is a
small degree of cell turn-over in skeletal muscle [28] and the turn-
over can increase slightly with exercise training [29], which we
thought might affect transfection stability. However, we found no
evidence of a reduction in the percentage of transfected fibers,
which was maintained at �80% after 5 weeks, whether the rats
exercised or not (Fig. 6).

There appears to be an additive effect of hyaluronidase pre-
treatment and increasing plasmid doses on transfection longevity
[24]. We used a hyaluronidase dose suitable for rats (Fig. 2A) and a
comparable plasmid dose to the one eliciting the greatest response
over time in mice [24]. A combination of these factors might ex-
plain why the high percentage of transfected fibers was
maintained.

Transfection stability is also affected by which protein is en-
coded by the plasmid [48] and it is therefore possible that the high
percentage of transfected muscle fibers observed in the present
study would not be maintained if the plasmid encoded for a
therapeutic protein. Previous studies have reported stable ex-
pression of reporter genes in skeletal muscle for up to a year
[3,21,26], but electrotransfer of plasmids encoding a human se-
creted protein with therapeutic potential such as erythropoietin
[27,49], interleukin-10 [50] or factor IX [51] lead to a transient
concentration peak of the encoded protein in the blood a few days
after transfection followed by a return to low or undetectable le-
vels within a few weeks or months. This reduction in protein ex-
pression is typically due to a humoral immune response targeting
the xenogeneic protein [51] which is not seen when a syngeneic
protein is expressed [48]. Expression of the encoded protein re-
gardless of whether it is a xenogeneic or syngeneic protein is
considerably more stable in muscle than in blood [48–51] and in
most cases stable expression can be detected in skeletal muscle for
at least two months [50,51]. It therefore seems unlikely that the
number of transfected muscle fibers observed in this study five
weeks after transfection would be lower if the transfected plasmid
coded for a therapeutic gene rather than GFP.

In tissues such as skin using a plasmid with a tissue-specific
promoter region seems to stabilize the expression of the ther-
apeutic gene [52] whereas the muscle-specific creatine kinase
promoter does not seem to have that effect in muscle tissue when
compared to the ubiquitous CMV promoter [53]. Rather, trans-
fection stability in skeletal muscle is affected largely by the elec-
troporation protocol [26] and pre-treatment with hyaluronidase
[24,34]. In line with this, Hojman and coworkers showed that
using a gene electrotransfer protocol similar to the one employed
in the present study consisting of a single high voltage pulse fol-
lowed by low voltage pulses resulted in stable expression of ery-
thropoietin for 8 weeks [27].
5. Conclusions

There are a host of factors that affect the efficacy and stability of
transgene expression in skeletal muscle. These factors seem to
vary depending on the species and phenotype of the animal used
in the experimental set-up. In the present study, we show that the
main parameter for ensuring high transfection efficiency in rat
skeletal muscle is a uniform distribution of the plasmid DNA
across the whole muscle, demonstrated by the efficacy of in-
creasing the number of injection sites and pre-treating the muscle
with an effective dose of hyaluronidase prior to plasmid injection.
Our optimized protocol results in a high percentage of transfected
muscle fibers, which is stable over time and not affected by ex-
ercise training.
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