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Abstract: Fermentable oligo-, di-, and monosaccharides and polyols (FODMAPs) are associated
with digestive disorders and with diseases such as irritable bowel syndrome. In this study, we
determined the FODMAP contents of bread, bakery products, and flour and assessed the effectiveness
of sourdough fermentation for FODMAP reduction. The fermentation products were analyzed to
determine the DP 2–7 and DP >7 fructooligosaccharide (FOS) content of rye and wheat sourdoughs.
FOSs were reduced by Acetobacter cerevisiae, Acetobacter okinawensis, Fructilactobacillus sanfranciscensis,
and Leuconostoc citreum to levels below those in rye (−81%; −97%) and wheat (−90%; −76%) flours.
The fermentation temperature influenced the sourdough acetic acid to lactic acid ratios (4:1 at 4 ◦C;
1:1 at 10 ◦C). The rye sourdough contained high levels of beneficial arabinose (28.92 g/kg) and
mannitol (20.82 g/kg). Our study contributes in-depth knowledge of low-temperature sourdough
fermentation in terms of effective FODMAP reduction and concurrent production of desirable
fermentation byproducts.

Keywords: FODMAPs; fructooligosaccharides; charged aerosol detection; arabinose

1. Introduction
1.1. Definition of FODMAPs

The acronym FODMAPsstands for fermentable oligosaccharides, disaccharides, mono-
saccharides, and polyols and represents a group of short-chain carbohydrates, including
fructose, fructans, fructooligosaccharides (FOSs), galactooligosaccharides (GOSs), galac-
tans, lactose and the sugar alcohols maltitol, mannitol, sorbitol, and xylitol [1]. FOSs are
considered fructose oligomers with a low degree of polymerization (approximately up to
12 units of fructose), in comparison with polymers, which are considered fructans [2].

1.2. FODMAP-Related Diseases

FODMAPs have been determined to play a major role in gastrointestinal (GI) disorders
because they are not absorbed properly in the gut. It is generally estimated that approxi-
mately 6–10% of the overall population is affected by functional bowel disorders; in the
Western world, these disorders affect up to 20% of the population [3]. The pathophysiology
of irritable bowel syndrome (IBS) is multifactorial, including altered brain–gut signaling,
carbohydrate malabsorption, gut dysbiosis, immune dysregulation, and visceral hypersen-
sitivity [4]. The FODMAP mode of action is connected to osmotic activity, forcing water
into the GI tract. Furthermore, the sugar molecules are fermented by intestinal bacteria,
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which increase hydrogen, methane, and carbon dioxide production in the GI tract. Thus,
the elevated luminal distension leads to symptoms such as abdominal pain, bloating, and
flatulence [5]. In addition, food intake affects the intestinal microbiota, which is generally
believed to play an important role in overall health [6].

1.3. Low-FODMAP Diets and Bakery Products

Diet represents a key role in IBS management because a large number of patients
report food-related symptoms. A reduction in the named symptoms as well as overall life
improvements in IBS patients were reported in multiple clinical studies investigating the
effects of low-FODMAP diets [7]. FODMAPs are found naturally in many foods and food
additives, including dairy products (milk), fruits (e.g., apples, pears, stone fruits), grains
(wheat, rye), legumes, and vegetables (e.g., cauliflower, mushrooms, onions) [8,9].

Fructans and FOSs are the main FODMAPs in wheat-based products [10]. Importantly,
wheat- and rye-based products are major food sources in Europe and therefore contribute
significantly to FODMAP uptake. Austrian flour, which is analyzed in this study, is
categorized by numbers indicating the ash content. The letters that precede these numbers
indicate the grain type. For example, W700 represents wheat flour with an ash content
ranging from 0.66% to 0.79% by dry mass.

During the baking process, fructans undergo partial degradation due to yeast invertase
activity. The remaining fructans show a lower degree of polymerization (DP) than the
initial flour product. Fermentation processes prior to baking generally allow for the partial
conservation or degradation of FODMAPs [11]. Furthermore, methods for enzymatic
degradation of FODMAPs in flour prior to fermentation have been reported recently [12].

The fermentation of flour–water mixtures to form sourdough is a long-practiced
method used in traditional bread making. In typical wheat and rye sourdough fermen-
tation, a complex microbial ecosystem comprises multiple heterofermentative lactic acid
bacteria (LAB) and yeasts. LAB produce glucansucrases or fructansucrases, which convert
FOSs to fructose, glucans, glucose, isomaltooligosaccharides, and sucrose [11]. Further-
more, heterofermentative LAB have been found to partially convert the released fructose
molecules to mannitol [13]. Since mannitol is rapidly fermented by the gut microbiota, it
should also be measured to provide accurate FODMAP identification [11]. In conclusion,
LAB strongly increase the metabolic capacity of fermentation processes to convert and
degrade FODMAP components [10].

In addition to degrading FODMAPs, sourdough fermentation may also generate
FODMAPs through the digestion of complex carbohydrates. Thus, low-FODMAP baking
also requires the presence of fructan- and mannitol-degrading organisms [11]. Additionally,
arabinose is capable of reducing sucrose digestion by inhibiting sucrase activity in the
small intestine. Arabinose itself is fermentable and slowly absorbed and thus has favorable
effects on FODMAP-related symptoms [14].

1.4. Analysis of FODMAPs

High-pressure liquid chromatography (HPLC) used in combination with charged
aerosol detection (CAD) or refractive index (RI) detection is one of the techniques used
in the analysis of relevant FODMAPs, including FOSs, organic acids, polyols, and saccha-
rides [15,16]. Due to a lack of standard substances for long-chain fructans and/or because
of their insufficient purity, the approach of using universal detection with inverse gradient
compensation (HPLC-CAD-IG) has been shown to be suitable [17,18]. Although FOSs,
polyols and saccharides do not possess chromophores, which would make them optically
detectable via diode array detectors (DADs), UV/Vis spectroscopy is a useful tool for
ruling out the possible coelution of compounds with analytes of interest [19].

1.5. Contribution Beyond the State-of-Art

Recently, many papers successfully demonstrated the use of different bacterial strains
for FODMAP reduction. Pure cultures in specialized fermentation media were used at
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optimal growing conditions (≥25 ◦C) to prove the capability of fructophilic lactic acid
bacteria and Lactobacilli to degrade the oligo- and polymers to a significant extent [20,21].
Nonetheless, temperatures ≤ 10 ◦C are favorable in continuous production of sourdough
as mold growth is promoted at common sourdough fermentation temperatures [22]. Addi-
tionally, the use of pure organisms is usually impossible for most bakeries and recreational
bakers who mostly rely on their own continuously growing cultures, which are nourished
with flours used in latter production, rather than on specialized growing media. Literature
still lacks information regarding the relation between source material and continuously
grown sourdough at temperatures ≤ 10 ◦C in terms of sourdough microbiome, fermenta-
tion byproducts, and FODMAP reduction. To the best of our knowledge, the formation
of arabinose as a favorable fermentation byproduct has not been documented to date and
should be more closely investigated.

Here, we report on a comprehensive approach to assessing the FOS content in bakery
products and evaluating the flour used in their production as well as a microbiological
approach to improving these products, as suggested by recent literature [23].

2. Materials and Methods
2.1. Materials and Reagents

Standards of arabinose, fructose, glucose, maltose, and mannitol were purchased
from Sigma-Aldrich (Schnelldorf, Germany). Kestopentaose, kestose, kestotetraose, FOSs
(DP 2–8; P-FOS28), and inulin (DP 2–60; P-INUL) as well as the fructanase enzymes (EC
3.2.1.7 endo-inulinase and EC 3.2.1.80 exo-inulinase; E-FRMXLQ) were purchased from
Megazyme (Wicklow, Ireland). Analytical-grade acetic acid, lactic acid, and citric acid
were obtained as ready-to-use organic acid analysis standards from Bio-Rad (125–0586,
Hercules, CA, USA). LC-MS-grade acetonitrile, ammonium acetate, sulfuric acid (96%),
sodium hydroxide (50%), acetic acid (99–100%), and ammonia (25%) were obtained from
VWR (Vienna, Austria). Flour (Table 3), bakery products (Table 2), and sourdough starter
cultures were provided by Fischer Brot GmbH (Linz, Austria). Bio-Kornspitz, cottage
bread, crusty bread, farm-baked bread, farmhouse bread, French bread, hard rolls, light
bread, wheat-rye bread, and white bread were manufactured by Fischer Brot GmbH and
are sold in retail stores as well as on the wholesale market in Austria. The sourdough
starter cultures were purchased by Fischer Brot GmbH from Ernst BÖCKER GmbH & Co.
KG (Minden/Westfalen, Germany).

2.2. Sample and Standard Preparation

Carbohydrate standards for isocratic separation were prepared at concentrations of
0.01, 0.05, 0.10, 0.50, 1.0, and 4.0 g/L in deionized water. The organic acid standard was
prepared according to the manufacturer’s guidelines. Carbohydrate standards for inverse
gradient separation on a Vanquish Flex system were prepared at concentrations of 0.010,
0.050, 0.10, 0.50, 1.0, and 4.0 g/L in 50% acetonitrile. Calibration curves were constructed
using the measured peak areas. For measurements with CAD, no derivatization steps were
required. The calculated carbohydrate content of the measured samples was corrected for
dry matter content.

For carbohydrate and polymer extraction, 100 mg ± 5 mg flour, ground bakery
products, or sourdough were weighed into centrifugation tubes and 500 µL deionized
water and 500 µL acetonitrile were added. Extraction was performed at 40 ◦C for 120 min
at 1000 rpm in a thermoshaker. After centrifugation at 17,000 × g at 25 ◦C for 5 min, 100 µL
supernatant was transferred into a fresh centrifugation tube and vortexed after adding
450 µL acetonitrile and 450 µL deionized water. The precipitates were removed by repeated
centrifugation under the abovementioned conditions. Approximately 850 µL supernatant
was transferred into a screw-cap vial for HPLC measurement. The sourdough samples
that were analyzed for their organic acid content were transferred into centrifugation tubes
and centrifuged. The supernatant (100 µL) was transferred into a fresh centrifugation tube,
followed by the addition of 500 µL acetonitrile and 400 µL deionized water.
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FOSs and inulin were purified by fractionated collection to obtain FOS containing
a sucrose unit (GFn) and pure fructose FOS (Fn) fractions to be used as standards in
the subsequent analyses. The fractions were collected in centrifugation tubes, weighed,
and analyzed for purity by HPLC-CAD after solvent evaporation at 60 ◦C in a SpeedVac.
Hydrolysis was performed in a thermoshaker at 1150 rpm at 80 ◦C for 3 hours using
fructanase enzymes to determine the fructose and glucose contents of each fraction.

For the analysis of the FOS content, the samples were extracted with water and
centrifuged. The supernatant was utilized for additional sample pretreatment. To ensure
that the relevant FOS content could be analyzed with this method, the supernatant was
removed, and the residue was washed twice and subjected to enzymatic hydrolysis again.
However, no DP 2–7 FOS or fructose were measured in the sample residue.

The sourdough samples were incubated at 4 ◦C, 10 ◦C, 20 ◦C, and 30 ◦C in a thermal
incubator (Memmert IN260, Schwabach, Germany). Water was evaporated from the col-
lected oligomer fractions with an Eppendorf 5301 concentrator (Eppendorf AG, Hamburg,
Germany) attached to a KNF N840 Laboport (KNF DAC GmbH, Hamburg, Germany)
oil-less vacuum pump. Equipment used for sourdough mixing and back-slopping was
autoclaved before use.

2.3. Enzymatic Tests

A 0.5 mol/L sodium acetate stock buffer solution for pH adjustment to 5.0 was used to
stabilize the pH during hydrolysis. The fructanase stock solution was diluted to 1000 U/mL
in deionized water. For the hydrolysis solutions, 100 mg ± 1 mg of flour, ground bakery
products or sourdough were weighed into centrifugation tubes, and 800 µL deionized
water, 100 µL stock buffer solution, and 100 µL enzymatic stock solution were added.

For the enzymatic test solutions, inulin (DP 2–60) was used. The amount of deionized
water in the solutions was adjusted to obtain enzyme concentrations of 5, 20, 50, 100, 200,
and 300 U/mL. Hydrolysis was performed in a thermoshaker at 1150 rpm at 80 ◦C for 1, 2,
3, 4, 5, and 6 hours under the same temperature and rotation conditions. After hydrolysis,
the samples were centrifuged, and 100 µL supernatant was mixed with 500 µL acetonitrile
and 400 µL deionized water. After vortexing, the samples were centrifuged again under
the abovementioned conditions, and 850 µL supernatant was transferred into screw-cap
vials for HPLC measurement.

2.4. Instrumentation

LC-MS-grade water (<0.055 µS/cm) from a Sartorius ultrapure water purification
system (Sartorius, Göttingen, Germany) was used for sample preparation. Extractions
were performed using a Thermal Shake lite (VWR, Vienna, Austria) thermoshaker. Dry
matter measurements were performed using an MA 35 moisture analyzer (Sartorius,
Göttingen, Germany).

FOS, fructose, glucose, maltose, mannitol, and sucrose analysis was performed on a
Vanquish Flex UHPLC system (Thermo Fisher Scientific, Waltham, MA, USA). The system
was equipped with a solvent degasser, binary pump, autosampler, and thermostatic column
compartment and coupled to an Ultimate 3000 DAD-3000 DAD, followed by a Vanquish
charged aerosol detector (Thermo Fisher Scientific, MA, USA). The compressed air gas flow
rate was automatically regulated and monitored by the CAD device. The data collection
rate was set to 2.0 Hz with a filter constant of 3.6 s. The power function for response and
signal correction was set to 1.0. The evaporation tube temperature was maintained at 35 ◦C.
For the inverse gradient conditions, a Thermo UltiMate 3000 HPG 3400 binary pump was
connected via a viper capillary (50 µm × 950 mm) with a T-piece to the charged aerosol
detector for backpressure consistency. The void volume differences between the analytical
and inverse gradient flow paths were determined with a RefractoMax520 RI-Detector (ERC
GmbH, Riemerling, Germany).

Chromatographic separation was achieved for carbohydrates and polymers with the
Vanquish Flex system using two serially connected Waters Acquity UPLC BEH amide
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columns (130 Å, 1.7 µm, 2.1 mm × 150 mm) maintained at 35 ◦C. The autosampler was
kept at 25 ◦C. A guard column (Acquity UPLC BEH Amide VanGuard precolumn, Milford,
MA, USA) was used to protect the column from contamination by particles. Mobile phase
A was 90% acetonitrile, and mobile phase B was 50% acetonitrile. Both mobile phases
contained 10 mM NH4Ac adjusted to pH 9.00 with NH4OH (25%, NH3 basis). All buffer
components were filtered through a 0.2 µm membrane filter. The gradient program used is
shown in (Table 1).

Table 1. Analytical and inverse gradient program.

Time
(min)

Flow Rate
(mL/min)

Analytical Gradient (Vanquish Pump) Inverse Gradient (HPG 3400)
%A %B %A %B

−10.000 0.23 99.0 1.0 1.0 99.0
0.000 0.23 99.0 1.0 1.0 99.0
5.000 0.23 99.0 1.0 1.0 99.0

35.000 0.23 1.0 99.0 99.0 1.0
45.000 0.23 1.0 99.0 99.0 1.0

The autosampler needle was washed with 100 µL (20 µL/s) deionized water before
and after each injection to prevent sample carryover between runs. The injection volume
was 5 µL. The level of acetonitrile (70%) in the mobile phase reaching the charged aerosol
detector was kept constant by setting the delay for the inverse gradient pump to 2.77 min.
The flow rate was kept constant for both gradient pumps.

Organic acid, arabinose, fructose, glucose, and mannitol analysis was performed on
an UltiMate 3000 UHPLC system (Thermo Fisher Scientific, Waltham, MA, USA) equipped
with a solvent degasser, quaternary pump, autosampler, thermostatic column compartment,
and RefractoMax520 RI detector. The data collection rate was set to 5.0 Hz at a rise time of
0.25 s. The temperature of the detector flow cell was kept at 35 ◦C. Data processing was
carried out with Chromeleon 7.2.10 software (Thermo Fisher Scientific, MA, USA).

Chromatographic separation was achieved using a Bio-Rad Aminex HPX-87H column
(9 µm, 7.8 mm × 300 mm) maintained at 30 ◦C. The autosampler was kept at 25 ◦C. A
guard column (Micro-Guard Cation H Refill Cartridge, 30 mm × 4.6 mm, Hercules, CA,
USA) was used to protect the column from particles. For isocratic separation at 0.6 ml/min,
LC-MS-grade water (<0.055 µS/cm) was used. The mobile phase contained 0.010 mol/L
H2SO4. The autosampler needle was washed with 100 µL (20 µL/s) mobile phase H2SO4
before and after each injection to prevent sample carryover between runs. The injection
volume was 25 µL.

2.5. Sourdough Fermentation

The sourdough was fermented in triplicate batches. The so-called back-slopping
technique was applied once a week by mixing 10 g of starter culture with 30 g deionized
water and 30 g of the appropriate flour in a 500 mL Erlenmeyer flask. The subsequent
fermentation was conducted in an incubator at 4, 10, 20, or 30 ◦C for 168 hours. After the
elapsed time, 60 g of sourdough was removed and used for the subsequent analysis. The
cultures were replenished with 30 g deionized water and 30 g flour, mixed thoroughly, and
fermented for 168 hours. Thereafter, the procedure was repeated. The total experimental
duration was 105 days. Experiments were aborted if mold-like growth was observed or an
unpleasant smell was noted. The sourdough fermentation experiments were conducted
with R960 rye flour (Haberfellner Mühle GmbH, Grieskirchen, Austria) and W700 wheat
flour (Wiesbauer–Mühle GmbH, Mörschwang, Austria) cultures.

2.6. Next-Generation Sequencing (NGS)

Next-generation sequencing was performed by Loop Genomics (San Jose, CA, USA).
Loop Genomics maintains a cloud-based platform for processing raw short reads prepared
with a LoopSeq kit into assembled synthetic long contigs. Within this pipeline, reads are
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trimmed to remove adapter sequences before they are demultiplexed based on their loop
sample index, which groups reads by the sample from which they originated.

With enough short reads to cover the full length of a 16S molecule, it is possible to
reassemble the original long sequence by linking the reads. Short reads whose sequences
partially overlap can be linked through that shared sequence and then be arranged in the
correct order to build the original 16S molecule sequence.

2.7. Statistics

Statistical analysis was performed with Chromeleon 7.2.10 (Thermo Fisher Scientific,
Waltham, MA, USA) and Excel 365 (Microsoft, Redmond, WA, USA) using linear regression,
intra- and interday repeatability, the unpaired Student’s t-test, and multivariable regression
analysis. In the experiments, the mean is based on n = 9 individual samples. In this study,
the results are presented as the means ± SDs and significance levels of p < 0.05 (c), p < 0.01
(b), and p < 0.0001 (a). Figures were prepared using CorelDraw 2019 (Corel Corporation,
Ottawa, Ontario, Canada).

3. Results
3.1. FOS and Fructose Contents of Bread and Bakery Products

Samples with low additive content (<1%) were chosen for these analyses. Crust-bread,
wheat-rye-bread, white bread, and hard rolls contained rapeseed oil and yoghurt, which
did not affect the FODMAP content. The fructose and DP 2–7 FOS content was determined
in the supernatant after extraction and centrifugation in water by direct HPLC-DAD-IG-
CAD detection. The results are shown in (Tables 2 and 3) and are provided in order of
increasing DP 2–7 FOS content.

Table 2. Bakery products under study: types of sourdough used for dough proofing, flours used in production, FOS, and
fructose content.

Product
Sourdough Flour FOS DP 2–7 FOS DP >7 Fructose

Wheat Rye Wheat Rye g/kg

hard roll - - W550 - 5.09 ± 0.25 3.19 ± 0.34 1.91 ± 0.05
light bread - - W550 - 5.50 ± 0.36 4.16 ± 0.18 1.34 ± 0.04
white bread x - W550 - 7.66 ± 0.28 5.08 ± 0.50 2.58 ± 0.10

wheat-rye bread x x W1600 R960 16.90 ± 1.36 13.12 ± 0.69 3.79 ± 0.08
French bread - - W550 - 18.41 ± 1.54 16.87 ± 1.25 1.54 ± 0.05

farm-baked bread - x W700;W1600 R960 20.04 ± 1.80 16.21 ± 0.71 3.82 ± 0.02
crusty bread - x W1600 R960 22.33 ± 0.87 16.77 ± 1.80 5.56 ± 0.08
cottage bread x x W700; W1600 R960 27.95 ± 1.28 20.13 ± 1.32 7.82 ± 0.03
Bio-Kornspitz - - W550 mixed 27.96 ± 0.45 22.07 ± 0.86 5.89 ± 0.11

farmhouse bread - x W1600 R960 28.08 ± 1.48 24.30 ± 1.20 3.78 ± 0.09

Bakery products containing higher levels of wheat flour (hard rolls, light bread, white
bread) showed the lowest FOS content (DP 2–7, ≤7.66 g/kg; DP > 7, ≤5.08 g/kg) of all
tested samples. Lower FOS content for both DP 2–7 and DP > 7 were observed in the mixed
wheat (≤40%) and rye (<30%) bakery products (crusty bread, farm-baked bread, French
bread and wheat-rye bread) than in the cottage bread and farmhouse bread, which had a
high proportion of rye flour (>50%). The Bio-Kornspitz sample, which consisted of mainly
wheat (>45%) and less rye (<30%) flour, constituted an exception, as it exhibited a high
FOS content (DP 2–7, 27.96 ± 0.45 g/kg; DP > 7; 22.07 ± 0.86 g/kg). Because the FOS and
fructose contents of the bakery products varied, the flours used in those bakery products
were analyzed.
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Table 3. Flours under study: milling degree, FOS, and fructose content.

Flour FOS DP 2–7 FOS DP >7 Fructose
Vendor Type g/kg

Pfahndl Eco flour 1.59 ± 0.03 7.78 ± 1.36 0.38 ± 0.03
Bio Mühle W700 1.67 ± 0.60 8.64 ± 0.38 0.68 ± 0.15
Arnreiter spelt 1.68 ± 0.13 6.07 ± 0.20 0.30 ± 0.02

Wiesbauer W700 1.70 ± 0.13 7.91 ± 0.27 0.35 ± 0.05
Polsterer W550 1.71 ± 0.25 7.77 ± 0.16 0.25 ± 0.02

Haberfellner W550 1.76 ± 0.07 7.68 ± 0.25 0.27 ± 0.03
Haberfellner R500 1.90 ± 0.27 19.28 ± 0.99 0.81 ± 0.29
Haberfellner W500 1.91 ± 0.13 7.75 ± 0.08 0.30 ± 0.03

Klinger W700 2.39 ± 0.53 8.09 ± 0.12 0.48 ± 0.03
Good Mills W700 2.67 ± 0.28 8.66 ± 0.44 0.34 ± 0.06
Bio Mühle spelt 2.68 ± 0.37 8.92 ± 0.17 0.59 ± 0.05

Haberfellner W1600 2.77 ± 0.49 12.72 ± 1.17 1.24 ± 0.11
Klinger W1600 3.12 ± 0.21 14.85 ± 0.10 1.26 ± 0.09
Klinger R960 3.37 ± 0.31 25.20 ± 1.32 2.42 ± 0.28

Premium-Bio Mühle R960 3.39 ± 0.66 23.62 ± 0.83 1.94 ± 0.11
Haberfellner wheat whole grain 3.82 ± 1.28 13.05 ± 0.69 2.42 ± 0.20
Haberfellner R960 3.93 ±0.33 28.05 ±0.48 2.41 ± 0.25

Arnreiter spelt whole grain 3.94 ± 0.19 11.34 ±0.29 1.51 ± 0.13
Haberfellner rye whole grain 4.28 ±0.24 29.34 ± 1.11 2.52 ± 0.28
Haberfellner R2500 5.44 ± 2.12 40.06 ± 1.63 4.86 ± 0.92

3.2. FOS and Fructose Contents of Rye, Spelt and Wheat Flour

Different types of rye, spelt, and wheat flour were evaluated for their long- and short-
chain FOS and fructose contents (Table 2). Mineral content (rye: r2 = 0.92, p < 0.01; wheat:
r2 = 0.87, p < 0.00008) and flour type (r2 = 0.86, p < 0.0000024) were identified as the two
main factors influencing the FOS content in flour. Nevertheless, rye flour showed a higher
long-chain FOS content at all milling degrees than wheat and spelt flour. Wheat flour
of low mineral (W500–W700) content was comparable with spelt in terms of its fructose
(−14.99%), short-chain FOS (−11.73%), and long-chain FOS (+7.15%) contents, whereas
rye flour (R500–R960) showed higher fructose (6.9-fold) and short-chain (1.9-fold) and
long-chain (4.2-fold) FOS content.

The fructose content in the whole-grain spelt flour was higher than that in the whole-
grain wheat flour (+60.45%) but comparable with that in the whole-grain rye flour (+4.08%).
The long-chain FOS content in the whole-grain rye and R2500 flour was much higher
than that in the whole-grain wheat (3.2-fold; 4.1-fold) and whole-grain spelt (3.6-fold;
4.5-fold) flour.

The fructose (±9.10%; ±12.07%) and DP 2–7 (±5.73%; ±8.90%) and DP >7 (±0.59%;
±8.77%) FOS content of the W550 and R960 flours did not appear to vary by manufacturer.
The deviations in the fructose (0.46 ± 0.16 g/kg) and DP 2–7 FOS (2.95 ± 0.25 g/kg) and DP
>7 FOS (13.78 ± 1.51 g/kg) contents were more pronounced in the W700 flour than in the
other flours but remained within a range that is typical for natural products. As their FOS
content had been determined and did not appear to be dependent on the manufacturer,
W700 and R960 flour, which came from different manufacturers, were selected for the
sourdough fermentation trials.

3.3. FOS Content of Rye and Wheat Sourdough

Rye-based cultures fermented at 20 ◦C developed an unpleasant smell after 30 days;
after 35 days, the fermentation process had to be stopped due to excessive mold growth. Rye
fermentation at 30 ◦C was aborted after 7 days, as mold growth and olfactory issues became
evident during that period. Results could not be obtained for wheat-based sourdough
fermented at 20 ◦C and 30 ◦C, as both trials showed excessive mold growth within the first
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week of fermentation. For both rye and wheat sourdoughs, temperatures of 20 ◦C and
30 ◦C proved to be unsuitable for back-slopping once a week.

Mold growth was not observed in the rye- or wheat-based cultures fermented at 4 ◦C
or 10 ◦C, and no olfactory abnormalities from these cultures were noted. In the course
of the one-week fermentation period, the samples became more fluid, and a perceivably
acidic smell was generated. Each of the biological replicates was analyzed for its fructose
and FOS content in triplicate. The results, including the most relevant data points, are
depicted in (Figure 1).
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Figure 1. Fructose, DP 2–7 FOS, and DP >7 FOS content of sourdough (35 g water; 35 g flour). p < 0.05 (c), p < 0.01 (b),
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The results for the wheat sourdough replicates fermented at 4 ◦C and 10 ◦C are
depicted in Figures 1A and 1B, respectively. The fructose content in the wheat sourdough
was equal to that in the rye sourdough throughout the fermentation trials, although the
lower initial fructose content in the flour types used had to be considered in the comparison.
However, at 10 ◦C, the content of DP >7 FOSs was significantly (p < 0.0001) decreased
over the course of fermentation, whereas the level of short chain FOSs remained constant
at <1 g/kg throughout the fermentation process. After an increase between day 28 and
day 42, the DP 2–7 FOS content was detectable at similar concentrations in sourdough
fermented at 4 ◦C.

After 105 days of fermentation, the microbiome in the wheat sourdough was capable
of significant (p < 0.0001) reductions in the DP 2–7 FOS content, and the DP >7 FOS content
compared with the initial content in the W700 flour at 4 ◦C (−60%, −99%) and 10 ◦C
(−66%, −79%), respectively.
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Rye sourdough samples fermented at 4 ◦C (Figure 1C) showed a decrease in DP
2–7 FOS content between day 42 (2.71 ± 0.82 g/kg) and day 84 (0.28 ± 0.07 g/kg). The
content of long-chain DP >7 FOSs increased from day 28 (1.04 ± 0.11 g/kg) to day 84
(4.90 ± 0.14 g/kg) and then remained at the same level until day 105 (5.13 ± 0.14 g/kg).
Additionally, changes in FOS content decreased noticeably throughout the whole fermen-
tation period in the three independent cultures. Concerning fructose content, a signifi-
cant (p < 0.0001) reduction compared with that in R960 flour (from 3.37 ± 0.31 g/kg to
0.57 ± 0.32 g/kg) was observed after 28 days of fermentation.

The rye flour fermentation results at 10 ◦C (Figure 1D) showed an increase in DP >7
FOS content between day 0 and day 28, a decrease from the initial level on day 42 (from
1.31 ± 0.02 g/kg to 0.67 ± 0.38 g/kg), and then stability until the end of the fermentation
trials. A significant (p < 0.0001) decrease in DP 2–7 FOS content was observed after 42 days
(−91.74%), but the decrease leveled off for the remaining fermentation period. The fructose
content in the fermented rye sourdough at 10 ◦C was comparable with that in the rye
sourdough fermented at 4 ◦C.

The early termination of the rye sourdough trials at 20 ◦C after 35 days prevented
us from making reliable statements regarding the fructose and FOS content in these trials.
Large standard deviations in the DP >7 FOS content were detected after 7 days. However,
the deviations then began to stabilize, and the DP >7 FOS content had increased in the
samples that were analyzed after 21 and 35 days. The short-chain FOS content decreased
significantly from day 21 (2.25 ± 0.39 g/kg) to day 35 (0.22 ± 0.28 g/kg) and was compara-
ble to that in rye sourdough samples obtained at fermentation temperatures of 4 ◦C and
10 ◦C after 105 days, respectively. This trend also applied to the fructose content.

Compared with those in R960 flour, the fructose, DP 2–7 FOS, and DP >7 FOS content
was significantly (p < 0.00001) decreased by the microbiome in the rye sourdough fermented
for 105 days at 4 ◦C (−77%, −92%, −80%, respectively) and 10 ◦C (−77%, −89%, −98%).

3.4. Organic Acids Produced by Microorganisms in Rye and Wheat Sourdough

Organic acids are considered to greatly influence the taste and texture of a final bak-
ery product. Therefore, wheat and rye sourdough were fermented at 4 ◦C and 10 ◦C for
105 days and evaluated for their lactate, acetate, and citrate contents during the fermen-
tation process. The standard used for quantitation contained the sodium salt form of the
organic acids. As the bond cations in sourdough were not analyzed and sulfuric acid was
used in the mobile phase, it must be assumed that all acids were determined as H+ moieties.
The standard used for quantitation contained malic acid, succinic acid, and oxalic acid as
well, but none of those acids were found in the sourdough.

The values depicted in Figure 2 are the results of the analyses of three biological
replicates at each temperature, measured in triplicate with HPLC-RI. The pH values of all
analyzed sourdough samples were between 3.1 and 4.0. The microbiome of all sourdoughs
under investigation showed increased organic acid production within the first 14 to 28 days.
The total acidity after 105 days was markedly higher in rye sourdough fermented at 10 ◦C
(Figure 2D; 57.92 g/L) than in rye sourdough fermented at 4 ◦C (Figure 2C; 38.51 g/L)
and in wheat sourdough fermented at 4 ◦C (Figure 2A; 25.83 g/L) and 10 ◦C (Figure 2B;
39.39 g/L). Citrate was apparently not metabolized at 10 ◦C after 70 days of fermentation
in rye or in wheat sourdough and therefore did not contribute to the total acid content.

The lactic acid to acetic acid ratio is well known for its importance in sourdough due
to its sensorial influence on the taste and softness of the resultant bakery products. The
ratio in rye and wheat (4:1) sourdough at 4 ◦C was remarkably higher in rye from day 56
to 105 than during other times during fermentation and in wheat (1:1) sourdough at 10 ◦C
from day 70 to 105, independent of the absolute acidity of the sourdoughs. The acidity
of the sourdoughs as well as the ratios of the three organic acids under evaluation had
stabilized by 84 days of fermentation.
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3.5. Fermentable Mono-, Disaccharides, and Polyols in Rye and Wheat Sourdough

The contents of the monosaccharides arabinose, glucose, maltose, and mannitol were
analyzed throughout the fermentation period. As depicted in (Figure 3A,B), no arabinose
was detected in wheat sourdough during the whole fermentation period, whereas maltose
did not occur in rye sourdough at 10 ◦C (Figure 3D).

In wheat sourdough, peaks in glucose and maltose content at 4 ◦C and 10 ◦C
(Figure 3A,B) were observable after 28 days. The same was true for mannitol at 10 ◦C.
At 4 ◦C, mannitol was detectable for the first time on day 42 and remained at a constant
level of 4.2 ± 0.6 g/kg thereafter. Wheat sourdough at 10 ◦C showed the lowest total
monosaccharide content, 4.15 g/kg, on day 105. A direct comparison of rye sourdough at
4 ◦C and 10 ◦C revealed differences in glucose content: at 10 ◦C, the glucose content fell
below the limit of detection, while levels of 44.6 ± 4.4 g/kg were maintained at 4 ◦C. The
heavily fluctuating mannitol levels (27.4 ± 20.1 g/kg) in rye sourdough at 10 ◦C between
day 0 and 63 levelled out to 26.9 ± 1.7 g/kg between day 84 and 105; in contrast, in rye
sourdough at 4 ◦C, the mannitol content remained at 20.8 ± 2.2 g/kg throughout the whole
fermentation period.



Foods 2021, 10, 894 11 of 18

Foods 2021, 10, x FOR PEER REVIEW 11 of 18 
 

 
Foods 2021, 10, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/foods 

3.5. Fermentable Mono-, Disaccharides, and Polyols in Rye and Wheat Sourdough 
The contents of the monosaccharides arabinose, glucose, maltose, and mannitol were 

analyzed throughout the fermentation period. As depicted in (Figure 3A and Figure 3B), 
no arabinose was detected in wheat sourdough during the whole fermentation period, 
whereas maltose did not occur in rye sourdough at 10 °C (Figure 3D). 

 
Figure 3. Arabinose, glucose, maltose, and mannitol contents of sourdough. (A) Wheat sourdough; 4 °C; W700. (B) Wheat 
sourdough; 10 °C; W700. (C) Rye sourdough; 4 °C; R960. (D) Rye sourdough; 10 °C; R960. 

In wheat sourdough, peaks in glucose and maltose content at 4 °C and 10 °C (Figure 
3A and 3B) were observable after 28 days. The same was true for mannitol at 10 °C. At 4 
°C, mannitol was detectable for the first time on day 42 and remained at a constant level 
of 4.2 ± 0.6 g/kg thereafter. Wheat sourdough at 10 °C showed the lowest total monosac-
charide content, 4.15 g/kg, on day 105. A direct comparison of rye sourdough at 4 °C and 
10 °C revealed differences in glucose content: at 10 °C, the glucose content fell below the 
limit of detection, while levels of 44.6 ± 4.4 g/kg were maintained at 4 °C. The heavily 
fluctuating mannitol levels (27.4 ± 20.1 g/kg) in rye sourdough at 10 °C between day 0 and 
63 levelled out to 26.9 ± 1.7 g/kg between day 84 and 105; in contrast, in rye sourdough at 
4 °C, the mannitol content remained at 20.8 ± 2.2 g/kg throughout the whole fermentation 
period. 

Figure 3. Arabinose, glucose, maltose, and mannitol contents of sourdough. (A) Wheat sourdough; 4 ◦C; W700. (B) Wheat
sourdough; 10 ◦C; W700. (C) Rye sourdough; 4 ◦C; R960. (D) Rye sourdough; 10 ◦C; R960.

3.6. Analysis of the Microbiome in Rye and Wheat Sourdough

To identify the microorganisms responsible for the reduction in FOS content and the
formation of arabinose and mannitol, NGS was performed. Although the same sourdough
cultures were used for fermentation at 4 ◦C and 10 ◦C, the results revealed different
microbiomes in the rye and wheat sourdough, as shown in (Figure 4).

An inconsistent microbiome was detected in the wheat sourdough at 4 ◦C (Figure 4A–C).
While the wheat starter cultures (Figure 4A) incorporated >40% Saccharomyces cerevisiae,
none of those cultures were detected on day 105 in the wheat sourdough at 4 ◦C. Although
Lactobacillus sp. (68.3%) and Fructilactobacillus sanfranciscensis (30.8%) made up the ma-
jority of organisms on day 28, they were no longer detectable on day 105. At 10 ◦C, the
microbiome of wheat sourdough proved to be more consistent than that at 4 ◦C after
the substantial growth of Acetobacter okinawensis from day 28 until day 105 (Figure 4D,E).
Lactobacillus sp. was present starting on day 0, with an average relative abundance of
13.47 ± 0.44%.

Lactobacilli represented the most abundant organisms in the rye sourdough (Figure 4F–J),
including Fructilactobacillus sanfranciscensis (>20%) and Lactobacillus sp. (>18%). Addition-
ally, in the rye sourdough at 10 ◦C (Figure 4I,J), Acetobacter cerevisiae (31.4%) multiplied
until its abundance was almost equal to that of Fructilactobacillus sanfranciscensis (32.8%) on
day 105.
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Figure 4. Microbiome of sourdough. Inner circle, genus; outer circle, species. (A) Wheat sourdough starter cultures. (B,C)
Wheat sourdough, 4 ◦C. (D,E) Wheat sourdough, 10 ◦C. (F) Rye sourdough starter cultures. (G,H) Rye sourdough, 4 ◦C.
(I,J) Rye sourdough, 10 ◦C.

4. Discussion

Clinical trials suggest that adverse effects in people suffering from IBS are worsened
by the ingestion of dietary FODMAPs. Therefore, the identification and reduction of
FODMAPs in staple foods represent an important step toward minimizing unfavorable
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effects. Comprehensive studies that connect the available products on the market with
the flours used for production as well as propose potential methods of reducing FOS
content are currently not available. The published research is limited to single aspects,
such as the comparison of wheat and rye bread [24], the reduction of FODMAPs by
microorganisms [25], or changes in the FODMAP profile in the malting process [26]. In this
study, we demonstrate that long-term leavened sourdough at low temperatures exhibits
significantly lower FODMAP levels compared with the original flour, and we identified
and quantitated arabinose as a valuable byproduct of sourdough fermentation under these
conditions. To our knowledge, no scientific publication quantitated the ratio of organic
acids in sourdough fermented at 4 ◦C and 10 ◦C. Furthermore, we clarified the difference
between rye and wheat sourdough, while proving a strong dependence of fermentation
temperature on the degradation capability of long- and short-chain FOS.

By investigating the relationships between bread, flour, and sourdough, both industrial
and recreational bakers can be provided with the necessary information with which to
develop bakery products with low FODMAP content.

To reach this goal, an advanced HPLC-DAD-IG-CAD method was developed and
combined with a well-established HPLC-RI method to determine the FODMAP contents
of bakery products and the flours used in their production. Furthermore, the products
and organisms involved in back-slop sourdough fermentation were analyzed for their
FODMAP content as well as for their fermentation byproducts.

4.1. Bread Consumption and IBS

It has been suggested that patients experiencing IBS should reduce their daily FOS
intake to levels below 1.3 g/d, and a reduction in short-chain FOSs is especially advised [27].
Therefore, the FOS content of bread and bakery products was analyzed in order to estimate
the need to decrease the contents of these compounds in typical products. In large-scale
bakery production, leavening agents or stabilizers are added to dough. Therefore, the FOS
content of these products cannot be compared directly with those of fermented products
that are based on only wheat and water. However, the hard roll samples showed the
lowest overall FOS levels (8.28 ± 0.3 g/kg), and the farmhouse bread had the highest levels
(52.38 ± 1.34 g/kg). To comply with the guidelines of a low-FODMAP diet, >157 g/d
hard rolls or >25 g/d farmhouse bread should not be consumed, and other FODMAP-
containing foodstuffs must also be omitted. With 162.7 g/d of bread consumed per capita,
this consumption recommendation is currently being surpassed in the European Union [28].
In our study, the FOS content increased in the order of wheat bread < mixed rye/wheat
bread < rye bread. The Bio-Kornspitz sample represents an exception, as high FOS levels
were detected despite its relatively low rye flour content. While sourdough was used for
the fermentation of the other rye flour-based bread types in our study, the Bio-Kornspitz
product was fermented by only yeast. It can be deduced that a yeast’s capability to decrease
FOS levels is limited compared with that of sourdough. The FOS hydrolysis capability of
yeast seems to be dependent on the strain used and to vary with invertase activity [29]. As
all samples were fermented using industrial sourdough or yeast, an assessment of whether
sourdough fermentation could be further improved was necessary.

4.2. Link between Raw Materials and FODMAP Reduction through Sourdough

Flour, the main component of all tested bakery products, was confirmed to be the
key source of FOS. According to the literature, wheat flour has a similar FOS level to spelt
flour, while the content in rye flour is higher [30]. R960 and W700 flours, representing the
most common flour types used in Austria, were selected for the subsequent sourdough
fermentation trials.

The fermentation process does not require complex equipment, which makes sour-
dough production easy to handle for both customers and manufacturers. The contents
of DP 2–7 as well as DP >7 FOSs were significantly reduced in the rye and wheat sour-
doughs at 4 ◦C and 10 ◦C compared with those in the flour used for fermentation. Wheat
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sourdough at 4 ◦C and rye sourdough at 10 ◦C showed the lowest overall FOS levels. Rye
sourdough fermented at 10 ◦C proved to be most suitable for FOS and fructose degradation;
this sourdough exhibited rapid adaptation after 42 days of fermentation, and its samples
had the lowest standard deviations of all samples. Therefore, we concluded that this
dough was the most stable in this study. In wheat sourdough at 10 ◦C, the hydrolysis of
DP >7 FOSs increased during fermentation. The decrease in the long-chain FOS content
of rye sourdough at 4 ◦C, along with its low DP 2–7 FOS level, could make this dough
appropriate for use in bakery products with increased dietary fiber (inulin) content. Sour-
dough fermentation is an accepted method of FOS degradation, but this is achieved mostly
through fermentation at higher temperatures [31]. No assertions about this process could
be made for the high-temperature samples in our study, as we obtained only a single data
point regarding fermentation at 30 ◦C. In general, higher fermentation temperatures led to
unsatisfactory results from our back-slopping batch fermentation method.

However, it can be concluded that rye and wheat sourdoughs are capable of efficient
FOS reduction, while yielding the desirable fermentation byproducts acetic acid, arabi-
nose, citric acid, lactic acid, and maltitol. The recent literature suggests that the value
of sourdough in influencing taste via fermentation byproducts is becoming increasingly
important [32].

4.3. The Role of Fermentation Byproducts

The lactic acid to acetic acid ratio was 4:1 in both the rye and wheat sourdoughs at
4 ◦C and was 1:1 in the sourdoughs at 10 ◦C. The different ratios at the given tempera-
tures suggest that distinct flavor profiles can be obtained depending on the fermentation
temperature. The results suggest that the absolute content of both organic acids in bakery
products could be mediated by fermentation time or by the sourdough proportion added.
However, the ratio of organic acids in this study remained constant in both rye and wheat
after 14 days at 4 ◦C and after 56 and 70 days at 10 ◦C, respectively. If dough proofing is
conducted at the temperature used for fermentation, no significant change in those ratios
should be expected, since proofing times are generally much shorter than fermentation
times. Lactic acid and acetic acid are well known to occur in sourdough [33]. In addition to
its positive effects on taste and texture, lactic acid was reported to reduce the acrylamide
content of bread [34].

The citric acid content in the rye and wheat sourdoughs was approximately 20% at
4 ◦C. At 10 ◦C, the fermentation of citric acid stopped after day 70 in both sourdough
types. No organisms specializing in the production of citric acid were detectable in our
fermented sourdough. As an intermediate in the citric acid cycle, citric acid might have
been excreted from the bacterial cytosol. The citric acid content of sourdough has not been
reported in the literature to the best of our knowledge, and citric acid is not known to have
any effects on fermented sourdough bread or bakery products. Considering that citric acid
has a higher boiling point than acetic and lactic acid, citric acid should remain in bakery
products if common baking temperatures (<250 ◦C) are used. The involatile nature of citric
acid could inhibit the Maillard reaction in the bread crust, which is exposed to the highest
temperatures. Presumably, this could lead to decreased acrylamide content, as observed
with lactic acid.

Arabinose was detected in the rye sourdoughs fermented at 4 ◦C and 10 ◦C at
28.92 ± 10.98 g/kg. The ability to ferment arabinose has been reported in LAB [35]. Due to
its inhibition of sucrase, arabinose has been reported to inhibit colitis by modulating the
gut microbiota [36]. Colitis is defined as an infection of the large intestine and is related to
symptoms that also occur in patients experiencing IBS [37]. Therefore, a high arabinose
content in foods can be regarded as beneficial for reducing the inflammation that occurs in
this patient group.

Mannitol was detected at higher concentrations (3.81 ± 2.44 g/kg) in rye sourdough
than in wheat sourdough. The ability of lactobacilli to convert fructose to mannitol has
been reported [11]. Mannitol cannot be metabolized by the human digestive system and
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is therefore used as a marker for intestinal permeability [38]. No adverse effects of high
mannitol content on IBS symptoms are expected, but positive effects for patients with
piriformis syndrome have been reported [38]. Mannitol is used in the food industry
as an alternative sweetener to replace sucrose [39], providing a sweeter taste in bakery
products [40]. Hence, rye sourdough could be used to alter the sweetness profile of the
final bakery product.

The HPLC-RI device used for saccharide and polyol analysis was calibrated for ery-
thritol, lactose, maltitol, sorbitol, sucrose, and xylitol. However, none of those compounds
were detected in the sourdoughs.

4.4. Sourdough Microbiome

As suggested by the results, the microbiome of wheat sourdough seemed to be more
capable of long-chain FOS degradation at a fermentation temperature of 4 ◦C than at 10 ◦C.
Next-generation sequencing of the sourdough microbiome revealed the adaption of the
sourdough microbiome to the flours used, with Acetobacter cerevisiae, Acetobacter okinawensis,
Fructilactobacillus sanfranciscensis, and Leuconostoc citreum as the dominant organisms. These
bacterial strains showed progressive growth, starting from low concentrations in the starter
cultures. Lactobacillus sp. exhibited growth in each of the sourdoughs. However, due
to the lack of a more precise classification, no further statements can be made regarding
the specific metabolic processes performed by Lactobacillus sp. The growth of both Fruc-
tilactobacillus sanfranciscensis and Leuconostoc citreum was not expected in nonmodified
sourdough (sourdough with artificially added cultures), but their presence is desirable in
healthy sourdough. L. sanfranciscensis was identified as a key organism in high-quality
sourdough fermented at 16–24 ◦C [41]. The growth of L. sanfranciscensis at temperatures
≤ 10 ◦C and the occurrence of A. okinawensis in low-FODMAP sourdough have not been
reported to date. The growth of L. citreum was reported in wheat sourdough [42], and
L. citreum has been used for the production of yeast-free wheat bread [43].

Although the results for the FOS, saccharide, and organic acid content indicate that
desirable microorganisms showed ideal growth patterns, no assertion can be made regard-
ing the bakery products produced with those sourdoughs. Future studies on the use of
these products should be conducted to evaluate the sensorial and textural parameters of
the final bakery products.

Fermenters are commonly used in the industrial production of yeast. For sourdough
fermentation, the reproducibility of the results and the handling of the sourdough would
benefit greatly from the use of specialized fermenters as well. To incorporate agitators
and the automated feeding of flour–water mixtures into these experiments, the dry matter
content of our original technique would need to be greatly reduced in order to provide
better mixability and fluidity. Using fermenters, a temperature range between 2 ◦C and
10 ◦C should be tested with additional flour types in the future to clarify the influence of
those parameters on the sourdough microbiome. Moreover, the addition of industrial yeast
(Saccharomyces cerevisiae) to the sourdough at the dough stage should be tested in future
studies, as the bread texture and sensorial parameters could possibly be improved by the
use of yeast.

5. Conclusions

This study shows the feasibility of an easy-to-perform fermentation technique that can
be industrially or domestically applied, as well as its benefits for the nutritional parameters
of the sourdough produced. Back-slop-feeding on a daily basis is used in industry mostly
due to the higher sourdough amounts required for production. Here, we suggest a method
that primarily serves the cultivation of desired organisms rather than the purpose of
producing large amounts of sourdough.

As flour was identified as the main source of FOSs, the use of low-FOS flour can
reduce the final FOS content in products prior to their further processing. We successfully
created linkages between flour, the sourdough microbiome, and fermentation byproducts
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to sketch a coherent picture of this process. With the appropriate starter cultures, long-
term fermentation without the growth of unwanted microbes is possible. We find that by
varying fermentation temperatures and flour compositions, bakeries could grow different
sourdough cultures and create blends with specific acid and sweetness profiles. We are
convinced that the results of this study will contribute to a deeper understanding of
sourdough fermentation and can lead to the development of modified products that provide
additional benefits for people experiencing GI disorders, as well as for all other people.
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