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Abstract 
East Asian populations exhibit a genetic predisposition to obesity, yet comprehensive research on these traits is limited. We conducted 
a genome-wide association study (GWAS) with 93,673 Korean subjects to uncover novel genetic loci linked to obesity, examining metrics 
such as body mass index, waist circumference, body fat ratio, and abdominal fat ratio. Participants were categorized into non-obese, 
metabolically healthy obese (MHO), and metabolically unhealthy obese (MUO) groups. Using advanced computational methods, we 
developed a multifaceted polygenic risk scores (PRS) model to predict obesity. Our GWAS identified significant genetic effects with 
distinct sizes and directions within the MHO and MUO groups compared with the non-obese group. Gene-based and gene-set analyses, 
along with cluster analysis, revealed heterogeneous patterns of significant genes on chromosomes 3 (MUO group) and 11 (MHO group). 
In analyses targeting genetic predisposition differences based on metabolic health, odds ratios of high PRS compared with medium 
PRS showed significant differences between non-obese and MUO, and non-obese and MHO. Similar patterns were seen for low PRS 
compared with medium PRS. These findings were supported by the estimated genetic correlation (0.89 from bivariate GREML). Regional 
analyses highlighted significant local genetic correlations on chromosome 11, while single variant approaches suggested widespread 
pleiotropic effects, especially on chromosome 11. In conclusion, our study identifies specific genetic loci and risks associated with 
obesity in the Korean population, emphasizing the heterogeneous genetic factors contributing to MHO and MUO. 
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Introduction 
Obesity presents a complex global health challenge that pre-
disposes individuals to a myriad of comorbidities such as type 
2 diabetes, cardiovascular disease (CVD), and certain types of 
cancers [1–7]. The worldwide prevalence of obesity has increased 
in recent decades, prompting extensive research and public health 
initiatives. However, obesity characteristics exhibit marked vari-
ability among different populations. Notably, East Asians (EAS) 
tend to manifest obesity-related complications at lower body 
mass index (BMI) levels than their non-Hispanic white (NHW) 
counterparts [8]. EAS populations also show inconsistent obesity 
indicators, with low BMI and high waist circumference (WC) [9, 

10]. This divergence underscores the need for a distinct obesity 
classification standard tailored to EAS populations that differs 
from the NHW criteria. 

High-throughput genotyping and genome-wide association 
studies (GWASs) have successfully identified specific genetic 
risk factors for obesity-related traits, treating them as polygenic 
conditions. Since the publication of the initial GWAS on polygenic 
obesity in 2007, more than 60 GWAS reports have emerged, 
identifying more than 1100 single nucleotide polymorphisms 
(SNPs) associated with obesity-related traits [11–17]. Despite the 
successful identification of disease susceptibility loci for obesity 
through GWAS, most efforts have focused on NHW populations,
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primarily BMI, with limited results for EAS [18–21]. Although 
some progress has been made with the emergence of large-scale 
biobank data [22–25], comprehensive GWAS specific to EAS and 
diverse obesity traits or definitions remains limited, except for 
meta-analyses conducted by the Asian Genetic Epidemiology 
Network consortium for WC (N = 53,052) and waist to hip ratio 
(N = 48,312) [26–32]. 

Furthermore, despite the established consensus linking obe-
sity with comorbidities, observational studies have identified a 
subset of obese individuals with markedly reduced risk. These 
investigations have highlighted that the concept of metabolically 
healthy obesity (MHO), which denotes individuals despite being 
categorized as obese based on BMI, lacks the usual metabolic 
disturbances often linked to obesity, such as insulin resistance 
or dyslipidemia [33, 34]. This distinction underscores the neces-
sity of viewing obesity beyond weight and size, emphasizing the 
significance of metabolic health in a comprehensive assessment 
[35–39]. Epidemiological studies have consistently indicated the 
existence of MHO, highlighting the contrasting risks between MHO 
and metabolically unhealthy obesity (MUO), with a reduced risk 
in MHO [40–46]. A few genetic investigations have supported the 
concept of MHO, underscoring the need to explore genetic asso-
ciations that may vary based on different definitions of obesity 
[47–49]. However, research in this area remains limited. 

The primary objective of this study was to identify novel loci 
predisposing individuals to obesity by focusing on diverse obe-
sity indicators and obesity itself, within the context of GWAS. A 
substantial portion of obese individuals likely experience genetic 
susceptibility resulting from the cumulative impacts of numerous 
variants, each exerting modest individual effects—a ‘polygenic’ 
model akin to other intricate diseases, where most of the inherited 
susceptibility are attributed to polygenic inheritance involving 
numerous common genetic variants. The polygenic risk score 
(PRS) has emerged as a promising tool to address this complexity. 
To distinguish the genetic heterogeneity between MHO and MUO, 
we harnessed state-of-the-art computational algorithms for PRS 
with a cohort of 93,673 Korean subjects. Additionally, we explored 
the genetic rationale behind heterogeneity factors in obesity. 

Results 
Descriptive statistics of study populations 
Our discovery dataset comprised 85,947 Koreans (51,317 females 
and 34,630 males). The descriptive statistics for this dataset are 
presented in Table 1. Table 1 illustrates their respective propor-
tions of these groups in the Korean population: 66.77% non-
obese, 15.98% MHO, and 17.25% MUO. The obese group was older 
and had a higher proportion of males. Additionally, this group 
exhibited higher BMI, WC, body fat (BF) ratio, and abdominal 
fat (AF) ratio than the non-obese group. In contrast, in the clas-
sification of the obese group based on metabolic health and 
obesity, the MUO group showed higher levels of obesity than 
the MHO group and demonstrated unhealthier biochemical lev-
els. This suggests an increasing trend in obesity and metabolic 
health, in the following order: non-obese, MHO, and MUO. Notably, 
some indices of metabolic health were healthier in the MHO 
group. Consistent trends were observed across the three repli-
cation datasets, KoGESAffy, UKBChi, and UKBNHW, as shown in 
Supplementary Tables 1–3. The analysis scheme for study pop-
ulations is illustrated in Fig. 1. 

Genome-wide association studies 
GWAS was conducted using the discovery dataset, and QQ and 
Manhattan plots depicted in Figs 2 and 3. The estimated genetic 

inflation factors (λGC) were notably larger than 1, but the LD score 
intercepts (λLDSC) were close to 1, which indicated no evidence 
of inflation. From the GWAS of the continuous obesity traits, we 
identified 20 genome-wide significant SNPs using linear regres-
sion, as presented in Table 2. Rs574367 in the SEC16B gene, known 
to be associated with BMI in the GWAS catalog, met the genome-
wide significance level for WC (BETA = 0.04, P = 7.15 × 10−14). We 
also identified novel disease susceptibility loci associated with 
obesity. Among the 13 replicated SNPs in Table 3, rs486394, located 
in the LINC02702 gene, has been reported to be associated with 
lipids [50], and our analyses showed its association with obesity 
(P = 2.67 × 10−9). The remaining 12 SNPs were located within or 
near the gene region and have been reported to be associated with 
BMI. They are also involved in the metabolic syndrome. 

We also conducted meta-analyses that combined Korean, 
Japanese, and Chinese populations. QQ and Manhattan plots, 
illustrated in Supplementary Fig. 1, were generated from the 
meta-analysis. We identified rs11199833 (BETA = 0.06, P = 4.03 × 10−8) 
within the LOC105378523 gene on chromosome 10 as a potential 
candidate SNP that reached significance in BF. Unfortunately, we 
were unable to assess the replicability because of the absence of 
replication datasets. 

Gene-based analyses and gene cluster 
identification 
Supplementary Table 4 presents significantly associated genes at 
the Bonferroni-corrected significance level α = 7.71 × 10−6. Most  
genes associated with BMI or WC have been previously reported 
in the GWAS catalog. Table 4 displays the significant genes asso-
ciated with obesity at α = 3.47 × 10−6. ADCY3 and BDNF showed 
significant differences in all comparisons between the non-obese 
and obese groups. Furthermore, the significant genes identified 
in the comparison between non-obese individuals and those in 
the combined MHO and MUO groups largely overlapped with 
those identified in the comparison between the non-obese and 
MUO groups. In addition to the ZNF259 gene, the MHO and MUO 
groups exhibited distinct and significant gene sets. The MUO 
group was primarily associated with genes located on chromo-
some 3, whereas the MHO group showed significant expression of 
genes mainly on chromosome 11. 

In the context of the obesity gene-set consisting of 24 genes 
identified through gene-based analysis, our gene-set analysis 
from STRING revealed that these proteins exhibit significant 
connectivity as a group (P = 6.23 × 10−12). This suggests a higher 
degree of interaction among these genes compared with that 
expected for a randomly selected set of proteins of the same 
size and degree distribution from the genome. Additionally, we 
identified 5 distinct clusters containing 17 genes within the 
obesity gene set, as shown in Fig. 4, whereas the remaining genes 
remained un-clustered. 

SNP heritability and genetic correlation 
estimation 
SNP heritabilites and genetic correlations for obesity-related mea-
sures were estimated using the results presented in Supplemen-
tary Table 5. It provides heritability estimates for both Koreans 
and EAS and illustrates the intra- and inter-class genetic cor-
relations among Koreans and EAS and intra-class trans-ethnic 
genetic correlations between EAS and NHW. The highest SNP 
heritability was observed for BMI with h2 = 0.21 (P = 7.61 × 10−72) 
for Koreans and h2 = 0.16 (P = 9.29 × 10−140) for EAS. All inter-class 
genetic correlations among the obesity-related traits were signif-
icant. Moreover, the intra-class transethnic genetic correlations 
between EAS and NHW were statistically significant for BMI,
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Table 1. Baseline characteristics according to the incident obesity on discovery dataset 

Variables Total (N = 85,947) Non-obese (N = 51,247) MHO (N = 12,262) MUO (N = 13,236) P Missing data, N (%) 

Age (years) 52.79 ± 9.34 52.86 ± 9.01 53.97 ± 8.72 54.99 ± 8.68 <.001 0 (0%)  
Sex, n (%) <.001 0 (0%)  
Female 51,317 (59.71%) 33,523 (65.41%) 7024 (57.28%) 6783 (51.25%) 
Male 34,630 (39.98%) 17,724 (34.59%) 5238 (42.72%) 6453 (48.75%) 
BMI (kg/m2) 23.92 ± 2.95 22.32 ± 1.80 26.92 ± 1.77 27.42 ± 2.12 <.001 1185 (1.38%) 
WC (cm) <.001 6834 (7.95%) 
Female 78.84 ± 8.37 75.52 ± 6.47 85.66 ± 6.60 87.77 ± 7.08 
Male 85.74 ± 7.51 82.08 ± 5.96 90.73 ± 5.68 92.09 ± 6.03 
BF ratio (%) 25.56 ± 6.26 24.02 ± 5.74 27.78 ± 5.94 29.48 ± 5.96 <.001 74,017 (86.12%) 
AF ratio (%) 0.88 ± 0.05 0.86 ± 0.04 0.92 ± 0.04 0.93 ± 0.04 <.001 74,017 (86.12%) 
SBP (mm Hg) 121.92 ± 15.37 119.49 ± 14.92 121.67 ± 13.03 131.07 ± 15.34 <.001 6328 (7.36%) 
DBP (mm Hg) 76.31 ± 10.17 74.68 ± 9.86 76.17 ± 8.95 81.99 ± 10.05 <.001 6328 (7.36%) 
Fasting glucose (mg/dL) 95.19 ± 20.00 93.40 ± 18.48 92.99 ± 14.81 104.85 ± 26.00 <.001 7882 (9.17%) 
HbA1c (%) 5.72 ± 0.74 5.63 ± 0.65 5.68 ± 0.59 6.06 ± 0.96 <.001 39,840 (46.35%) 
Triglyceride (mg/dL) 128.20 ± 87.72 114.91 ± 77.60 107.40 ± 48.66 195.67 ± 112.99 <.001 6401 (7.45%) 
High density lipoprotein 
(mg/dL) 

<.001 6353 (7.39%) 

Female 54.83 ± 13.32 56.71 ± 13.54 56.46 ± 11.17 44.98 ± 9.32 
Male 48.19 ± 11.67 50.08 ± 12.14 49.83 ± 9.74 42.09 ± 9.51 

Figure 1. Data processing flowchart. 

WC, and BF. All inter-class transethnic genetic correlations were 
greater than 0.5, with significant correlations observed between 
BMI and WC (TGCBMI, WC = 0.68; PBMI, WC = 1.11 × 10 −16), BMI and 
BF (TGCBMI, BF = 0.66; PBF, BMI = 2.08 × 10−3) as well as WC and  BF  
(TGCWC, BF = 0.55; PWC, BF = 2.00 × 10−5). 

We calculated the SNP heritability for the obesity trait for 
each group. Obesity comprises three levels, and we estimated 
SNP heritability using summary statistics. These estimates were 
obtained by comparing the MHO and MUO groups with the non-
obese group. When comparing the MHO and MUO groups with the
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Table 2. Summary statistics of GWAS on discovery dataset; significant SNPs identified by GWASs on BMI and WC 

CHR: BP SNP GENE REF ALT MAF HWE MR TRAIT BETA SE P KoGESAffy UKBChi UKBEUR 

1:177873210 rs574367 SEC16B G T 0.25 0.74 0 BMI 0.06 0.006 3.03 × 10−28 2.18 × 10−5 0.82 2.48 × 10−70 

WC 0.04 0.005 7.15 × 10−14 2.33 × 10−3 0.86 4.89 × 10−50 

2:632101 rs11127486 TMEM18 T C 0.09 0.82 0 BMI −0.07 0.008 2.94 × 10−17 - 0.70 1.23 × 10−75 

2:25133148 rs6744205 ADCY3 T C 0.45 0.75 0 BMI 0.04 0.005 5.52 × 10−19 5.22 × 10−4 - -
2:54240105 rs6715161 ACYP2 C T 0.01 0.87 0 BMI −0.17 0.024 2.70 × 10−12 - - 9.32 × 10−5 

2:632101 rs11127486 TMEM18 T C 0.09 0.82 0 WC −0.05 0.008 3.74 × 10−10 - 0.90 6.57 × 10−59 

3:52893465 rs6798941 TMEM110 C T 0.37 0.5 0 BMI 0.04 0.005 5.39 × 10−17 5.60 × 10−3 - -
4:45182527 rs10938397 GNPDA2 A G 0.28 0.48 0 BMI 0.04 0.005 7.76 × 10−12 0.07 0.19 6.11 × 10−41 

WC 0.03 0.005 8.19 × 10−9 0.04 0.35 8.14 × 10−29 

5:122750847 rs6595447 CEP120 T C 0.32 0.81 0 BMI −0.03 0.005 1.05 × 10−9 4.78 × 10−3 - -
6:20686878 rs67131976 CDKAL1 C T 0.46 0.03 0 BMI −0.03 0.005 1.35 × 10−11 0.05 0.20 1.06 × 10−6 

WC −0.02 0.005 4.95 × 10−8 0.33 0.10 1.06 × 10−4 

7:138817193 rs11525873 TTC26 T C 0.29 0.31 0 BMI −0.03 0.005 5.40 × 10−9 - 0.51 9.05 × 10−8 

10:104222963 rs12570201 MFSD13A T C 0.25 0.45 0 BMI −0.03 0.005 3.85 × 10−9 0.28 0.66 5.25 × 10−4 

11:8612000 rs4418812 STK33 A G 0.41 0.14 0 BMI 0.03 0.005 1.32 × 10−8 0.97 0.47 3.32 × 10−8 

11:27704209 rs34379767 BDNF-AS G A 0.46 0.01 0 BMI −0.05 0.005 8.08 × 10−23 2.75 × 10−3 0.52 4.13 × 10−45 

16:20037123 rs57705530 GPR139 G A 0.39 0.33 0 BMI 0.03 0.005 4.66 × 10−8 0.02 0.28 2.44 × 10−8 

16:30093779 rs2278557 PPP4C C G 0.32 0.6 0 BMI 0.03 0.005 2.39 × 10−11 7.86 × 10−3 0.53 4.53 × 10−25 

16:30068354 rs9939774 ALDOA C T 0.32 0.6 0 WC 0.03 0.005 8.96 × 10−11 0.04 0.88 2.60 × 10−30 

18:57852587 rs476828 MC4R T C 0.27 0.53 0 BMI 0.07 0.005 1.65 × 10−34 0.01 0.75 5.14 × 10−85 

MR. SNP missing rate KoGESAffy, UKBChi, and  UKBEUR. Replication P-value on replication dataset. 

non-obese group, we found a genetic correlation of GCMHO, MUO = 0.99 
(P = 0). For the non-obese versus MHO comparison, SNP heritability 
is h2 = 0.12 (P = 2.06 × 10 −30); for the non-obese versus MUO, it is 
h2 = 0.11 (P = 1.94 × 10−19). 

Effects of PRS for BMI on obesity 
For PRS analyses, the results from the validation dataset, as 
detailed in Supplementary Table 6, demonstrate that the PRS 
for BMI derived from LDpred auto yielded the best model per-
formance. This model was employed to construct the PRS for 
BMI and to assess its association with obesity in the test data. 
As indicated in Table 5, for obesity based on metabolic health, 
the analysis compared the non-obese group to the obese groups 
comprising MHO and MUO. The PRS associations of a decrease in 
risk were observed in the L group compared with the M group, 
and an increase in risk was observed in the H group. However, 
it is noteworthy that a single PRS for BMI failed to differentiate 
risk associations between the obese groups. The effects of PRS on 
obesity are illustrated in Fig. 5A. 

Multiple trait PRS association 
We constructed a multi-PRS for measuring metabolic syndrome. 
The best models were selected using the correlation between 
the trait and PRS based on the results from the validation 
data presented in Supplementary Table 6. Subsequently, the 
selected models were applied to the test data. As demonstrated 
in Supplementary Table 7, the multiple trait PRS model (M2) 
outperformed the BMI PRS model (M1) on comparisons for obesity 
in terms of both AIC and area under the ROC curve (AUC). 
However, when comparing MHO + MUO group (case), which 
consists of the obese group based on BMI with non-missing 
metabolic traits, to the non-obese group (control), we did not 
observe a significant improvement in AUC. 

Supplementary Figure 2 visualizes the distributions of group-
wise PRS for each trait and PRSsum. For respective PRSs, the BMI 
PRS was well separated between non-obese and obese groups, 
but no significant mean difference was observed between MHO 
and MUO. The remaining PRSs showed slightly increasing genetic 

risk in the order of non-obese, MHO, and MUO, with statistically 
significant mean differences between the obese groups. In the 
case of PRSsum, the trend continued, showing higher genetic risk 
in MUO compared with MHO. The relationships between PRSsum 
and obesity are summarized in Table 5. This table reveals the 
consistency in risk direction across different groups based on 
the summed multiple trait PRS. The group denoted as H and 
categorized based on summed multiple trait PRS showed persis-
tent associations across group comparisons with decreased risk 
levels in obesity. This finding contrasts with the limitations of 
a single PRS for BMI, which failed to distinguish risk associa-
tion differences between obese groups despite the reported risk 
increase in metabolic health in the order of non-obese, MHO, and 
MUO. However, multiple trait PRS in the context of comparing 
the MHO group (control) with the MUO group (case) yielded 
nuanced results. It showed a decreased risk in the L group and an 
increased risk in the H group compared with the M group, shed-
ding light on the complex interplay of genetic factors in different 
obesity subgroups. The effects of PRS on obesity are illustrated 
in Fig. 5B. 

Heterogeneity of genetic effect on MUO and MHO 
We analyzed the overall, regional, and single genetic effects for 
MUO and MHO (Table 6). To assess the overall genetic effect, we 
used the trinomial logistic regression to estimate the regression 
coefficient of PRS across non-obese, MHO, and MUO. The hypothe-
sis test, which compared models with and without the constraint 
H0 : βMHO = βMUO, resulted  in  P < 2.16 × 10−16, thereby rejecting 
the null hypothesis. For the regression coefficients for the obese 
groups, the PRSs for BMI, fasting plasma glucose (FPG), triglyc-
erides (TG), and high density lipoprotein (HDL) were significant 
for both MHO and MUO compared with the non-obese group, 
with differing directions except for the PRS for BMI. The PRSs 
for SBP and DBP were partially significant. We calculated the 
correlations among PRSs, which were presented in Supplementary 
Table 8. Using bivariate GREML, we calculated genetic correlations 
(ρ = 0.89, P = 2.14 × 10−33), indicating genetic similarity with minor 
differences.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae389#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae389#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae389#supplementary-data


Genetic determinants of obesity in Korean populations | 5

Ta
b

le
 3

. 
Su

m
m

ar
y 

st
at

is
ti

cs
 o

f G
W

A
S 

on
 d

is
co

ve
ry

 d
at

as
et

; s
ig

n
if

ic
an

t S
N

Ps
 id

en
ti

fi
ed

 b
y 

G
W

A
Ss

 o
n

 o
b

es
it

y 

D
is

co
ve

ry
 d

at
as

et
K

oG
ES

A
ff

y
U

K
B

C
h

i
U

K
B

EU
R

 

C
H

R
: B

P
S

N
P

G
EN

E
R

EF
 

A
LT

 
M

A
F 

H
W

E 
M

R
 

LR
T

 P
M

U
L 

P
B

ET
A

 
EQ

 P
R

EP
 P

B
ET

A
R

EP
 P

B
ET

A
 

R
EP

 P
B

ET
A

 

1:
17

78
73

21
0

rs
57

43
67

SE
C

16
B

G
T

0.
25

 
0.

74
0

1.
73

×
10

−1
6 

0.
40

0.
12

0.
42

0.
02

0.
04

0.
27

0.
53

5.
10

×
10

−3
2 

0.
09

 
0.

10
0.

13
−0

.3
0

0.
08

 
2:

25
10

81
97

rs
18

65
68

9
A

D
C

Y
3

T
C

0.
43

 
0.

62
0

3.
52

×
10

−1
0 

0.
49

0.
08

0.
49

3.
45

×
10

−4
 

0.
12

-
-

-
-

0.
07

0.
15

-
-

-
-

3:
52

89
34

65
rs

67
98

94
1

ST
IM

A
T

E
C

T
0.

37
 

0.
5

0
9.

60
×

10
−1

1 
0.

42
0.

07
0.

42
0.

02
−0

.0
2

-
-

-
-

0.
08

0.
11

-
-

-
-

6:
20

67
46

91
rs

93
68

21
9

C
D

K
A

L1
C

T
0.

47
 

0.
02

0
3.

31
×

10
−1

1 
5.

12
×

10
−3

 
−0

.1
0 

4.
77

×
10

−3
 

0.
14

−0
.0

4
3.

31
×

10
−7

 
−0

.1
0 

0
−0

.0
4 

−0
.0

5
−0

.0
8

0.
49

−0
.0

2 
8:

19
84

53
76

rs
78

41
18

9
LP

L
C

T
0.

12
 

0.
62

0
2.

08
×

10
−1

7 
0.

00
0.

10
2.

97
×

10
−1

8 
0.

02
−0

.1
0

0.
15

0.
64

1.
86

×
10

−7
4 

0.
17

 
−0

.1
3

−0
.1

7
0.

45
−0

.1
2 

11
:2

77
03

48
0

rs
35

03
89

67
 

BD
N

F-
A

S
T

A
0.

45
 

0.
02

0
1.

02
×

10
−1

1 
0.

93
−0

.0
8 

0.
92

0.
05

−0
.0

9
0.

96
−0

.0
4 

5.
93

×
10

−2
7 

−0
.0

7 
−0

.0
8

−0
.0

8
−0

.0
5

−0
.0

8 
11

:1
16

52
63

22
 

rs
48

63
94

LI
N

C
02

70
2 

A
C

0.
12

 
0.

56
0

2.
67

×
10

−9
 

3.
55

×
10

−9
 

−0
.1

2 
3.

61
×

10
−9

 
0.

02
−0

.0
6

-
-

-
-

0.
04

0.
15

-
-

-
-

11
:1

16
65

14
63

 
rs

19
42

47
8

Z
PR

1
T

G
0.

22
 

0.
64

0
9.

03
×

10
−1

7 
0.

00
0.

10
1.

25
×

10
−1

7 
2.

39
×

10
−4

 
0.

16
0.

22
0.

31
1.

08
×

10
−1

13
 

0.
06

 
−0

.0
8

−0
.1

3
−0

.3
6

−0
.0

3 
11

:1
16

66
47

76
 

rs
17

87
68

0
A

PO
A

5
T

A
0.

22
 

0.
06

0
4.

85
×

10
−1

3 
6.

35
×

10
−1

4 
0.

09
6.

88
×

10
−1

4 
0.

05
0.

13
-

-
-

-
−0

.0
7

−0
.0

4
-

-
-

-
11

:1
16

83
70

89
 

rs
78

04
41

62
 

SI
K

3
C

T
0.

17
 

0.
64

0
2.

25
×

10
−1

2 
1.

96
×

10
−1

2 
0.

11
1.

92
×

10
−1

2 
0.

02
0.

14
1.

88
×

10
−3

 
−0

.0
8 

5.
74

×
10

−4
0.

06
 

−0
.0

5
−0

.0
8

0.
41

3.
29

×
10

−3
 

15
:6

81
23

91
5

rs
47

76
98

7
SK

O
R

1
A

T
0.

37
 

0.
5

0
3.

81
×

10
−8

 
1.

19
×

10
−8

 
0.

08
4.

12
×

10
−3

 
0.

04
6.

17
×

10
−4

-
-

-
-

0.
03

0.
10

-
-

-
-

16
:5

69
94

52
8

rs
17

23
15

06
 

C
ET

P
C

T
0.

17
 

0.
26

0
1.

13
×

10
−1

9 
0.

00
0.

13
3.

96
×

10
−2

0
-

-
0.

54
0.

31
3.

76
×

10
−1

69
 

0.
10

 
−0

.0
8

-
-

−0
.2

2
−0

.0
7 

18
:5

78
31

46
8

rs
63

32
65

M
C

4R
G

T
0.

28
 

0.
66

0
1.

07
×

10
−1

8 
0.

41
0.

10
0.

40
0.

02
0.

02
-

-
-

-
0.

12
0.

12
-

-
-

-

M
R

. S
N

P 
m

is
si

n
g 

ra
te

 F
or

 e
ac

h
 S

N
Ps

, u
p

p
er

 r
ow

 a
n

d
 lo

w
er

 r
ow

 r
ep

re
se

n
ts

 th
e 

ef
fe

ct
s 

of
 M

H
O

 g
ro

u
p

 a
n

d
 M

U
O

 g
ro

u
p

 c
om

p
ar

ed
 w

it
h

 th
e 

n
on

-o
be

se
 g

ro
u

p
, r

es
p

ec
ti

ve
ly

. M
U

L 
P.

 P
-v

al
u

e 
fr

om
 m

u
lt

in
om

ia
l r

eg
re

ss
io

n
 

te
st

in
g 

fo
r 

SN
P 

ef
fe

ct
 o

n
 M

H
O

 g
ro

u
p

 a
n

d
 M

U
O

 g
ro

u
p

 c
om

p
ar

ed
 w

it
h

 th
e 

n
on

-o
be

se
 g

ro
u

p
, r

es
p

ec
ti

ve
ly

. E
Q

 P
. P

-v
al

u
e 

fr
om

 m
u

lt
in

om
ia

l r
eg

re
ss

io
n

 te
st

in
g 

fo
r 

eq
u

al
 S

N
P 

ef
fe

ct
 b

et
w

ee
n

 M
H

O
 a

n
d

 M
U

O
 g

ro
u

p
. R

EP
 P

. 
P-

va
lu

e 
fr

om
 r

ep
li

ca
ti

on
. 



6 | Jo et al.

Table 4. Significant gene comparison in MHO versus MUO 

CHR GENE P 

Non-obese vs. MHO + MUO Non-obese vs. MHO Non-obese vs. MUO 

2 ADCY3 4.96 × 10−13 1.47 × 10−8 3.44 × 10−6 

2 EFR3B 2.98 × 10−8 3.77 × 10−7 3.86 × 10−3 

3 NT5DC2 3.61 × 10−8 6.05 × 10−3 1.38 × 10−6 

3 SMIM4 2.03 × 10−8 4.38 × 10−3 8.00 × 10−7 

3 PBRM1 2.00 × 10−8 4.63 × 10−3 7.76 × 10−7 

3 GNL3 2.59 × 10−8 6.00 × 10−3 8.08 × 10−7 

3 GLT8D1 2.30 × 10−8 4.51 × 10−3 1.06 × 10−6 

3 SPCS1 2.64 × 10−8 6.57 × 10−3 2.41 × 10−6 

3 NEK4 1.80 × 10−8 5.05 × 10−3 7.27 × 10−7 

3 ITIH1 7.56 × 10−9 5.88 × 10−4 8.37 × 10−7 

6 CDKAL1 2.19 × 10−8 1.71 × 10−9 0.05 
7 MLXIPL 1.64 × 10−3 3.01 × 10−6 0.76 
8 LPL 0.51 1.04 × 10−5 8.42 × 10−8 

10 TMEM180 2.77 × 10−6 1.43 × 10−6 0.08 
11 BDNF 2.50 × 10−12 6.74 × 10−8 6.77 × 10−8 

11 BUD13 0.37 4.27 × 10−10 9.00 × 10−6 

11 ZNF259 0.32 5.27 × 10−13 1.13 × 10−7 

11 APOA4 0.08 5.30 × 10−7 0.79 
11 APOA1 0.58 8.00 × 10−7 5.39 × 10−4 

11 SIK3 0.05 1.22 × 10−8 0.22 
11 PAFAH1B2 0.02 1.25 × 10−8 0.49 
11 PCSK7 0.04 2.60 × 10−7 0.19 
15 MAP2K5 6.45 × 10−5 1.68 × 10−6 0.76 
15 SKOR1 5.48 × 10−6 1.57 × 10−7 0.70 

Table 5. Effect of PRS on obesity and obesity-related diseases 

BMI PRS Multiple trait PRS 

Traits PRS group Case N (Prev.%) OR (95% CI) P PRS group Case N (Prev.%) OR (95% CI) P 
Non-obese 
versus 
Obese by BMI 

L 1495 (21.43%) 0.54 (0.51, 0.58) 3.33 × 10−87 L 1898 (27.20%) 0.74 (0.70, 0.79) 4.32 × 10−25 

M (ref.) 18,507 (33.16%) - - M (ref.) 18,566 (33.25%) - -
H 3353 (48.06%) 1.90 (1.80, 2.00) 4.13 × 10−135 H 2901 (41.58%) 1.44 (1.36, 1.51) 1.32 × 10−43 

Non-obese 
versus 
Obese by WC 

L 1153 (18.01%) 0.65 (0.61, 0.70) 2.04 × 10−35 L 1368 (21.32%) 0.79 (0.75, 0.85) 1.37 × 10−12 

M (ref.) 12,868 (25.06%) - - M (ref.) 12,889 (25.09%) - -
H 2223 (34.48%) 1.60 (1.51, 1.69) 9.20 × 10−61 H 1987 (30.97%) 1.34 (1.27, 1.42) 1.17 × 10−23 

Non-obese 
vs. MHO+MUO 

L 1341 (21.27%) 0.54 (0.51, 0.58) 4.83 × 10−79 L 1701 (26.97%) 0.74 (0.70, 0.78) 5.60 × 10−24 

M (ref.) 16,699 (33.02%) - - M (ref.) 16,766 (33.14%) - -
H 3066 (48.33%) 1.93 (1.83, 2.03) 1.64 × 10−129 H 2639 (41.69%) 1.45 (1.38, 1.53) 3.19 × 10−42 

Non-obese 
versus 
MHO 

L 637 (11.37%) 0.54 (0.50, 0.59) 7.37 × 10−44 L 
M 
(ref.) 
H 

883 (16.09%) 0.80 (0.74, 0.86) 7.88 × 10−9 

M (ref.) 7967 (19.04%) 8062 (19.25%) - -
H 1471 (30.97%) 1.93 (1.81, 2.07) 3.70 × 10−84 1130 (23.44%) 1.29 (1.20, 1.39) 2.23 × 10−12 

Non-obese 
versus 
MUO 

L 704 (12.42%) 0.55 (0.50, 0.59) 2.65 × 10−46 L 818 (15.08%) 0.68 (0.63, 0.74) 1.75 × 10−21 

M (ref.) 8732 (20.49%) M (ref.) 8704 (20.47%) - -
H 1595 (32.73%) 1.93 (1.81, 2.06) 1.46 × 10−86 H 1509 (29.02%) 1.60 (1.50, 1.71) 1.49× 10−45 

MHO 
versus 
MUO 

L 704 (52.5%) 0.99 (0.89, 1.11) 0.90 L 818 (48.09%) 0.85 (0.77, 0.94) 1.19 × 10−3 

M (ref.) 8732 (52.29%) M (ref.) 8704 (51.91%) - -
H 1595 (52.02%) 1.00 (0.92, 1.08) 0.92 H 1509 (57.18%) 1.25 (1.15, 1.36) 1.36 × 10−7 

Traits MHO vs. MUO. obese group comprising of MHO (control) vs. obese group comprising of MUO (case). PRS group. L, M, and H Low, Medium, and high PRS 
group of bottom decile, 2nd–9th decile, and top decile. Statistical analyses. OR and P odds ratio and significance level of PRS group from logistic model on 
obesity adjusted by age, sex, PRS group, and PC1–5. 

To confirm the regional genetic effect on MUO and MHO, we 
conducted ρ-HESS analysis, visualized in Supplementary Fig. 
3. The region CHR11:116383543-117901740 showed a signifi-
cant local genetic correlation (ρ = 1.36 × 10−3, P = 1.94 × 10−5), 
containing 22 genes: LINC00900, LOC101929011, BUD13, ZPR1, 
APOA5, APOA4, APOA1, APOA1-AS, SIK3, PAFAH1B2, SIDT2, 
LOC100652768, PCSK7, RNF214, BACE1, CEP164, DSCAML1, FXYD2, 
FXYD6, TMPRSS13, IL10RA, and  TMPRSS4-AS1. Among these, three 
genes (ZPR1, APOA1, SIK3) and five genes (BUD13, APOA1, APOA4, 

SIK3, PAFAH1B2) overlapped with significant findings in GWAS 
and gene-based analyses. 

We then examined the single SNP effects on obese groups. We 
tested whether the 13 genome-wide significant SNPs identified 
from GWAS have equal effects on MHO and MUO groups using 
trimodal logistic regression (Table 3). Eight SNPs, including four 
SNPs located on chromosome 11, showed P < 0.05 for the null 
hypothesis H0 : βMHO = βMUO. Rs9368219 and rs4776987 showed 
the same direction of effects, while the rest showed opposite
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Table 6. Summary of subgroup heterogeneity analyses summary between MHO and MUO groups 

Approach Method Data level Result 

Overall PRS Individual P < 2.16 × 10−16, which means reject H0: βMHO = βMUO for BMI, SBP, DBP, FPG, TG, 
and HDL PRS simultaneously 

MHO vs. non-obese MUO vs. non-obese 

BMI β = 0.38 (P < 2.16 × 10−16) β = 0.34 (P < 2.16 × 10−16) 
SBP β = −0.01 (P = 0.42) β = 0.07 (P = 2.78 × 10−5) 
DBP β = −0.04 (P = 0.01) β = 0.01 (P = 0.58) 
FPG β = −0.07 (P = 7.38 × 10−9) β = 0.02 (P = 0.04) 
TG β = −0.11 (P < 2.16 × 10−16) β = 0.09 (P < 2.16 × 10−16) 
HDL β = 0.12 (P < 2.16 × 10−16) β = −0.08 (P = 8.65 × 10−5) 

Bivariate GREML Individual GC = 0.89 (P = 2.14 × 10−33) 
LDSC Summary GC = 0.99 (P = 0)  

Regional ρ-HESS Individual Local GC = 1.36 × 10−3 (P = 1.94 × 10−5) in the region of 
CHR11:116383543–-117901740 

Single SNP GWAS Individual EQ P < .05 in Table 3, which means eight SNPs among 13 genome-wide 
significant SNPs from GWAS have statistically significant heterogenous effects 
on MHO and MUO groups when testing H0: βMHO = βMUO for each SNP in 
trinomial logistic regression. Eight SNPs, four of which are in chromosome 11, 
include two SNPs with effect in same direction, and six in opposite direction. 

GC. Genetic correlation 

direction, suggesting the presence of a subgroup within the obe-
sity groups. 

Discussion 
In this study, we aimed to address the genetic components impli-
cated in obesity by conducting GWASs and PRS analyses in the 
Korean population, which is a representative sample of EAS. We 
assumed that the genetic effect on obesity differs according to 
metabolic health conditions and considered four obesity-related 
traits and obesity based on metabolic health as outcomes to 
comprehensively evaluate the genetic effect on anthropometric 
adiposity. 

We first conducted GWASs on obesity traits and identified 20 
genome-wide significant SNPs in BMI and WC that were also 
found to be significant in NHW populations. We observed that 
the SNP heritabilities estimated using GWAS summary statistics 
ranged from 0.12 to 0.21 and were significantly larger than 0 for all 
traits, indicating a substantial genetic contribution to their pheno-
typic variability. When comparing the estimates between the EAS 
and NHW groups, a portion of the genetic correlations remained 
significant, albeit at reduced magnitudes, even after accounting 
for the differences in genetic architecture between these geo-
graphical genetic ancestries. Despite the disparate nature of the 
obesity-related traits investigated in this study (for instance, BMI 
serving as an anthropometric indicator, and WC as a measure 
of visceral fat distribution), they appear to have shared genetic 
influences. Consequently, it is reasonable that SNPs and genes 
that are significant for one obesity trait may also be significant 
for other obesity traits. We observed the significance of the SMIM4 
and SPCS1 gene associations reported in Supplementary Table 4 
for WHR [51, 52] in the GWAS catalog to extend to BMI in our 
analyses. 

Contrary to the conventional assumption of homogeneity in 
obese participants, we observed heterogeneous SNP and gene 
effects between the MHO and MUO groups. This observation was 
consistent with epidemiological evidence [33, 53]. Regarding the 
SNP effects, we specifically identified that rs486394 in LINC02702 

(Long Intergenic Non-Protein Coding RNA 2702) exhibited effects 
of −0.12 for MHO and 0.04 for MUO. This finding is consistent with 
recent research indicating that lncRNAs play a role in obesity via 
their involvement in adipogenesis and lipid metabolism [54]. A 
genetic correlation of −0.99 between these groups indicates that 
the same causal SNPs affect both phenotypes, but in opposite 
directions. Intriguingly, despite these divergent SNP effects, SNP 
heritability estimates were comparably close in both groups: 0.12 
for MHO and 0.11 for MUO, both of which were statistically 
significant. 

On the other hand, significant genes such as ADCY3 and BDNF 
in Table 4 were observed in all comparisons of the non-obese 
and obese groups, which are known to function in metabolism or 
energy balance, as well as the regulation of BMI and body weight. 
Although the mechanisms of ZNF259 have not been extensively 
studied, they have been reported to be associated with the risk 
of CVD, which serves as the main association that distinguishes 
MHO from MUO (the MHO group is known to have a lower risk of 
CVD than the MUO group) [33, 41, 47]. The remaining genes, which 
are mostly significant SNPs found in GWASs, have been reported 
to be associated with metabolism and obesity. Considering the 
limitations that LDSC do not distinguish among the various sce-
narios depending on the direct/indirect SNP effects or direction 
of effects (e.g. the SNPs on phenotype 1 affect phenotype 2, or 
vice versa), and the unknown mechanisms of genes, we cannot 
ascertain the detailed mechanisms underlying the genetic factors 
determining obesity classifications based on metabolic health. 

However, the obesity gene set listed in Table 4 displayed sta-
tistically significant enrichment in interactions compared with a 
randomly selected gene set. Furthermore, among the five distinct 
clusters identified in the cluster analysis, two clusters consisted 
of genes on chromosome 3 that were significantly different in 
both the obese and MUO groups compared with the non-obese 
group. The remaining three clusters mainly consisted of genes on 
chromosome 11 and the three genes APOA1, APOA4, and LPL in the 
yellow cluster in Fig. 4 were reported to be involved in cholesterol 
metabolism in the KEGG pathways (hsa04979; FDR = 0.01). While 
this result does not fully describe the genetic predisposition to

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae389#supplementary-data
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Figure 2. GWAS results on obesity-related traits on discovery dataset 
(A) QQ plots constructed using the GWAS summary statistics on obesity-
related traits (B) Manhattan plots constructed using the GWAS summary 
statistics on obesity-related traits. 

obesity based on metabolic health, it suggests the existence of 
heterogeneous genetic components between the obese groups 
using pleiotropic effects on metabolic traits. Given that the obesity 
criteria for metabolic health support the association between both 
obesity and metabolic traits, this appears to be a case of pleiotropy. 

The inherited genetic risk of BMI was evaluated using the PRS 
for BMI, and we found that individuals with a high PRS for BMI 

Figure 3. GWAS results on obesity on discovery dataset (A) QQ plots 
constructed using the GWAS summary statistics on obesity (B) Manhattan 
plots constructed using the GWAS summary statistics on obesity. 

Figure 4. Gene clusters identified in MHO vs. MUO. 

were more likely to be obese. The performance of the PRS for BMI 
improved with multiple trait PRS. This observation suggests that 
the shared genetic components among the various obesity-related 
traits identified in this study contribute to a better understanding 
of obesity across different criteria. However, when it comes to 
subgroups within the obese category, although a single PRS for 
BMI may offer insights into genetic predisposition, it may not fully 
capture the polygenicity. The complexity of these conditions likely 
involves a combination of multiple genetic factors beyond BMI 
alone. In conclusion, the PRS for BMI proves to be valuable in 
assessing the inherited genetic risk of obesity; however, for sub-
groups within obese groups, a more comprehensive approach that 
incorporates multiple trait PRS and accounts for other genetic 
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Figure 5. PRS for BMI and multiple trait PRS on obesity (A) PRS for BMI on obesity (B) Multiple trait PRS on obesity. 

components may be necessary to gain a deeper understanding of 
their genetic underpinnings. 

The heterogeneity in obese groups identified through GWAS, 
gene-based analyses, and the PRS trend in obesity classification 
was quantified by comparing the overall, regional, and single SNP 
effects between MHO and MUO groups. For the overall genetic 
effect comparison, we found significant differences in the effects 
of each PRS on MHO and MUO with small differences in regres-
sion coefficients. These differences were further confirmed with 
genetic correlations (0.89 from bivariate GREML). The regional 
genetic effect comparison revealed significant local genetic cor-
relations primarily in chromosome 11, with genetic correlation of 
1.36 × 10−3. Single variant approaches indicated more widespread 
minor heterogeneity across the entire genome. These observa-
tions underscore some genetic differences between MHO and 
MUO, highlighting the complex interplay of genetic factors in 
obesity. Our study emphasizes the importance of considering both 

common and distinct genetic components in understanding MHO 
and MUO. 

Although we unveiled novel associations between GWASs 
and PRS, along with post-hoc analyses, there are certain limi-
tations that should be considered. First, our findings pertained 
primarily to the Korean population. Although our summary 
statistics were from the Japanese population, it is important to 
note that the Japanese and Korean populations are genetically 
close (GC over 0.9 on BMI). It is possible that some bias may 
have been introduced because of genetic differences between 
these populations for some phenotypes. Secondly, the absence 
of a universally accepted gold standard for defining MHO 
poses a challenge. In our study, we used moderate criteria for 
MHO. However, there are no established validation methods for 
determining the optimal definition. Despite these limitations, 
our research offers valuable insights into obesity by studying 
a large Korean population, which is the largest genetic study
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conducted on this population to date. Additionally, we provide 
evidence of heterogeneous genetic effects within obese groups, 
highlighting the need to consider subpopulations within this 
category. Overall, these findings contribute to our understanding 
of genetic predisposition to obesity. 

Materials and methods 
Study population 
We considered several prospective cohorts drawn from patients 
registered at our hospital. For discovery dataset, we utilized por-
tions of the following four cohorts: the Korean Genome Epidemi-
ology Study (KoGES) cohort (N = 211,725) [24] (https://biobank.nih. 
go.kr/cmm/main/mainPage.do), Gene-Environment of Interaction 
and phenotype cohort [55] (GENIE, N = 10,300), the YonSei Uni-
versity Hospital medical center (YSUH, N = 6679), and Veterans 
Health Service Medical Cent (VHSMC, N = 2598). The KOGES cohort 
is a population-based cohort comprising three subcohorts from 
the Korean Association REsource (N = 10,030), Cardiovascular Dis-
ease Association (N = 28,338), and Health EXAminee (N = 173,357) 
studies. This cohort was segmented into two groups based on 
the genotyping platform used: the Korean Biobank Array (Kore-
anChip) [56] and Affymetrix Genome-Wide Human SNP Array 
5.0 or 6.0 (Affymetrix, Santa Clara, CA, USA). For the discovery 
analyses, we specifically used subjects genotyped using Kore-
anChip. For the GENIE, YSUH, and VHSMC cohorts, health-related 
information was collected from patients who visited the hospital 
and provided informed consent. After excluding participants with 
missing obesity outcomes, the discovery dataset comprised 85,947 
participants and 4,736,957 SNPs. 

For replication, we used three datasets: a fraction of the KoGES 
cohort genotyped with Affymetrix (N = 8856), as well as two eth-
nic groups of Chinese (N = 1503) and NHW (N = 459,259) from 
the United Kingdom Biobank (UKB, N = 502,413) cohort. These 
were denoted as KoGESAffy, UKBChi, and UKBNHW, respectively. 
The UKB cohort [57] (https://www.ukbiobank.ac.uk) was a large-
scale prospective cohort study that included subjects residing 
in the UK. The baseline survey for this cohort commenced in 
2006, and follow-up is still in progress. All participants were 
aged 40–69 years at baseline and provided electronically signed 
consent. Each cohort was designed to examine both genetic and 
phenotypic data in order to investigate a wide range of risk factors 
associated with common complex diseases. The final replication 
datasets for KoGESAffy, UKBChi, and UKBNHW included 7726 Kore-
ans with 2,221,602 SNPs, 1496 Chinese individuals with 2,076,717 
SNPs, and 392,160 NHW with 4,936,389 SNPs. 

Obesity-related measures and operational 
definition of metabolic health and obesity 
Several obesity metrics including BMI, WC, BF, and AF were eval-
uated. For GWASs, continuous measurements were used for BMI 
and WC. In the context of PRS analyses, BMI was dichotomized to 
cases (obese group) if BMI ≥ 25 kg/m2, while those with lower BMIs 
were defined as controls. For WC, females with a measurement 
≥85 cm and males with a measurement ≥90 cm were designated 
as cases [58]. 

Participants with no missing biochemical observations were 
further divided into three groups based on obesity as defined 
by BMI and metabolic health status: non-obese, MHO, and MUO. 
The EAS with a BMI less than 25 kg/m2 and NHW with a BMI 
less than 30 kg/m2 were classified as non-obese, whereas the 
others were classified as obese. An individual was considered 
MHO if they were obese but had fewer than or equal to two of 

the following metabolic risk conditions: (i) elevated blood pres-
sure [either systolic blood pressure (SBP)/diastolic blood pressure 
(DBP) ≥ 130/85 mm Hg or taking anti-hypertensive medication], 
(ii) impaired FPG (≥100 mg/dL or a diagnosis of diabetes mellitus, 
or prescription for antidiabetic medication), (iii) high plasma TG 
(≥150 mg/dL), and (iv) low HDL cholesterol (<40 mg/dL in men 
or <50 mg/dL in women) [59]. Based on these criteria, participants 
were either classified as MHO (obese with fewer than or equal 
to two metabolic risk factors) or MUO (obese with at least three 
metabolic risk factors). 

Genotyping, quality control, and imputation 
KoGES included 81,153 participants. Of these, 72,297 were geno-
typed using KoreanChip and the remaining 8856 participants were 
genotyped using Affymetrix. Participants in the GENIE, YSUH, 
and VHSMC cohorts were genotyped using KoreanChip. The geno-
types generated by KoreanChip were called using the K-medoid 
algorithm [60] to minimize heterogeneities between batches and 
studies. 

For downstream quality control, SNPs were removed if the 
missing genotype call rates were >0.05 or the Hardy Weinberg 
Equilibrium (HWE) was P < 10−5. Participants were excluded if 
they had missing genotype call rates >0.05 or there was a sex 
inconsistency. The remaining SNPs were prephased with Eagle 
v2.4 [61] and untyped SNPs were imputed using the Northeast 
Asian Reference Database [62] imputation server (https://nard. 
macrogen.com/). Imputed SNPs were removed if R2 < 0.3 or the 
number of alleles �= 2, missing genotype rate > 0.05, minor allele 
frequency (MAF) < 0.005 (KoreanChip), MAF < 0.05 (Affymetrix), or 
HWE P < 10−5. Participants were excluded if SNP heterozygosity 
was >5 × IQR or if the mean difference between the top two 
principal components (PCs) was >5 × IQR. 

The imputed genotypes were downloaded from the UKB. 
SNPs were removed if the missing genotype rate > 0.01, P 
for HWE < 10−6, or the number of alleles �= 2. We considered 
participants of Chinese and European ancestry, with NHW 
participants identified as having a White, British, Irish, and any 
other White background. For the Chinese group, we eliminated 
SNPs with an MAF < 0.05. In the NHW group, we excluded 
participants if MAF < 0.005 and if SNP heterozygosity >5 × IQR, 
estimated genetic relationship >0.125 or mean difference of top 
two PCs > 5 × IQR. 

All data management and quality control processes were 
performed using PLINK [63], PLINK2 [64], GCTA [65], and 
ONETOOL [66]. 

Genome-wide association studies 
In order to identify the loci associated with obesity, we conducted 
a GWAS on obesity-related variables using the discovery data. Lin-
ear regression was used for continuous outcomes, incorporating 
age, sex, and the first 10 PCs as covariates. For categorical out-
comes, binary or multinomial logistic regression was performed 
using the same covariates as those used in the linear regression. 
For the multinomial logistic regression, association analyses were 
conducted using a likelihood ratio test (LRT). Linear and logistic 
regressions were conducted using PLINK and Rex [67] and  the  
VGAM package in R version 1.1.7. The significance level was set at 
α = 5 × 10−8. Significant genome-wide SNPs were annotated using 
ANNOVAR [68]. Furthermore, we performed two meta-analyses. 
The first involved GWASs for the discovery dataset and replication 
dataset of KoGESAffy by using METAL [69]. The second incorporated 
all the GWAS results for EAS, including the publicly accessible 
Biobank Japan (BBJ) summary statistics for BMI (N = 158,284).
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Gene-based analyses and gene cluster 
identification 
We conducted gene-based analyses of 18,432 genes within the 
discovery datasets, KoGESAffy, and UKBChi using FUMA [70] with  
1000G Phase 3 EAS as a reference population. We performed 
the same analyses on 14,411 genes using the logistic regression 
results from the discovery dataset. This allowed us to compare 
the obese group comprising both the MHO and MUO groups and 
the MHO and MUO groups with the non-obese group. For UKBNHW, 
on the other hand, we utilized the 1000G Phase 3 EUR. 

Specifically for the analysis comparing MHO, MUO, or both 
groups with non-obese group, we expanded our analysis by per-
forming gene-set and gene cluster analyses using the Search 
Tool for the Retrieval of Interacting Genes (STRING version 12.0) 
[71]. For the gene set enrichment analysis, the whole genome 
was used as the statistical background. For the gene network 
clustering analysis, we applied the Markov Cluster Algorithm with 
the inflation parameter set to three. 

SNP heritability and genetic correlation 
GWAS results were used in conjunction with LDSC [72] to esti-
mate SNP heritability and genetic correlations within EAS pop-
ulations. The transient genetic correlation between the EAS and 
NHW populations was calculated using POPCORN [73]. In cases 
where there was an overlap among participants used to calculate 
summary statistics, for instance, regression coefficients between 
MHO compared with non-obese individuals and between MHO 
compared with non-obese individuals were adjusted for corre-
lations between summary statistics using Erase Sample Overlap 
and Relatedness (EraSOR) [74], resulting in 595,220 SNPs and then 
incorporated into LDSC to adjust correlations between summary 
statistics. 

PRS and prediction model building 
The construction of PRS requires summary statistics from the 
GWAS. We used GWAS data on BMI from the BBJ [75] (http://jenger. 
riken.jp/en), focusing on SNPs with MAF > 0.005. The remaining 
5,925,388 SNPs were used for the PRS calculation. The PRS model 
has been constructed using various methods, including clumping 
+ thresholding (CT) [76], LDpred with infinitesimal, grid, and 
auto models [77, 78], lassosum [79], and PRScs [80]. The EAS 
subpopulation from 1000 Genomes Phase 3 was used as the 
linkage disequilibrium reference panel. For LDpred grid model, 
proportions of causal SNP ρ were set at 1%, 3%, 10%, 30%, and 
100% with the default value used for the other options. 

PRS analyses require both validation and testing. For valida-
tion, we randomly selected 15,000 participants from all Koreans 
genotyped using KoreanChip, while the remaining 70,947 Koreans 
were used as test data. The validation data underwent 10-fold 
cross-validation for BMI, and we used a logistic regression model 
to create a prediction model incorporating baseline age, sex, BMI 
RPS, and PC1–5 as covariates. 

To enhance the accuracy of the prediction model, we consid-
ered a multiple trait PRS approach [81]. This approach included 
PRSs for BMI, SBP, DBP, FPG, TG, and HDL as covariates. The PRS 
models were constructed using summary statistics downloaded 
from the BBJ. These multiple trait PRS models were validated using 
the same method used for the BMI. These multiple trait PRS were 
used to develop a predictive model for obesity. The best method for 
the PRS was selected using the correlation between the trait and 
PRS. The prediction accuracy of the selected model was evaluated 
using the test data, and the AUCs between the models based on 

BMI PRS and multiple trait PRS were compared using the DeLong 
test [82]. 

Association analyses of PRS 
The association between the PRS and obesity was investigated 
using logistic regression analysis. We considered two distinct 
PRSs: one for BMI and another PRSsum [83] that combined mul-
tiple trait PRS for BMI, SBP, DBP, FPG, TG, and HDL with equal 
weights. From the constructed PRSs, we compared the PRS among 
the groups using pairwise T-tests to determine the mean differ-
ences between MHO and MUO. PRSs were categorized into three 
groups: low (L), medium (M), and high (H). Here ‘L’ represents 
the lower 10%, ‘M’ encapsulates the range of 10%–90%, and ‘H’ 
denotes the upper 10%. 

Heterogeneity of genetic effect on MHO and MUO 
We compared the overall, regional, and single genetic effects 
between MHO and MUO groups. To compare the overall genetic 
effect, we tested the hypothesis that the effects of PRSs for BMI, 
SBP, DBP, FPG, TG, and HDL on MHO and MUO were the same 
compared with the non-obese group (i.e. βMHO = βMUOfor BMI PRS, 
etc.) using trinomial regression (VGAM package in R version 1.1.7). 
Additionally, genetic correlations were measured using bivari-
ate GREML analysis [84] implemented in GCTA for individual-
level data. Regional genetic effects were compared using local 
genetic correlation using ρ-HESS [85], which quantifies the cor-
relation between traits in specific genomic regions, with signif-
icance determined using Bonferroni-corrected α = 3.48 × 10−5. 
Lastly, single SNP genetic effects were compared using trinomial 
regression with restriction βMHO = βMUO. SNPs with P < 0.05 were 
identified as having heterogenous SNP effects. 

Key Points 
• Conventional genetic studies on obesity face two pri-

mary limitations. Firstly, extensive research has pre-
dominantly focused on the genetic architectures of 
European ancestry White populations, neglecting the 
diverse genetic makeup of other populations. Sec-
ondly, despite observational studies revealing sub-
groups within the obese category—such as metabolically 
healthy or unhealthy obesity—traditional classifications 
often oversimplify obesity as either non-obese or obese. 

• Our aim was to unravel the underlying genetic com-
ponents associated with multi-status obesity classifica-
tions within the East Asian population. To achieve this, 
we conducted comprehensive genome-wide association 
studies (GWAS) and subsequent post-hoc analyses. Addi-
tionally, we employed polygenic risk score (PRS) asso-
ciations using both BMI-centric and combined multiple 
trait approaches. 

• Our study revealed distinct genetic components con-
tributing to the metabolic health gap observed within 
obese groups, as identified by GWAS and post-hoc analy-
ses. Furthermore, the genetic risks associated with these 
components were ranked using PRS. 

Supplementary data 
Supplementary data is available at Briefings in Bioinformatics 
online.
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