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OBJECTIVE—Vascular endothelial growth factor (VEGF-A or
VEGF) is a major pathogenic factor and therapeutic target for
diabetic retinopathy (DR). Since VEGF has been proposed as a
survival factor for retinal neurons, defining the cellular origin of
pathogenic VEGF is necessary for the effectiveness and safety of
long-term anti-VEGF therapies for DR. To determine the signifi-
cance of Müller cell-derived VEGF in DR, we disrupted VEGF in
Müller cells with an inducible Cre/lox system and examined
diabetes-induced retinal inflammation and vascular leakage in
these conditional VEGF knockout (KO) mice.

RESEARCH DESIGN AND METHODS—Leukostasis was de-
termined by counting the number of fluorescently labeled leuko-
cytes inside retinal vasculature. Expression of biomarkers for
retinal inflammation was assessed by immunoblotting of TNF-�,
ICAM-1, and NF-�B. Vascular leakage was measured by immu-
noblotting of retinal albumin and fluorescent microscopic
analysis of extravascular albumin. Diabetes-induced vascular
alterations were examined by immunoblotting and immunohis-
tochemistry for tight junctions, and by trypsin digestion assays
for acellular capillaries. Retinal integrity was analyzed with
morphologic and morphometric analyses.

RESULTS—Diabetic conditional VEGF KO mice exhibited signif-
icantly reduced leukostasis, expression of inflammatory biomark-
ers, depletion of tight junction proteins, numbers of acellular
capillaries, and vascular leakage compared to diabetic control mice.

CONCLUSIONS—Müller cell-derived VEGF plays an essential
and causative role in retinal inflammation, vascular lesions, and
vascular leakage in DR. Therefore, Müller cells are a primary
cellular target for proinflammatory signals that mediates retinal
inflammation and vascular leakage in DR. Diabetes 59:2297–

2305, 2010

D
iabetic retinopathy (DR) is a microvascular
complication of diabetes and a leading cause of
vision loss in working-age adults in developed
countries. During diabetes, hyperglycemia and

oxidative stress upregulates a major angiogenic factor,
vascular endothelial growth factor (VEGF-A or VEGF),
which induces retinal neovascularization, vascular leak-
age, and perhaps macular edema (1,2). DR is also known
as a chronic inflammatory disorder. During the early stage
of DR, proinflammatory proteins, such as intercellular
adhesion molecule-1 (ICAM-1) and tumor necrosis fac-
tor-� (TNF-�), are upregulated, and increased leukostasis
is observed (3–5). These early pathologic changes are
associated with upregulation of VEGF (6–8).

Clinical observations that elevated VEGF levels are
associated with DR have led to intensive studies on VEGF
action over the past decade, and have resulted in anti-
VEGF treatments as a major therapeutic strategy for DR.
Surprisingly the role of VEGF in the pathogenesis of DR
has not been well investigated at the cellular level. Since
VEGF may be required for the maintenance and survival of
retinal neurons (9–12), revealing cellular mechanism of
VEGF actions becomes necessary to the safety and effec-
tiveness of anti-VEGF therapies.

In the retina, VEGF is mainly expressed in Müller cells
(13), endothelial cells (14), astrocytes (15), retinal pigment
epithelium (RPE) (16), and ganglion cells (17). At present,
the in vivo function of VEGF produced by these retinal
cell-types remains largely uninvestigated. Although the role
of retinal Müller cell-produced VEGF in DR was probed a
decade ago (13), its function in the disease is unclear. An in
vitro study demonstrated that Müller cells produce a large
amount of VEGF in response to hypoxia (14). This has led to
speculation that Müller cells are a major source of VEGF in
DR and a major cellular target for the treatment of the
disease. To determine the role of Müller cell-derived VEGF
and dissect the cellular mechanism of DR, we generated
conditional VEGF knockout (KO) mice by mating floxed
VEGF mice with transgenic mice expressing Cre recombi-
nase in retinal Müller cells (18,19), with a Cre/lox-based
conditional gene KO approach (20). Using these condi-
tional VEGF KO mice, we recently demonstrated that
Müller cell-derived VEGF contributed significantly to isch-
emia-induced retinal neovascularization (21). This report
describes our investigation of the role of Müller cell-
derived VEGF in retinal inflammation and vascular leakage
that occurs as a consequence of diabetes.

RESEARCH DESIGN AND METHODS

Treatment of conditional VEGF knockout mice. All animal experiments
followed the guidelines established by the ARVO Statement for the Use of
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Animals in Ophthalmic and Vision Research and were approved by the
Institutional Animal Care and Use Committees. Conditional VEGF KO mice
were generated by mating floxed VEGF mice with transgenic mice expressing
Cre recombinase in retinal Müller cells, as described previously (18,19,21).
Doxycycline was administered through the drinking water of pregnant mice at
a concentration of 2 mg/ml in 5% sucrose from embryonic day 15 to postnatal
day 1. To minimize the influence of genetic background, littermates were used
as controls in this study. PCR analysis of tail DNA was performed for
genotyping mice using primer pairs a (5�-CCT GGC CCT CAA GTA CAC CTT
�3�) and b (5�-TCC GTA CGA CGC ATT TCT AG-3�) to detect a 108-bp product
for the wild-type (WT) allele and a 148-bp product for the floxed VEGF allele
(21). Primer pairs c (5�-AGG TGT AGA GAA GGC ACT TAG C-3�) and d
(5�-CTA ATC GCC ATC TTC CAG CAG G-3�) were used to detect a 411-bp
product for Cre (22).

Diabetes was induced in 6- to 10-week-old mice (weighing 18–22 g). After
an 8-h fast, mice were injected intraperitoneally with freshly prepared
streptozotocin (STZ; Sigma, St. Louis, MO) at a concentration of 55 mg/kg
body weight in 10 mmol/l citrate buffer (pH 4.5), daily for 5 days. Age-matched
controls received citrate buffer only. Mice with blood glucose levels �300
mg/dl 7 days after the first STZ-injection were deemed diabetic.
Immunoblotting and immunohistochemistry. For immunoblotting, retinas
were dissected and sonicated in a lysis buffer containing 50 mmol/l Tris (pH
7.6), 150 mmol/l NaCl, 5 mmol/l EDTA, 1% Triton X-100, 0.1% SDS, 0.5%
deoxycholate, and a protease inhibitor cocktail (Roche Molecular Biochemi-
cals, Indianapolis, IN), which is similar to that used for previously successful
extraction of occludin (23). The lysate was centrifuged at 14,000 rpm for 10
min at 4°C, and the supernatant was collected. Monoclonal antibody against
�-actin (1:5,000 dilution) was from Sigma (St. Louis, MO); polyclonal antibod-
ies against VEGF, ICAM-1, occludin, hypoxia-inducible factor-1� (HIF-1�),
nuclear factor-kappaB (NF-�B, p65), and phosphorylated NF-�B (p65) (1:500
dilution) were from Santa Cruz Biotechnology (Santa Cruz, CA). Polyclonal
antibody against TNF-� (1:500 dilution) was from Abcam (Cambridge, MA).
Polyclonal antibody against zonula occludens 1 (ZO-1, 1:500 dilution) was
from Zymed (San Francisco, CA), and polyclonal antibody against albumin
(1:1,000 dilution) was from Bethyl (Montgomery, TX). Horseradish peroxi-
dase-linked anti-rabbit, mouse, or goat IgG (1:2,000 dilution, Santa Cruz
Biotechnology) were used for secondary detection in immunoblotting. Immu-
noreactivity was visualized by enhanced chemiluminescence using Super
Signal West Dura Extended Duration Substrate (Pierce Biotechnology, Rock-
ford, IL) and images were captured by a Chemi Genius Image Station
(SynGene, Frederick, MD). Band intensities were quantified using the Gene
Tools program (SynGene). Immunohistochemical staining was performed
according to a previous method (21).
Quantification of retinal leukostasis. Quantification of leukostasis was
performed as described previously (24,25). The chest cavity of each deeply
anesthetized mouse was carefully opened. The descending aorta was clamped
and a perfusion needle was inserted into the left ventricle. The perfusate was
drained by cutting the right atrium immediately before perfusion. Mice were
perfused with 10 ml of PBS and heparin (0.1 mg/ml) to wash out nonadherent
blood cells. FITC-conjugated concanavalin A (ConA) (20 �g/ml in PBS; pH 7.4;
5 mg/kg body weight; Vector Laboratories, Burlingame, CA) was then perfused
to label adherent leukocytes and vascular endothelial cells. Unbound ConA
was flushed by perfusion with 10 ml PBS. Eyes were removed and fixed in 4%
paraformaldehyde for 1 h. Retinas were dissected and flat mounted. Images of
retinas were observed by epifluorescence or confocal microscopy, and the
total number of adherent leukocytes per retina was counted.
Visualization and quantification of retinal vascular leakage. Anesthe-
tized mice received femoral vein injections of fluorescein isothiocyanate-BSA
(FITC-BSA, 100 mg/kg) (Sigma). After 20 min, mice were killed and eyes were
removed and fixed in 4% paraformaldehyde for 30 min. Retinas were dis-
sected, flat mounted, and imaged by fluorescent microscopy. A computer-
assisted method was used to quantify leakage using Adobe Photoshop 7.0
software. In this procedure, the intensity of basal level of fluorescence in
nonleakage areas was used as background fluorescence. After deduction of
background signals, the total intensity of fluorescence contributed by the
leaked FITC-labeled albumin was used to represent the leakage.
Quantification of retinal vascular histopathology. Retinal vasculature
was isolated by the trypsin digest method (26). Briefly, 10% buffered formalin-
fixed retinas were dissected, washed, and incubated with 3% Difco crude
trypsin (BD Biosciences, Sparks, MD) containing 0.2 mol/l NaF at 37°C for 1 h.
Retinal tissues were brushed away, and the isolated vasculature was mounted,
dried on glass slides, and stained with periodic acid-Schiff and hematoxylin.
Acellular capillaries were counted in six field areas in the midretina (�400
magnification) and expressed as the total number/mm of retina area.
Retinal morphometry and transmission electron microscopy. Transmis-
sion electron microscopy (TEM) was performed as described previously (27).
Morphometric analysis of hematoxylin and eosin (H&E)-stained retinal sec-

tions was performed as described previously (21). The total number of
ganglion nuclei in H&E-stained retinal sections was used to represent ganglion
cell density.
Statistical analysis. All results that required statistic analysis were ex-
pressed as the mean 	 SEM. Statistical significance was evaluated by Student
t test with P value 
 0.05 considered significant.

RESULTS

Preparation of diabetic conditional VEGF knockout

mice. In an effort to generate human VMD2 promoter
controlled tetracycline-inducible RPE-specific Cre mice
(28), we identified a mouse line displaying Cre function
predominantly localized to the retinal Müller cells (29).
Further characterization demonstrated that this mouse
line is feasible for conditional gene expression in Müller
glia (19). The transgenic Cre mice (cre�) were mated with
mice carrying a floxed VEGF (Vegfff) allele (18) to generate
the conditional Müller glial VEGF KO mice. Using primary
cultures derived from the conditional VEGF KO mice, we
determined that there was a 66.5% reduction of VEGF
expression in Müller cells (21). Immunoblotting assays
demonstrated a significant decrease (43.2%) in VEGF
expression in the retinas of conditional VEGF KO mice
(cre�Vegfff) compared with WT (cre�Vegfff) controls (Fig.
1A), confirming that Müller cells are a major source of
VEGF in the retina.

Diabetes was induced by STZ-injection in conditional
VEGF KO mice and WT controls. Blood glucose levels and
average body weights of mice at the time of experiments
are shown in Table 1. A significant elevation of blood
glucose level and loss of body weight were observed in
diabetic groups compared with nondiabetic controls (P 

0.001) 2 and 6 months after induction of diabetes. No
significant changes in blood glucose levels or body weight
were observed between conditional VEGF KO and WT
mice under normal or diabetic conditions (Table 1), indi-
cating that disruption of Müller cell-derived VEGF did not
affect blood glucose levels or body weight. Under diabetic
stress, expression of VEGF increased dramatically (2.16-
fold) in WT mice (Fig. 1A). In contrast, disruption of
Müller cell-derived VEGF resulted in a 51.4% reduction in
VEGF (Fig. 1A). This result was supported by immunohis-
tochemical analysis in conditional VEGF KO mice sub-
jected to diabetic stress (Fig. 1C–D). As HIF-1� is
upregulated in diabetic retinas and contributes to in-
creased levels of VEGF (30), we verified the state of
hypoxia in conditional VEGF KO mice by measuring the
expression of HIF-1� in diabetic retinas. Our results
demonstrated a greater than twofold upregulation of
HIF-1� (Fig. 1B) in diabetic retinas of both WT and
conditional VEGF KO mice, which is consistent with a
previous observation (31). However, no significant differ-
ence was observed in HIF-1� levels between WT and
conditional VEGF KO mice, suggesting that the loss of
Müller cell-derived VEGF did not alter diabetes-induced
HIF-1� accumulation.
Retinal inflammatory responses. Leukostasis, a major
parameter for inflammation and early pathologic changes
in DR, was quantified by FITC-conjugated ConA staining
assay 2 months after inducing diabetes (3). Under normal
conditions, the number of adherent leukocytes in the
retinal microvasculature of WT and conditional VEGF KO
mice was negligible (data not shown). The number of
adherent leukocytes in the retinal microvasculature of
diabetic WT mice was elevated significantly and increased
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threefold compared with diabetic conditional VEGF KO
mice (Fig. 2A–C).

To verify whether disrupting Müller cell-derived VEGF
significantly reduced retinal inflammation, we examined
the expression of proinflammatory markers ICAM-1 and
TNF-� by immunoblotting. Retinas from diabetic WT mice
demonstrated a greater than twofold increase in the levels

of both ICAM-1 and TNF-� compared with those from
nondiabetic animals (Fig. 2D–E). No apparent increases in
ICAM-1 and TNF-� were observed in diabetic conditional
VEGF KO mice. These results suggest that the loss of
Müller cell-derived VEGF significantly reduces inflamma-
tion in diabetic retinas.

The transcription factor NF-�B is activated in diabetes
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FIG. 1. Analysis of VEGF and HIF-1� expression in normal and diabetic conditional VEGF KO mice. A and B: Immunoblotting analysis for VEGF
(A) and HIF-1� (B) in retinas from conditional VEGF KO mice and WT controls 2 months after diabetes. C and D: Confocal microscopic analysis
of immunostained retinas for VEGF expression (green) in conditional VEGF KO mice and WT controls subjected to a diabetic stress. Blue: nuclear
staining (DAPI). Scale bar equals 40 �m. ONL, outer nuclear layer; INL, inner nuclear layer. Error bar: SEM. ***P < 0.001. ns, not significant.
VEGF expression was significantly reduced in the retinas of conditional VEGF KO mice under normal or diabetic conditions. Although diabetes
upregulated HIF-1�, no significant change in the levels of retinal HIF-1� was observed in diabetic conditional VEGF KO mice. (A high-quality
digital representation of this figure is available in the online issue.)

TABLE 1
Body weights and blood glucose levels of normal and diabetic mice

Group
Body weight (g) Blood glucose (mg/dl)

2 months 6 months 2 months 6 months

Diabetic WT 21.46 	 1.60* 23.03 	 2.35* 461.43 	 66.66* 497.71 	 6.05*
Diabetic KO 20.86 	 1.22* 23.29 	 0.63* 432.86 	 65.15* 480.86 	 50.65*
Nondiabetic WT 28.17 	 2.28 32.43 	 1.66 178.14 	 33.35 184.14 	 22.44
Nondiabetic KO 28.04 	 2.08 31.86 	 2.53 199.29 	 24.28 176.14 	 12.23

Data are means 	 SE, n � 20–30. *P 
 0.001 compared with nondiabetic WT or KO.
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and plays a major role in diabetes-induced early pathologic
changes in DR (32,33). To determine the relationship
between Müller cell-derived VEGF and NF-�B in diabetic
retinas, we investigated the level and phosphorylation
state at serine 276 of NF-�B p65 subunit, as phosphoryla-
tion of this subunit increases transcriptional activity of
NF-�B (34). Although there was no detectable difference in
the overall level of NF-�B p65 subunit between diabetic
conditional VEGF KO and control mice, loss of Müller
cell-derived VEGF resulted in a twofold decrease in phos-
phorylated NF-�B p65 in the retinas 2 months after diabe-
tes (Fig. 2F), suggesting that Müller cell-derived VEGF
regulates NF-�B transcriptional activity in DR.
Retinal vascular histopathology and leakage. To de-
termine the role of Müller cell-derived VEGF in vascular
leakage, we performed immunoblotting for extravascular
albumin content in the retinas and vitreous from PBS-
perfused mice 6 months after inducing diabetes. The
extravascular albumin content in diabetic WT mice was
2.5-fold higher than that in nondiabetic WT mice (Fig. 3A).
However, there was a 58.9% reduction of extravascular
albumin in the retinas and vitreous of diabetic conditional
VEGF KO mice (Fig. 3A). Using FITC-labeled albumin, we
visualized and quantified vascular leakage in conditional
VEGF KO mice 6 months after inducing diabetes (Fig.
3B–F). Compared with diabetic WT mice, diabetic condi-
tional VEGF KO mice had significantly fewer areas of
leaked FITC-labeled albumin (arrows in Fig. 3C and E) in
their retina. Computer-assisted quantitative analysis dem-
onstrated a similar level of reduction (61.5%) of FITC-

labeled albumin leakage in diabetic conditional VEGF KO
mice compared with diabetic WT controls (Fig. 3F).

To determine the mechanism of Müller cell-derived
VEGF in diabetes-induced vascular leakage, we examined
the expression of occludin and ZO-1, two important tight
junction proteins. Although diabetes caused 39.2% and
58.1% decreases of retinal occludin and ZO-1 in WT mice,
virtually no change in retinal occludin and ZO-1 contents
were observed in diabetic conditional VEGF KO mice (Fig.
4A and B). Compared with WT controls, the diabetic
conditional VEGF KO mice demonstrated 59.7% and
130.3% increases of occludin and ZO-1, respectively, in
their retinas (Fig. 4A–B). This result was confirmed by
immunohistochemical analysis of ZO-1 in retinal vessels
(Fig. 4C–F). Our results suggest that the loss of Müller
cell-derived VEGF significantly reduced diabetes-induced
retinal vascular leakage by attenuating the depletion of
occludin and ZO-1.

To assess retinal vascular lesions, we quantified the
number of acellular capillaries in trypsin digestion assay
and examined basement membrane thickness by TEM in
conditional VEGF KO mice 6 months after inducing diabe-
tes. The diabetic conditional VEGF KO mice had signifi-
cantly fewer acellular capillaries than diabetic WT
controls (Fig. 5A–C). However, we did not observe signif-
icant differences in basement membrane thickness be-
tween diabetic conditional VEGF KO and WT mice and
between diabetic and nondiabetic mice (Fig. 5D–F).
Morphometric and ultrastructural analyses. To deter-
mine if the loss of Müller cell-derived VEGF in the condi-
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FIG. 2. Analysis of retinal inflammation in conditional VEGF KO mice 2 months after inducing diabetes. A and B: FITC-conjugated ConA staining
for adherent leukocytes (arrows) in retinal microvasculatures of diabetic conditional VEGF KO mice and WT controls. Scale bar represents 100
�m. C: Quantification of adherent leukocytes in retinal vasculatures of diabetic conditional VEGF KO mice and WT controls. D and E:
Immunoblotting analysis of ICAM-1 (D) and TNF-� (E) expression in conditional VEGF KO mice. F: Immunoblotting analysis of NF-�B p65
phosphorylation in diabetic retinas of conditional VEGF KO mice. Error bar: SEM. ***P < 0.001. Loss of Müller cell-derived VEGF caused a
significant reduction in the number of adherent leukocytes, expression of ICAM-1 and TNF-�, and phosphorylated NF-�B p65 in diabetic retinas.
ns, not significant.
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tional VEGF KO mice affected retinal neuron survival, we
examined retinal integrity in conditional VEGF KO mice 6
months after inducing diabetes. Retinal morphology was
carefully examined and retinal thickness, a direct correla-
tion of retinal neuronal number, was quantified by mor-
phometry. No significant differences in outer nuclear layer,
inner nuclear layer, or whole retina were observed be-
tween diabetic conditional VEGF KO mice and WT con-
trols (Fig. 6A–C), indicating no loss in photoreceptors or
inner retinal neurons. In addition, we counted the number
of ganglion cells and observed no differences between
diabetic conditional VEGF KO mice and WT controls (Fig.
6F). Furthermore, no morphologic changes indicative of
neuronal apoptosis were observed at the ultrastructural
level (Fig. 6D and E). These results suggest that disrupting
VEGF from Müller glia does not result in enhanced neu-
ronal loss in conditional VEGF KO mice 6 months after
inducing diabetes.

DISCUSSION

VEGF is produced by multiple cellular origins in the retina
and has paracrine activity. To date, no in vivo study has
convincingly demonstrated the cellular origin of VEGF
induced in DR. Since VEGF has been suggested to play a
role in retinal neuron survival and choriocapillaris fenes-
tration (9–12) and anti-VEGF treatments have become a
major therapeutic strategy for DR, revealing the cellular
origins of pathogenic VEGF becomes paramount. Müller
cells have long been suspected as a major contributor to
DR (13). Because of the lack of appropriate animal models
(35), in vivo function of Müller cell-derived VEGF in DR
remained unaddressed until recently when we developed
an inducible Cre/lox system to delete VEGF from Müller
cells (19).

Increased VEGF levels in DR are responsible for blood-
retina barrier (BRB) breakdown and lead to vascular
leakage (36). However, the causative role of Müller cell-
derived VEGF in diabetes-induced BRB breakdown has
not been established. In this study, we demonstrate that
the loss of Müller cell-derived VEGF significantly inhibits
diabetes-induced vascular leakage (Fig. 3). Since the in-
tegrity of tight junction proteins in endothelial cells is
crucial for BRB function, we measured retinal tight junc-

tion proteins occludin and ZO-1 (Fig. 4) to determine how
increases in Müller cell-derived VEGF might result in
diabetes-induced vascular leakage. Our result that diabe-
tes-induced depletion of occludin and ZO-1 was attenuated
in conditional VEGF KO mice supports a role for Müller
cell-derived VEGF in diabetes-induced reorganization of
tight junctions (37–39). Our results also suggest that
reducing Müller cell-derived VEGF attenuates capillary
acellularity (Fig. 5A–C), a relatively early vascular lesion in
diabetic rodent retinas. Since VEGF is a survival factor for
endothelial cells, one might expect that reducing VEGF
levels might accelerate endothelial loss and the develop-
ment of acellular capillaries in diabetic retinas, which is
contrary to our observation. However, our result is con-
sistent with that in a study demonstrating an increase in
acellular capillaries in transgenic mice overexpressing
VEGF165 from rod photoreceptors (40). As inflammation
may play a central role in developing pathologic changes,
including acellular capillaries in DR (41), we speculate
that the diabetes-induced inflammatory responses may
play a more prominent role in endothelial death and
capillary acellularity and that the reduced inflammatory
responses in diabetic conditional VEGF KO mice may
attenuate the development of acellular capillaries. Fur-
thermore, as we did not disrupt VEGF in endothelial cells,
autocrine endothelium-derived VEGF signaling could play
a role in promoting endothelial survival and in reducing
capillary acellularity in diabetic conditional VEGF KO
mice. Based on our results, we cannot conclude if the
Müller cell-derived VEGF plays a role in the thickening of
basement membranes, as we did not observe significant
change in this process between diabetic mice and nondi-
abetic controls 6 month after STZ-injection (Fig. 5A–C).
This result is in agreement with a previous observation in
similar aged diabetic and nondiabetic mice (42).

Leukostasis, adhesion of leukocytes to the vascular
wall, is increased in the diabetic retina and results in
retinal vascular occlusion (5). The diabetes-induced leu-
kostasis is mediated via upregulation of ICAM-1 and its
ligand CD18 (3). Disruption of ICAM-1 and CD18 in mice
results in decreases in both leukostasis and vascular
permeability (41). It has been shown that VEGF increases
expression of ICAM-1 in endothelial capillaries and intra-
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vitreal injection of VEGF upregulates the level of retinal
ICAM-1 (8). TNF-� is an inflammatory cytokine which is
upregulated in diabetic retinas. It has also been reported
that an inhibitor of TNF-� is capable of reducing diabetes-
induced leukostasis and BRB breakdown (41) and that
anti-VEGF treatment inhibited the expression of TNF-�
(43). In the current report, we demonstrate that disrupting
Müller cell-derived VEGF inhibits diabetes-induced leuko-
stasis and overexpression of ICAM-1 and TNF-� (Fig. 2),
early pathologic changes in DR. We also demonstrated

that disruption of Müller cell-derived VEGF caused a
significant reduction of phosphorylated NF-�B p65 subunit
(Fig. 2F), suggesting that reduced transcriptional activa-
tion affects downstream effectors for inflammatory re-
sponses and vascular complications in diabetic retinas
(44,45).

Diabetic conditional VEGF KO mice and nondiabetic
WT mice produced a comparable level of VEGF (Fig. 1A).
This level of VEGF may not exceed the threshold of
causing significant pathologic changes in DR, as observed
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throughout this study. Very low levels of retinal inflamma-
tion and vascular leakage and the inability for other retinal
VEGF-producing cells to compensate the loss of VEGF in
diabetic conditional VEGF KO mice only suggest that

Müller cell-derived VEGF is a primary source of VEGF
involved in the diabetes-induced retinal inflammation and
vascular leakage. However, we cannot exclude the possi-
bility that VEGF derived from other retinal cells contrib-
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utes to diabetes-induced retinal inflammation and vascular
leakage in the presence of Müller cell-derived VEGF,
which may serve as a key to the “pathologic threshold.”

In this study, HIF-1� expression was upregulated in the
retinas of diabetic conditional VEGF KO mice and WT
controls, which is consistent with a previous finding that
HIF-1� is increased in diabetic retina and that inducing
HIF-1� contributes to the increased levels of VEGF (30).
However, loss of Müller cell-derived VEGF did not altered
the expression of HIF-1� in diabetic retina (Fig. 1B). This
result indicates that the phenotypic changes observed in
the conditional VEGF KO mice are not attributed to the
altered expression of the upstream regulator HIF-1�.
Therefore, the reduction of diabetes-induced retinal in-
flammation and vascular leakage in the conditional VEGF
KO mice appears to be a direct consequence of reduced
VEGF expression. This result may suggest that HIF-1� is a
potential target for a more stringent therapeutic strategy
to treat DR, which is supported by a recent finding that
inhibition of HIF-1� has an effect on ischemia-induced
vascular leakage (46).

We demonstrated that disrupting Müller cell-derived
VEGF did not cause significant changes in retinal morphol-
ogy/morphometry in diabetic conditional VEGF KO mice 6
months after STZ-injection (Fig. 6), suggesting that the
reduction in VEGF level may not be sufficient to cause
accelerated retinal neuron loss within the time frame.
Therefore, the phenotypic changes described herein can
be directly attributed to the disruption of Müller cell-
derived VEGF, not the loss of retinal neurons. Since Cre
expression in retinal ganglion cells is negligible (19), the
reduced retinal inflammation and vascular leakage in our
conditional VEGF KO mice is not likely caused by disrup-
tion of VEGF in ganglion cells. The inability for ganglion
cells to compensate for the loss of Müller cell-produced
VEGF in conditional VEGF KO mice may suggest that the
major function of ganglion cell-derived VEGF is not patho-
genic, and is perhaps important for neuronal survival
under stress conditions (10,11). A significant decrease of
VEGF produced by retinal endothelial cells under hyper-
glycemia suggests a minor role for endothelial-cell–de-
rived VEGF in the pathogenesis of DR (47). The role of the
RPE-derived VEGF in DR is intriguing. As the RPE barrier
is tighter than the endothelial barrier, the significance of
the RPE-derived VEGF/outer BRB breakdown in DR has
not been focused sufficiently. Although the RPE-derived
VEGF has been suggested to play a role in RPE-choriocap-
illaris interaction (9), RPE-derived soluble VEGF may
regulate outer BRB function (37). The breakdown of the
RPE barrier has been observed in diabetic patients (48).
Some DR patients with no significant changes in the
endothelial barrier have eventually demonstrated a severe
outer BRB breakdown (49). However, the significance of
the RPE-derived VEGF and RPE barrier dysfunction in
overall pathologic changes in DR remains largely uninves-
tigated, which is caused by difficulties in distinguishing the
leakage from each BRB. With the development of cell-
specific gene expression systems, a better understanding
of the outer BRB dysfunction in DR is likely to emerge
shortly.

In summary, the results from the current investigation
and a previous study demonstrating a significant role for
Müller cell-derived VEGF in retinal neovascularization
(21) suggest that the Müller cell-derived VEGF plays a
causative role in major pathologic changes in DR, includ-
ing retinal neovascularization, vascular leakage, vascular

lesions, and inflammation. Therefore, Müller cells are a
primary cellular source for signals that mediate pathologic
changes in DR. As VEGF is a target for clinical trials to
treat DR, this information is valuable to the design of the
delivery mechanisms for anti-VEGF therapies.
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