
RESEARCH ARTICLE

Comparison of diagnostic performance

between convolutional neural networks and

human endoscopists for diagnosis of

colorectal polyp: A systematic review and

meta-analysis

Yixin Xu1, Wei Ding1, Yibo Wang1, Yulin Tan1, Cheng Xi1, Nianyuan Ye1, Dapeng Wu2,

Xuezhong XuID
1*

1 Department of General Surgery, Changzhou Wujin People’s Hospital Affiliated to Jiangsu University, The

Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu Province, China, 2 Department of

Endoscopy, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China

* xxz197001@sina.com

Abstract

Prospective randomized trials and observational studies have revealed that early detection,

classification, and removal of neoplastic colorectal polyp (CP) significantly improve the pre-

vention of colorectal cancer (CRC). The current effectiveness of the diagnostic performance

of colonoscopy remains unsatisfactory with unstable accuracy. The convolutional neural

networks (CNN) system based on artificial intelligence (AI) technology has demonstrated its

potential to help endoscopists in increasing diagnostic accuracy. Nonetheless, several limi-

tations of the CNN system and controversies exist on whether it provides a better diagnostic

performance compared to human endoscopists. Therefore, this study sought to address

this issue. Online databases (PubMed, Web of Science, Cochrane Library, and EMBASE)

were used to search for studies conducted up to April 2020. Besides, the quality assessment

of diagnostic accuracy scale-2 (QUADAS-2) was used to evaluate the quality of the enrolled

studies. Moreover, publication bias was determined using the Deeks’ funnel plot. In total, 13

studies were enrolled for this meta-analysis (ranged between 2016 and 2020). Conse-

quently, the CNN system had a satisfactory diagnostic performance in the field of CP detec-

tion (sensitivity: 0.848 [95% CI: 0.692–0.932]; specificity: 0.965 [95% CI: 0.946–0.977]; and

AUC: 0.98 [95% CI: 0.96–0.99]) and CP classification (sensitivity: 0.943 [95% CI: 0.927–

0.955]; specificity: 0.894 [95% CI: 0.631–0.977]; and AUC: 0.95 [95% CI: 0.93–0.97]). In

comparison with human endoscopists, the CNN system was comparable to the expert but

significantly better than the non-expert in the field of CP classification (CNN vs. expert:

RDOR: 1.03, P = 0.9654; non-expert vs. expert: RDOR: 0.29, P = 0.0559; non-expert vs.

CNN: 0.18, P = 0.0342). Therefore, the CNN system exhibited a satisfactory diagnostic per-

formance for CP and could be used as a potential clinical diagnostic tool during

colonoscopy.
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Introduction

Based on 2018 reports, colorectal cancer (CRC) had approximately 1,800,000 new cases and

881,000 deaths, implying 1 in 10 cancer cases and deaths [1]. Approximately 85% of CRCs

developed from precancerous polyps through genetic and epigenetic mechanisms with a mean

dwell time of at least 10 years [2, 3]. Therefore, early and precise detection of colorectal polyp

(CP) has a great significance in the prevention of CRC. Notably, colonoscopy is the most effec-

tive and essential method in the early diagnosis and prevention of CRC through detection and

removal of the neoplastic lesion before its progression to invasive cancer [4]. Reports indicate

that the CRC incidence of individuals taken single negative screening colonoscopy was lower

by 72% and CRC mortality by 81% than in the general population [5]. Meanwhile, the removal

of colorectal polyps could significantly reduce the risk of CRC [6]. Thus, achieving a better

diagnostic accuracy of CP for their prevention and better treatment is critical.

Pathologically, CP can be categorized into inflammatory polyp sessile, hyperplastic polyp,

serrated adenoma polyp (SSAP), and adenoma [7]. The risk of developing CRC is different for

each classification. For instance, several studies have shown that adenoma, similar to SSAP,

has the highest risk of developing and progressing to CRC. In contrast, hyperplastic and

inflammatory polyp are hardly to develop to CRC [7, 8]. Therefore, how to accurately classify

CP remains vital for both the endoscopists and patients, since precise differentiation of CP

minimizes unnecessary endoscopic resection, subsequently decreasing the incidence of surgi-

cal complications, medical costs, and labor burden of doctors [9].

Despite colonoscopy being effective in the early diagnosis of CRC, it remains imperfect and

has several fundamental limitations. First, it has a relatively- high rate of misdiagnosis [10].

Secondly, a few neoplastic lesions remain difficult to detect, even for expert endoscopists [11].

Additionally, the task is time-consuming for the endoscopists and labor-intensive which can

result higher costs, specifically in countries with large populations. Lastly, the diagnostic per-

formance of colonoscopy highly banks on the working experience of endoscopists, which var-

ies among individuals. This implies that the diagnostic accuracy of colonoscopy is unstable.

To resolve these shortcomings, several studies have reported the application of artificial

intelligence to improve medical diagnosis. For example, convolutional neural networks (CNN)

have recently shown significant potential to assist endoscopists causing increased diagnostic

accuracy of CP during colonoscopy [12]. Besides, CNN is a type of the most common network

architectures of deep learning (DL) methods based on artificial intelligence (AI) technology.

Moreover, additional studies showed that the CNN system could automatically classify CP

based on its morphological features. It is significantly helpful in the therapeutic decision-mak-

ing process during colonoscopy [13–15]. Nevertheless, this technology has not reached matu-

rity. Also, a majority of controversies exist on whether the CNN system provides a better

performance than the human endoscopists, and whether it is worthy of popularizing.

Here, we compared the diagnostic performance between the CNN system and human

endoscopists in the field of CP detection and classification.

Materials and methods

Literature search strategy

A systematic literature search was conducted online for studies that assessed the diagnostic

value of the CNN system used in the field of colonoscopy for colorectal polyp detection and

classification. PubMed, Web of Science, Cochrane Library, and EMBASE databases (up to

April 30, 2020) were used during the search with the combination of the following terms:
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([“artificial intelligence”] OR [“convolutional neural networks”] OR [“deep learning”] OR

[“computer-aided”]) AND ([“colonoscopy”] OR [“endoscopy”]) AND ([“colon”] OR [“rec-

tum”] OR [“colonic”] OR [“rectal”] OR [“colorectal”]) AND ([“polyp”] OR [“polyps”]).

All article sections were carefully reviewed. Subsequently, bibliographies of the retrieved

articles were screened to identify any potential source of relevant studies.

Study selection

The inclusion criteria included (1) studies that included patients with CP; (2) colonoscopy was

performed to detect or classify colorectal polyps; (3) CNN system was applied to improve the

diagnostic performance of colonoscopy; (4) precise diagnostic data were presented in the arti-

cle; (5) if the colorectal polyps were classified, the final pathology results were provided. On

the other hand, the exclusion criteria included (1) the types of articles were abstracts, reviews,

letters, comments, and case reports; (2) precise data were unavailable in the article; (3) animal

studies and non-English publications.

Data extraction and quality assessment

A total of 2 independent researchers (Ye and Xi) conducted the data extraction from the

included studies. The information of enrolled studies included the first author’s name, publica-

tion year, country, diseases concerned, training material, testing material, types of diagnostic

performance, and diagnostic performance of the CNN system, expert, and non-expert. The

diagnostic performance was categorized as true-positive (TP), false-positive (FP), true-negative

(TN), and false-negative (FN) and was retrieved from each article. Moreover, if there was any

inconsistency between the 2 reviewers (Ye and Xi), a discussion was conducted including a

third investigator to resolve the problem.

Renner et al. [15], provided data of “standard-confidence predictions” and “high-confi-

dence predictions”. We found that including both of them might introduce the potential of

duplication of data. After careful consideration, the “standard-confidence predictions” of data

were included. Guo et al. [16] provided data of per-frame and per-video and data of per-frame

was selected. This was because, first, nearly all of the articles enrolled for analysis used colonos-

copy images instead of videos. To ensure the consistency of the whole analysis, the data of per-

frame was selected; secondly, the authors did not provide enough per-video data for analysis.

Additionally, Wang et al. [12], used 4 datasets to validate the diagnostic performance of the

CNN system. However, precise data were only provided in Dataset A. As a result, this study

chose to include the data of Dataset A. Kudo et al. [17], provided both white-light (WLI) and

narrow-band image (NBI) for each lesion and tested CNN system in different imaging models.

Including both of WLI and NBI images might cause duplication of data. As a result, we deleted

the data of NBI images. However, Renner et al. [15], Kudo et al. [17], and Ozawa et al. [18]

have the data of diminutive CPs. We thought it was not appropriate to add theme to the gen-

eral analysis for the potential risk of duplication of data. We initially wanted to perform a sub-

group analysis for them, but the STATA software could not do any analysis with sample size

smaller than 4.

The methodological quality and applicability of the studies included were evaluated using

the quality assessment of diagnostic accuracy scale-2 (QUADAS-2) [19].

Outcomes of interests

First, pooled sensitivity, specificity, and other diagnostic indices were calculated based on the

value of TP, FP, TN, and FN, among CNN system, expert, and non-expert. Secondly, the diag-

nostic odds ratio (DOR) and the area (AUC) under the summary receive operating
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characteristic (SROC) curve, which represented overall diagnostic performance, were exam-

ined and compared among different groups. Finally, to identify whether the differences in

diagnostic performance were statistically significant, the relative diagnostic odds ratio (RDOR)

was compared between each of the 2 groups (CNN system vs. expert; CNN system vs. non-

expert; expert vs. non-expert).

Statistical analyses

Statistical analyses were performed to establish the diagnostic efficacy. The sensitivity, specific-

ity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), DOR, the AUC of SROC,

and RDOR were pooled with their 95% confidence interval (CI). A diagnostic tool was consid-

ered to have a strong diagnostic value, if its PLR was above 5 and NLR was below 0.2 [20]. The

heterogeneity among studies was evaluated by Cochran Q and Higgins’ I2 statistics [21]. If the

value of I2 was more than 50%, and the value of P less than 0.05, indicating statistically signifi-

cant heterogeneity existed, a random-effect model was selected for pooling the data [22]. Oth-

erwise, a fixed-effect model was utilized.

SROC was estimated based on the Moses-Littenberg method [23]. Based on the AUC of

SROC, the overall diagnostic performance was categorized into 4 levels, including reasonable

(<0.75), good (0.75–0.92), very good (0.93–0.96), and excellent (�0.97) [24].

RDOR was compared between each 2 groups to identify statistically significant differences

of diagnostic performance and was based on multivariate meta-regression analysis [25, 26].

The Deeks’ funnel plot was used to assess the publication bias.

Pooled sensitivity, specificity, accuracy, PLR, NLR, DOR, and AUC of SROC were calcu-

lated using Stata version 14.0. QUADAS-2 assessment was performed using Review Manager

version 5.3. The result with a P-value of less than 0.05 (p<0.05) was considered statistically

significant.

Results

Search strategy

Following the initial search through the different databases, a total of 189 articles were identi-

fied (102 in PubMed, 31 in Web of Science, 12 in Cochrane Library, and 44 in EMBASE).

First, 146 duplicate studies were removed and the remaining 43 articles were screened. In

total, 15 articles, including non-English publications, reviews, abstracts, and case reports,

which did not meet the inclusion criteria were excluded. Subsequently, the articles with impre-

cise data and irrelevant subjects were excluded after full-text articles were assessed. Eventually,

13 studies were enrolled in this meta-analysis [12–18, 27–32] (Fig 1). PRISMA flow diagram

and checklist are shown in S1 and S2 Tables, respectively.

Cohort characteristics and quality of included studies

Among the enrolled studies, 7 focused on the field of CP detection, while other studies focused

on the field of CP classification. Among these, 5 studies conducted in Japan, 4 in China, 1 in

Germany, one in the USA, 1 in Norway, and 1 in Canada, respectively. All articles were pub-

lished in the last four years (Table 1). Meanwhile, all studies included precise data about the

diagnostic performance of the CNN system; 4 studies provided precise data about the perfor-

mance of experts, and 3 studies provided precise data on the performance of non-expert. All

the data about the diagnostic performance of human endoscopists are in the field of CP classi-

fication. Histological examination results were the golden standard in the studies done about
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CP classification. The diagnostic performance was categorized as TP, FP, FN, and TN

(Table 2).

Based on the QUADAS-2 assessment, the quality of all 13 studies included was considered

moderate (Fig 2). A total of 11 studies were considered high-quality with low risk in at least 5

of the 7 QUADAS-2 domain. For the patient selection domain, 2 studies introduced bias

because case-control design was avoided [18, 27]. Moreover, 3 studies showed a high concern

for applicability [13, 17, 18]. Subsequently, for the index test domain, 2 studies had a high risk

of bias [13, 17]. Finally, there was only one study that had a high concern regarding reference

standard applicability [14].

Application in the field of colorectal polyp detection diagnostic

performance of CNN system

The results of the diagnostic performance of the CNN system are shown in Fig 3. The pooled

sensitivity and specificity were 0.848 (95% CI: 0.692–0.932) and 0.965 (95% CI: 0.946–0.977),

respectively. The heterogeneity of the sensitivity (I2 = 99.91, P = 0.00) and specificity (I2 =

99.78, P = 0.00) were significant. In addition, the pooled PLR, NLR, and DOR were 24.060

(95% CI: 14.939–38.750), 0.158 (95% CI: 0.073–0.341), and 152.325 (95% CI: 51.654–449.202),

respectively. The AUC of SROC of the CNN system was 0.98 (95% CI: 0.96–0.99). The results

Fig 1. Flow chart of studies identified, excluded and included.

https://doi.org/10.1371/journal.pone.0246892.g001
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are as shown in Table 3. Moreover, the PLR and NLR results of the CNN system confirmed

that it is an effective method for detecting colorectal polyps.

Subgroup analysis without the data of short or full videos. The study of Guo et al. [16]

included data of videos, and the sample size was large. Considering including it might mislead

the general result, we chose to perform a subgroup analysis without it.

Table 1. Characteristics of the studies included.

Author Year Country type of endoscopes type of CNN system real-time

use of

CNN

system

type of

lesions

type of

images

Training

material

Testing

material

Field focused Testing

objects

Lequan

[28]

2016 China images from online

database

3D fully

convolutional

neural networks

N/A polyps of

any size

N/A Images Images Detection CNN

Byrne

[27]

2017 Canada 190 series

colonoscopes

(Olympus)

deep convolutional

neural networks

Yes diminutive

polyps

NBI Videos Videos Classification CNN

Chen

[13]

2018 China CF-H260AZI,

PCF-Q260AZI,

CF-HQ290AZI

(Olympus)

N/A N/A diminutive

polyps

NBI Images Images Classification CNN/

Expert/

Non-

expert

Wang

[12]

2018 China Olympus Evis Lucera

CV260 (SL)/CV290

(SL) and Fujinon

4400/4450 HD

N/A Yes polyps of

any size

N/A Images Images Detection CNN

Renner

[15]

2018 Germany Olympus Evis Exera

III CF–HQ 190

colonoscopes

computer-assisted

optical biopsy

N/A polyps of

any size

WLI/NBI Images Images Classification CNN/

Expert

Mori

[14]

2018 Japan CFH290ECI

colonoscopes

(Olympus)

N/A Yes diminutive

polyps

NBI and

methylene

blue staining

modes

Images Images Classification CNN/

Expert/

Non-

expert

Shin

[29]

2018 Norway images from online

database

N/A N/A polyps of

any size

N/A Images Images Classification CNN

Urban

[30]

2018 USA PCF-H190

colonoscopes

(Olympus)

VGG16,VGG19,and

ResNet50

Yes polyps of

any size

N/A Images Images Detection CNN

Zhang

[32]

2018 China images from online

database

ResYOLO Yes polyps of

any size

N/A Images/ Images Detection CNN

Yamada

[31]

2019 Japan images from online

database

Faster R-CNN with

VGG16

Yes polyps of

any size

N/A Images Images Detection CNN

Kudo

[17]

2019 Japan CF-H290ECI

(Olympus)

EndoBRAIN N/A polyps of

any size

WLI/NBI Images WLI/

NBI

images

Detection CNN/

Expert/

Non-

expert

Guo [16] 2020 Japan Fujinon 4450 HD YOLOv3 Yes polyps of

any size

WLI/NBI Images Short/

full

videos

Detection CNN

Ozawa

[18]

2020 Japan Evis Lucera and CF

Type H260AL/I, PCF

Type Q260AI,

Q260AZI, H290I, and

H290ZI (Olympus)

Single Shot

MultiBox Detector

N/A polyps of

any size

WLI/NBI Images Images Classification CNN

CNN: convolutional neural networks; NBI: Narrow band imaging; ResYOLO: residual learning modules based on YOLO; YOLO: a CNN system named you only look

once; WLI: White light imaging

https://doi.org/10.1371/journal.pone.0246892.t001
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The resutl showed that the pooled sensitivity and specificity were 0.878 (95%CI: 0.702–

0.956) and 0.968 (95%CI: 0.945–0.981). Meanwhile, the PLR, NLR, DOR, and AUC of SROC

were 27.314 (95%CI: 14.985–49.788), 0.126 (95%CI: 0.047–0.338), 216.250 (95%CI: 53.307–

877.255), and 0.98 (95%CI: 0.97–0.99), respectively. The result was shown in the S3 Table.

Application in the field of colorectal polyp classification

Diagnostic performance of CNN system. First, the pooled sensitivity and specificity were

0.943 (95%CI: 0.927–0.955) and 0.894 (95%CI: 0.631–0.977) (Fig 4). The heterogeneity of sen-

sitivity (I2 = 94.77, P = 0.00) and specificity (I2 = 98.91, P = 0.00) were significant. Meanwhile,

the PLR, NLR, DOR, and AUC of SROC were 8.911 (95%CI: 2.110–37.622), 0.064 (95%CI:

0.043–0.094), 139.052 (95%CI: 22.978–841.481), and 0.95 (95%CI: 0.93–0.97), respectively.

Diagnostic performance of expert and non-expert. For the diagnostic performance of

expert in the field of classification of colorectal polyps, the pooled sensitivity, specificity, PLR,

NLR, DOR and AUC of SROC of expert were 0.944 (95%CI: 0.892–0.972), 0.848 (95%CI:

0.732–0.919), 6.198 (95%CI: 3.416–11.247), 0.066 (95%CI: 0.034–0.127), 94.383 (95%CI:

39.547–225.251), and 0.96 (95%CI: 0.94–0.98), respectively. The heterogeneity of sensitivity (I2

= 93.68, P = 0.00) and specificity (I2 = 94.03, P = 0.00) were significant.

Besides, the pooled sensitivity, specificity, PLR, NLR, DOR and AUC of SROC of non-

expert were 0.859 (95%CI: 0.769–0.918), 0.811 (95%CI: 0.718–0.878), 4.544 (95%CI: 3.122–

6.614), 0.174 (95%CI: 0.109–0.277), 26.191 (95%CI: 15.870–43.225), and 0.90 (95%CI: 0.87–

Table 2. A. Diagnostic performance of CNN system, expert, and non-expert in the field of polyp detection. B. Diagnostic performance of CNN system, expert, and

non-expert in the field of polyp classification.

A

Author Different grouping standard CNN system Expert Non-expert

TP FP TN FN TP FP TN FN TP FP TN FN

Lequan [28] 3062 414 9260 1251

Wang [12] 6404 881 20691 2345

Urban [30] 7127 83 1203 228

Zhang [32] 3087 398 13057 1226

Yamada [31] 732 41 4094 20

Guo [16] Short videos 2112 642 21692 1608

Full videos 37938 5590 78658 5672

B

TP FP TN FN TP FP TN FN TP FP TN FN

Byrne [27] 104 2 19 4

Chen [13] Group 1 181 21 75 7 183 22 74 5 183 29 67 5

Group 2 184 33 63 4 176 33 63 12

Group 3 154 22 74 34

Group 4 158 11 85 30

Renner [15] 48 18 30 4 48 12 36 4

Mori [14] Proximal-rectosigmoid 167 9 21 12 300 12 48 58 278 20 40 80

Rectosigmoid 95 6 135 5 176 14 268 24 161 30 252 39

Kudo [17] 1260 0 700 40 603 20 330 20 920 40 460 380

Ozawa [18] 1073 175 74 99

Shin [29] 180 13 157 16

CNN: convolutional neural networks; FN: false-negative; FP: false-positive; NBI: narrow band imaging; TN: true negative; TP: true positive; WLI: white light imaging.

https://doi.org/10.1371/journal.pone.0246892.t002
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0.93), respectively. The heterogeneity of sensitivity (I2 = 91.38, P = 0.00) and specificity (I2 =

88.75, P = 0.00) were significant.

All data is summarized in Table 3.

The comparison of diagnostic performance among CNN system, expert, and non-

expert. For CP classification, the AUC of SROC of CNN, expert, and non-expert was 0.95

(95%CI: 0.93–0.97), 0.96 (95%CI: 0.94–0.98), and 0.90 (95%CI: 0.87–0.93), respectively (Fig 5).

By comparing them in pairs acording to RDOR, we found the diagnostic performance of CNN

is comparable to that of the expert, but significantly better than that of the non-expert.

(Table 4).

Fig 2. Methodological quality of the included 13 studies using assessment tool of QUADAS-2. (A) Grouped bar

charts of risk of bias (left) and concerns for applicability (right). (B) Quality assessment for each individual study.

QUADAS-2 = Quality Assessment of Diagnostic Accuracy Studies-2.

https://doi.org/10.1371/journal.pone.0246892.g002
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Publication bias and identification of sources of heterogeneity

According to Deeks’ funnel plot asymmetry, no publication bias was reported in pooled results

of the CNN system. For CP detection, the result was P> |t| = 0.430. At the same time, for CP

classification, the result was P> |t| = 0.196. They are as shown in Fig 6A and 6B. Since notable

heterogeneity was observed in the pooled analysis of the CNN system in the field of CP detec-

tion and classification, meta-regression was conducted to identify the source of heterogeneity.

Nonetheless, no potential sources of heterogeneity were identified.

Discussion

This work systematically reviewed the current status of the CNN system applied in the field of

CP detection and classification. Moreover, we conducted a quantitative comparison of the

diagnostic value between the CNN system and human endoscopists. Our major finding was

that the diagnostic performance of the CNN system was comparable to that of the expert in the

field of CP classification. In contrast, the performance of the CNN system was significantly

superior to that of the non-expert.

The American Society of Gastrointestinal Endoscopy published the Preservation and Incor-

poration of Valuable Endoscopic Innovations (PIVI) statement in 2015 to address the resect

and discard strategy [33]. This approach set the threshold of a diagnose-and-leave strategy for

small colorectal polyps at NPV�90%. At the same time, the threshold of a resect-and-discard

strategy was above 90% of the agreement with histopathology for post-polypectomy

Fig 3. The pooled diagnostic accuracy index of CNN system in the field of CP detection. (A) Sensitivity, (B) specificity. a: full

videos; b:short videos. CNN: convolutional neural networks; CP: colorectal polyps. NBI: narrow-blue images; WLI: white-light

images.

https://doi.org/10.1371/journal.pone.0246892.g003

Table 3. Diagnostic performance of CNN system, expert, and non-expert in the field of colorectal polyp classification.

Object Sensitivity (95% CI) Specificity (95% CI) PLR

(95% CI)

NLR

(95% CI)

DOR

(95% CI)

SROC

(95% CI)

CNN 0.943

[0.927–0.955]

0.894 [0.631–0.977] 8.911 [2.110–37.622] 0.064 [0.043–0.094] 139.052 [22.978–841.481] 0.95 [0.93–0.97]

Expert 0.944 [0.892–0.972] 0.848 [0.732–0.919] 6.198 [3.416–11.247] 0.066 [0.0.34–0.127] 94.383 [39.547–225.251] 0.96 [0.94–0.98]

Non-expert 0.859 [0.769–0.918] 0.811

[0.718–0.878]

4.544

[3.122–6.614]

0.174 [0.109–0.277] 26.191 [15.870–43.225] 0.90 [0.87–0.93]

CNN: convolutional neural networks; DOR: diagnostic odds ratio; NLR: negative likelihood ratio; PLR: positive likelihood ratio; SROC: summary receive operating

characteristic.

https://doi.org/10.1371/journal.pone.0246892.t003
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surveillance intervals [34]. These set standards were significantly high and hard to achieve,

even for experienced endoscopists. Besides, the task of endoscopists was time-consuming as

well as labor-intensive. A few studies have shown that endoscopic detections and predictions

triggered a rather low diagnostic accuracy rate, particularly in the case of non-expert use [35,

36]. Hence, this calls for the application and use of technological support. This is because evi-

dence has ascertained that computer-aided diagnosis of endoscopic images using AI has the

potential to surpass the diagnostic accuracy of trained specialists. Also, AI might also provide

more accurate results without interobserver differences, especially between experts and non-

experts.

A considerable number of studies have currently focused on the development of the CNN

system that assisted human endoscopists. In the field of colonoscopy, its function is primarily

divided into 2 categories, i.e.: detection and classification. For CP detection, we found that the

PLR, NLR, and AUC of the CNN system was 8.911 [95%CI: 2.110–37.622], 0.064 [95%CI:

0.043–0.094], and 0.95 [95%CI: 0.93–0.97], respectively. These results suggested that CNN was

a good diagnostic tool for CP detection. Guo et al. [16] provided the data of videos with large

sample size. Considering including them would add potential risk to mislead the general result

of CNN, we subsequently performed a subgroup analysis without them. The result just slightly

changed which meant it was stable with or without the data of Guo et al. [16].

Unfortunately, we didn’t find data on human endoscopists in the field of CP dectection.

However, some studies demonstrated that non-expert endoscopists could produce a better

diagnostic performance during endoscopy after the AI training course [37, 38]. Hence, the AI

Fig 4. The pooled diagnostic accuracy index of CNN system in the field of CP classification. (A) Sensitivity, (B) specificity. a:

rectosigmoid; b: proximal-rectosigmoid. CNN: convolutional neural networks; CP: colorectal polyps.

https://doi.org/10.1371/journal.pone.0246892.g004

Fig 5. Summary receiver operation characteristic (SROC) curve of diagnostic performance of CNN system (A), expert (B), and non-

expert (C) for CP classification.

https://doi.org/10.1371/journal.pone.0246892.g005
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technologies harbor the application potential as a clinical ancillary diagnostic tool and also as

an endoscopist training method.

Furthermore, it would be highly beneficial if endoscopic observation can distinguish neo-

plastic CP from hyperplastic CP. This is because the removal of lesions without malignant

potential is expensive and causes high post-procedure complications [39]. Thus, a precise clas-

sification of CP significantly improves the cost-effectiveness of colonoscopy. Nonetheless, the

task of precisely classifying the different types of CP remains rather difficult. For instance,

lesions with indistinct borders, flat and depressed features in conventional adenomas are chal-

lenging to distinguish from surrounding normal mucosa. This scenario is specifically prevalent

when the bowel preparation is inadequate or the mucosa is capped by mucus or intestinal resi-

due [11]. Kuiper et al. revealed that the sensitivity/specificity of classification of diminutive CP

was only 77.0%/78.8%, which was far from satisfactory [40]. In this study, we found that the

sensitivity/specificity of a non-expert in the field of CP classification was 85.9%/81.1%. As

such, the benefits of optical CP classification might remain limited to experts. However, not

every endoscopist is an expert. Therefore, the emergence of AI technology has significantly

resolved this limitation. Further, we discovered that the diagnostic performance of the CNN

system was significantly better than that of the non-expert. However, due to the complexity of

classification technology, the DOR of the CNN system applied in the field of CP classification

(139.052 [95%CI: 22.978–449.202]) was weaker compared to that in the field of CP detection

(152.325 [95%CI: 51.654–449.202]). Alaso, a similar CNN-DL system was used for the diagno-

sis and classification of proximal gastric precancerous conditions, including chronic atrophic

gastritis, intestinal metaplasia, and dysplasia [41]. This system achieved a sensitivity of 93.5%,

and an accuracy of 98.3%, which were much better than both the less and more experienced

endoscopists.

However, the CNN system was, in essence, a type of algorithm, which could not make logi-

cal decisions like humans. It can be used as a training or auxiliary tool to enhance the

Table 4. Comparison of diagnostic performance among CNN, expert, and non-expert in the field of colorectal polyp classification.

Object Coefficient Stand error RDOR 95% CI P

CNN vs. Expert 0.033 0.7425 1.03 0.20–5.30 0.9654

CNN vs. Non-expert -1.696 0.7099 0.18 0.04–0.86 0.0342

Expert vs. Non-expert -1.250 0.5784 0.29 0.08–1.04 0.0559

CNN: convolutional neural networks; RDOR: relative diagnostic odds ratio.

https://doi.org/10.1371/journal.pone.0246892.t004

Fig 6. Deeks’ funnel plot for publication bias. (A) CNN system for CP detection, (B) CNN system for CP classification.

https://doi.org/10.1371/journal.pone.0246892.g006
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performance of endoscopists, but cannot entirely replace human endoscopists. Besides, CNN

technology has several limitations.

First, most of the images and videos extracted for CNN system training are highly qualified,

which usually triggers selection bias. These systems are frequently unable to distinguish lesions

from low-quality materials. Also, their diagnostic performance is excellent in the training set

but weak in the clinical practice.

Secondly, identification of images and videos of rare lesions including subtle flat colonic

lesions and morphology types is challenging. They are insufficient in either hospitals’ indepen-

dent or online databases, hence, inadequate training of the CNN system. This further triggers

high misdiagnosis rates of infrequent diseases.

Thirdly, most studies included in the present review trained their CNN systems with sta-

tionary images or image frames extracted from colonoscopic videos which might hinder the

ability of real-time implementation of the CNN system. Moreover, due to the lack of calculat-

ing power of computer processors and the complexity of technical processes, the latency of the

decision-making process in most systems was unsatisfactory, subsequently disturbing the

endoscopist during colonoscopy. Therefore, the ability to work in real-time during endoscopy

should be incorporated.

Finally, the CNN system and other artificial intelligence are typically types of algorithm

which make decision based on past information. This means it cannot make logical or X

crossed decisions. Notably, AI excels when data and training are abundant and exhaustive.

However, its performance becomes poorer when it faces previously unseen features and

objects since it struggle to extrapolate knowledge gathered from the past to the new environ-

ment [42]. In this scenario, humans appear to perform better than AI [43].

With the rapid advancements of AI technology, an ideal CNN system will be developed to

overcome these limitations. It might precisely distinguish different lesions from normal sur-

rounding mucosa, including those rare lesions. Meanwhile, it might assist endoscopists simul-

taneously during endoscopy with almost undetectable latency. Even more, it might provide

the type, location, size, depth, and other relevant information of lesions.

In the present study, there are some limitations that should be acknowledged here. First,

studies on this field are limited since the application of the CNN system in the field of endos-

copy has not matured. Secondly, the sample size of the comparison between the CNN system

and human endoscopists was small, which might cause selection bias. Thirdly, although there

was no publication bias, since letters, reviews, as well as articles not published in English were

excluded, selective reporting bias might still exist. Fourthly, although meta-regression analysis

was performed to identify the potential sources of heterogeneity, due to the limitation of the

sample size and the variables collected from studies included, the exploration of heterogeneity

might remain inadequate. Finally, the majority of studies included were retrospective and used

different types of training and testing materials, hence a potential bias.

Conclusion

In conclusion, our systematic review and meta-analysis suggested that the CNN system

achieved comparable diagnostic performance to that of an expert, and better performance

compared to that of a non-expert, in the field of CP detection. Additionally, in the field of CP

classification, the CNN system demonstrated better diagnostic performance than the human

endoscopists regardless of the level of working experience. Despite the limitations of the CNN

system, it can be popularized in clinical practice with relative-high diagnostic accuracy, conse-

quently enhancing the diagnostic performance of endoscopists.
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