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Abstract
Temporal variation in demographic processes can greatly impact population dynam‐
ics. Perturbations of statistical coefficients that describe demographic rates within 
matrix models have, for example, revealed that stochastic population growth rates 
(log(λs)) of fast life histories are more sensitive to temporal autocorrelation of en‐
vironmental conditions than those of slow life histories. Yet, we know little about 
the mechanisms that drive such patterns. Here, we used a mechanistic, functional 
trait approach to examine the functional pathways by which a typical fast life his‐
tory species, the macrodetrivore Orchestia gammarellus, and a typical slow life history 
species, the reef manta ray Manta alfredi, differ in their sensitivity to environmen‐
tal autocorrelation if (a) growth and reproduction are described mechanistically by 
functional traits that adhere to the principle of energy conservation, and if (b) de‐
mographic variation is determined by temporal autocorrelation in food conditions. 
Opposite to previous findings, we found that O. gammarellus log(λs) was most sensi‐
tive to the frequency of good food conditions, likely because reproduction traits, 
which directly impact population growth, were most influential to log(λs). Manta al-
fredi log(λs) was instead most sensitive to temporal autocorrelation, likely because 
growth parameters, which impact population growth indirectly, were most influential 
to log(λs). This differential sensitivity to functional traits likely also explains why we 
found that O. gammarellus mean body size decreased (due to increased reproduction) 
but M. alfredi mean body size increased (due to increased individual growth) as food 
conditions became more favorable. Increasing demographic stochasticity under con‐
stant food conditions decreased O. gammarellus mean body size and increased log(λs) 
due to increased reproduction, whereas M. alfredi mean body and log(λs) decreased, 
likely due to decreased individual growth. Our findings signify the importance of 
integrating functional traits into demographic models as this provides mechanistic 
understanding of how environmental and demographic stochasticity affects popula‐
tion dynamics in stochastic environments.
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1  | INTRODUC TION

Unraveling the drivers of population growth in variable envi‐
ronments is critical for answering eco‐evolutionary questions 
(Ruokolainen, Linden, Kaitala, & Fowler, 2009; Smallegange, Deere, 
& Coulson, 2014; Tuljapurkar, 1982), developing conservation man‐
agement strategies (Clark, 2010; Metcalf & Koons, 2007), predicting 
the time course of epidemics (Chaves, Scott, Morrison, & Takada, 
2014; Keeling & Gilligan, 2000) and in influencing the yield of har‐
vested populations (Cameron et al., 2016; Higgins, Hastings, Sarvela, 
& Botsford, 1997; Smallegange & Ens, 2018). Both demographic pro‐
cesses and temporal variation in environmental conditions are im‐
portant drivers of population growth (Higgins et al., 1997; Lande, 
Engen, & Sæther, 2003; Turchin & Taylor, 1992). Typically, neither 
demography nor environmental conditions are solely responsible 
for driving population‐level responses (Lande et al., 2003; Shelton 
& Mangel, 2011), and research efforts, therefore, concentrate on 
identifying and understanding the population consequences of their 
interaction (Lande et al., 2003; Munch, Snover, Watters, & Mangel, 
2005; Paniw, Ozgul, & Salguero‐Gómez, 2018).

Interactions between environmental conditions and demogra‐
phy arise because variation in environmental conditions translates 
into variation in the demographic rates of survival, growth and re‐
production, thereby affecting population sizes (Boyce, Haridas, & 
Lee, 2006; Coulson et al., 2011). The dynamics of such change have 
been studied extensively in stochastic population analyses where 
temporal variation in environmental conditions lacks temporal au‐
tocorrelation (Getz & Haight, 1989; Lande, Sæther, & Engen, 1997). 
Results from these analyses reveal that long‐lived species with 
slow life histories, characterized by high survival and low fecundity 
(Gaillard et al., 1989), are generally buffered from increased environ‐
mental variation (Morris et al., 2008, Morris et al., 2011; Dalgleish, 
Koons, & Adler, 2010; Sæther et al., 2013; but see Jongejans, Kroon, 
Tuljapurkar, & Shea, 2010; McDonald et al., 2017). Short‐lived spe‐
cies with fast life histories characterized by high fecundity but low 
survival (Gaillard et al., 1989), on the other hand, are more likely to 
show increasing fluctuations in population sizes with increasing en‐
vironmental variation (McDonald et al., 2017; Morris et al., 2008).

In nature, environmental fluctuations usually show positive au‐
tocorrelation over time (Ariño & Pimm, 1995; Halley, 1996; Inchausti 
& Halley, 2002). Yet, we are only beginning to unravel whether links 
between life history characteristics and population responses to 
environmental fluctuations identified for uncorrelated environ‐
ments (Dalgleish et al., 2010; Morris et al., 2008) hold in biologi‐
cally more realistic, autocorrelated environments. For example, in 
mite microcosm experiments, life stage responses to environmental 
perturbations (harvesting) differ between autocorrelated and un‐
correlated environments (Cameron et al., 2016; Smallegange & Ens, 
2018). Theoretical studies have shown that a change in the serial 
correlation of demographic rates may increase or decrease pop‐
ulation growth rate depending on the structure of the life history 
(Tuljapurkar, Gaillard, & Coulson, 2009). Using a cross‐taxonomical 
approach, Paniw et al. (2018) most recently illustrated that species 

characterized by fast life histories exhibit the highest sensitivities 
to simulated autocorrelation in demographic rates, whereas slow 
life history species were less sensitive to temporal autocorrelation. 
With predicted global changes in environmental patterning (García‐
Carreras & Reuman, 2011), it is urgent to gain a mechanistic under‐
standing of the life history processes that result in these distinct 
demographic responses between slow and fast life histories to tem‐
poral autocorrelation in environmental conditions. The demographic 
approaches used to date to map out life history patterns across sto‐
chastic environments, however, lack a mechanistic representation of 
the biological processes that give rise to observed demographic vari‐
ation (Salguero‐Gómez, Violle, Gimenez, & Childs, 2018), as the state 
variables used in the models (e.g., body size, developmental stage, 
age) are too phenomenological to explore underlying mechanisms of 
variation (Salguero‐Gómez, 2017).

Mechanistic trait‐based models can provide functional insights 
into the links between individual life history, the environment and 
population dynamics. Recently, demographic functions describing 
growth and reproduction have been derived from a simple dynamic 
energy budget (DEB) growth model, and incorporated into an in‐
tegral projection model (IPM) (Easterling, Ellner, & Dixon, 2000) to 
describe survival, growth and reproduction in relation to the feed‐
ing environment (Smallegange, Caswell, Toorians, & Roos, 2017). 
Here we used such DEB‐IPMs to examine the functional pathways 
by which a typical fast and a typical slow life history species differ 
in their response to shifts in temporal autocorrelation when their 
individual growth and reproduction are described by functional, 
life history traits. We conducted a field study on a barrier island 
salt marsh to parameterize a DEB‐IPM for the fast‐reproducing and 
short‐lived macrodetritivore talitrid beach hopper (Orchestia gam-
marellus) and used a published DEB‐IPM of the slow‐reproducing, 
long‐lived reef manta ray (Manta alfredi) (Smallegange et al., 2017). 
This study is also a demonstration of how a unified method like the 
DEB‐IPM can be applied to species with extremely different life 
cycles. For each DEB‐IPM, we carried out stochastic simulations 
to assess if the fast (or slow) life history species showed high (or 
low) sensitivity of the stochastic population growth rate (log(λs)) to 
shifts in temporal autocorrelation in food availability (Morris et al., 
2008; Paniw et al., 2018). Because environmental effects can affect 
individual growth and thereby the size of individuals (DeLong et al., 
2015; Woodward et al., 2005), we also explored patterns in mean 
body size across the variable environments. In the stochastic demo‐
graphic model, the temporal sequence of good and bad food envi‐
ronments was driven by a Markovian process that governs the serial 
correlation of environment states. In order to cover a wide range of 
stochastic environments, we varied this serial correlation from blue 
to white to red noise color (corresponding to a negative first‐order 
autocorrelation, no autocorrelation, and a positive first‐order auto‐
correlation of the temporal sequence, respectively), but also varied 
the frequency at which the good environment occurred from zero 
to one. We also conducted a perturbation analysis for each species 
to assess which life history trait had the strongest effect on the sto‐
chastic population growth rate, as this mediates population‐level 
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responses to temporal autocorrelation (Franco & Silvertown, 1996, 
2004; Tuljapurkar & Haridas, 2006). Finally, we assessed to what 
extent patterns in log(λs), mean body size and elasticities depended 
on demographic stochasticity (inherent randomness in demographic 
processes (Lande et al., 2003), for example, when individuals of the 
same size and in the same environment, independently of each other, 
have good or bad luck in their feeding experience), as demographic 
stochasticity, population structure and temporal autocorrelation can 
interact to shape population dynamics (Vindenes & Engen, 2017).

2  | MATERIAL AND METHODS

2.1 | Brief model description

If a female survives from time t to time t + 1, she grows from length 
L to length L′ following a von Bertalanffy growth curve. If a surviving 
female is an adult, she also produces eggs. These events are cap‐
tured by four fundamental functions: the survival function, S(L(t)), 
the growth function, G(L′,L(t)), the reproduction function, R(L(t)), and 
the parent‐offspring function, D(L′,L(t)), which describes the associa‐
tion between the body length of the parent L and offspring length 
L′. Denoting the number of females at time t by N(L,t) means that the 
dynamics of this body length number distribution from time t to t + 1 
can be written as:

where the closed interval Ω denotes the length domain. The survival 
function S(L(t)) in Equation 1 is the probability that an individual of 
length L survives from time t to t + 1:

where E(Y) is the expected feeding level, which ranges from zero 
(empty gut) to one (full gut). Here, individuals that experience E(Y) = 1 
can be assumed to always have a full gut. The parameter Lm is the max‐
imum body length under conditions of unlimited resource, E(Y) = 1, and 
κ is the fraction of ingested energy allocated to respiration. Individuals 
die from starvation at a body length at which maintenance require‐
ments exceed the total amount of assimilated energy, which occurs 
when L>Lm ⋅E

(
Y
)
∕𝜅 and hence, then, S(L(t)) = 0 (e.g., an individual of 

size Lm will die of starvation if E(Y) < κ).
The function G(L′,L(t)) is the probability that an individual of body 

length L at time t grows to length L’ at t + 1, conditional on survival, 
and, following common practice (Easterling et al., 2000), follows a 
Gaussian distribution:

with

and

where 
⋅

r
B
 is known as the von Bertalanffy growth rate and σ(Y) is the 

standard deviation of the expected feeding level. Note that we as‐
sumed that individuals can shrink under starvation conditions.

The reproduction function R(L(t)) gives the number of offspring 
produced between time t and t + 1 by an individual of length L at 
time t:

where Rm is the maximum reproduction rate of an individual of maxi‐
mum body length Lm. Individuals are mature when they reach puberty 
at body length Lp and only surviving adults reproduce (Equation 1); 
thus, only individuals within a cohort of length Lp ≤ L ≤ LmY/κ reproduce.

The probability density function D(L′,L(t)) gives the probability 
that the offspring of an individual of body length L are of length L’ at 
time t + 1, and hence describes the association between parent and 
offspring character values:

where ELb
(
L (t)

)
 is the expected size of offspring produced by a co‐

hort of individuals with length L(t), and �2
Lb

(
L (t)

)
 the associated vari‐

ance. For simplicity, we set ELb
(
L (t)

)
 constant and assumed its 

associated variance, �2
Lb

(
L (t)

)
, to be very small.

2.2 | Field study to collect O. gammarellus life 
history data

The litter feeder O. gammarellus is a terrestrial amphipod belonging 
to the family Talitridae (Figure 1a). It is a bioturbating soil animal that 
typically lives in the litter and soil surface layer of tall, salt marsh in‐
termediate‐ and late‐successional‐stage vegetation (Schrama, Berg, 
& Olff, 2012). At our field site, the salt marsh of the barrier Island of 
Schiermonnikoog, the Netherlands (53°28′N and 6°12′E), the ani‐
mals were found between 1.30 and 1.54 m above mean sea level. 
They tolerate regular submersion in saltwater due to their osmoreg‐
ulatory capacity (Morrit, 1989). As is typical of most soil fauna, they 
are sensitive to high temperatures and drought (Moore & Francis, 
1986a). In temperate regions, this species has a yearly life cycle with 
two reproductive periods, the first at mid‐June/early July and the 
second in early–mid‐August (Figure 1a). Both cohorts overwinter in 
the subadult or adult stage and reproduce in the summer the year 
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after they were born. Mortality mainly occurs after the second re‐
productive peak. Talitridae do not lay eggs in the soil but carry eggs 
and embryos in a brood pouch between their legs, in which an aver‐
age female carries about 17 eggs. Populations are typically female 
biased (Moore & Francis, 1986b), with on average four times as many 
females as males (M. P. Berg, unpublished data).

Measurements of O. gammarellus’s life history and popula‐
tion size have been taken in the salt marsh of Schiermonnikoog 
since 2014. From 2015 to 2017, we have data on body size dis‐
tributions (in terms of juvenile and adult mean body length), but 
only for 2017 we also have data on population structure (in terms 
of proportion of eggs, juveniles, and adults). The average annual 
air temperature on the island is 10.2°C (±0.72), and the average 
yearly rainfall is 824 mm (±149.1) (data obtained from the Royal 
Netherlands Meteorological Institute at www.knmi.nl). The study 
site was on a cattle‐ and geese‐grazed part of the salt marsh, at 
the late‐successional stage of 120 years of vegetation succession 
(Olff, Leeuw, Bakker, Platerink, & van Wijnen, 1997). The vege‐
tation consisted of a mosaic of tall vegetation dominated by sea 
couch (Elytrigia atherica) and sea rush (Juncus maritimus) intermin‐
gled with short, grazed vegetation dominated by common salt‐
marsh grass (Puccinellia maritima), sea plantain (Plantago maritima), 
and sea milkwort (Glaux maritima). The sample site was selected at 
an intermediate salt marsh height (53°28′55N, 6°12′56E) along a 
low (close to the sea) to high (2 km away from the sea) elevational 
gradient, which had an average inundation frequency of 60 times 
per year. The soil consisted of a 12‐cm‐thick clay layer on bare 
sand with a base elevation of 1.16 m (±SE 2.2 cm above the Dutch 
Ordinance Level).

Every year, six to seven population samples were taken: 
once a month in summer, every 2 months in winter, and every 
6 weeks in spring and autumn. Samples were taken from under 
old, partly dried‐out cow dung, which is a preferred microhabi‐
tat of O. gammarellus, using a plastic bucket (27 cm Ø) without 
a bottom. The bucket was placed around the dung and pressed 
2 cm into the ground to ensure that the whole population was 
sampled. Typically, 100–750 specimens were collected per sample 
by hand and stored in 96% ethanol. For each sample, we measured 
the length (mm) of the first pereon segment and the number of 
podomeres in the antennal flagellum of all individuals. As the body 
of O. gammarellus is curved, it is difficult to measure total body 
length accurately. The first pereon overlaps the head and second 
pereon and can be measured reliably, and using the allometric rela‐
tionship Body length=0.3797+11.38056 ⋅pereon length (M. P. Berg, 
unpublished data), we estimated total body length L. The number 
of podomeres was used to estimate the developmental stage of 
the individuals. On average, one podomere is added to the flagel‐
lum with each moult (Wildish, 1969). Juveniles are born with four 
podomeres and females carrying eggs typically have 12 or more 
podomeres, while the oldest individuals have 21 podomeres as a 
maximum.

2.3 | DEB‐IPM parameterization for O. gammarellus

We used O. gammarellus life history data collected from our field site 
(see above) to calculate input values for our model analyses. Mean 
body length at birth was measured at 3.80 ± 0.37 SD (standard de‐
viation) mm. Females matured at a mean body length of 

F I G U R E  1   (a) Schematic representation of the life cycle of Orchestia gammarellus. The first cohort of juveniles is born between mid‐June 
and early July (arrow 1), depending on the temperature conditions in late winter and spring. Probably, the same females produce a second 
cohort of juveniles about 6 weeks later in early August (arrow 2). Then, the females that have reproduced die in October (cross), after having 
lived approximately for 1 year. (b) Manta alfredi life cycle. Adult females produce on pup per 1–2 years, which take on average 10 years to 
mature, after which individuals live for another 30 years or more

Yearling

Juvenile

Adult

Juveniles
mature a�er

about 10 
years

An adult female
produces one pup 

every 1-2 years
Longevity is 40 
years or more

(a) (b)

http://www.knmi.nl
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7.28 mm ± 0.50 SD mm and can reach a maximum length of 15.61 mm. 
Based on these observations, we set Lb = 3.80 mm, Lp = 7.28 mm and 
Lm = 15.61 mm. There are two reproduction peaks, one in mid‐June/
early July and the second one in early–mid‐August; the highest num‐
ber of offspring produced by a female in a single clutch during one of 
these peaks was 32. In the laboratory, under highly favorable condi‐
tions, the time between mating and releasing young can be as short 
as 4 weeks (Morritt & Stevenson, 1993). Combining the latter two 
observations, we set Rm = 32 offspring per month. We have no sur‐
vival estimates of our population and used the observation that daily 
mortality percentage, m, is 0.9% per day in O. gammarellus in south‐
ern Portugal (Dias & Sprung, 2003) to create a dummy data set 
where the proportion survivors, s, at day t + 1 was related to the 
proportion survivors at day t and m following st+1= st−m ⋅st, with 
m = 0.9% and s0 = 1. Using this dummy dataset, we estimated the 
monthly mortality rate by estimating the slope of the regression of 
log‐transformed proportion survivors [month‐1] against time [month] 
at µ = 0.27 month‐1 (see Smallegange & Berg, 2019). We also do not 
have observations on the von Bertalanffy growth rate 

⋅

r
B
 and instead 

used the observed estimated growth rate for O. gammarellus females 
in southern Portugal at 1.52/year (Dias & Sprung, 2003), which, ex‐
pressed per month, equals 

⋅

r
B
=1.52∕1∕12=0.13 month‐1. It is likely 

that the von Bertalanffy growth rate and mortality rate differ be‐
tween populations at our field site and in southern Portugal. 
However, our perturbation analysis (see Section 3.3, Figure 4) re‐
vealed that Lp and Lm were most influential to the log stochastic 
population growth rate, from which we infer that model outcomes 
are highly insensitive to the specific values of the von Bertalanffy 
growth rate and mortality rate. Finally, we assumed 
ELb

(
L (t)

)
=Lb=3.80 mm and �2

Lb

(
L (t)

)
=0.001, and, for the starva‐

tion condition, we assumed the commonly used value of κ = 0.80 
(Add‐my‐pet, 2016). All parameter values are presented in Table 1; 
note that the time step t of the DEB‐IPM is 1 month for O. gammarel-
lus. A model performance check is presented in Smallegange and 
Berg (2019).

2.4 | DEB‐IPM parameterization for the reef 
manta ray

The reef manta ray M. alfredi (Mobulidae) (Figure 1b) is one of the largest 
rays in the world and is distributed worldwide in tropical and subtropical 
waters. They are nonmigratory and live close to coasts, reefs or islands, 
where they aggregate at cleaning stations and areas where they feed on 
zooplankton (Marshall et al., 2011). We chose to use the DEB‐IPM with 
the additional assumption that individuals cannot shrink under starva‐
tion conditions (as shrinking is less likely to occur in vertebrates than in 
invertebrates) (Smallegange et al., 2017). We use published life history 
data on female reef manta rays obtained from a stable population off 
the coasts of Yaeyama Islands, Japan, which population growth rate is 
estimated at 1.02–1.03 per year (Kashiwagi, 2014). We use the disk 
width, that is, the distance between the two pectoral fin tips, as the 
measure for body length. Length at birth is measured at 130 cm and 

females mature at about 10 years of age at a minimum length of 380 cm 
(Kashiwagi, 2014) and live at least 40 years, reaching a maximum length 
of 550 cm (Marshall et al., 2011). On average, adult females produce one 
pup every 2 years (Kashiwagi, 2014), but this can be as high as one pup 
every year (Marshall et al., 2011). Based on these observations, we set 
Lb = 130 cm, Lp = 380 cm, Lm = 550 cm and Rm = 1/year. The survival rate 
of juveniles and adults is estimated at 0.95 (Kashiwagi, 2014) and we set 
the mortality rate constant at �=− log

(
0.95

)
=0.05∕year. The von 

Bertalanffy growth rate is estimated for females at 
⋅

r
B
 = 0.18 (Kashiwagi, 

2014). We assumed ELb
(
L (t)

)
=Lb=130 cm and �2

Lb

(
L (t)

)
=0. For the 

starvation condition, we assumed the commonly used value of κ = 0.80 
(Add‐my‐pet, 2016). All data are summarized in Table 1; note that the 
time step t of the DEB‐IPM is 1 year for the reef manta ray.

2.5 | Stochastic demographic model

We used the stochastic demographic model p
(
t+1

)
=A (t) ⋅p (t), 

where p(t) is the population vector at time t and A(t) is a DEB‐IPM 
at time t defined by a two‐state Markov chain that gives the prob‐
ability distribution of environment states at time t. In this chain, state 
1 is the good environment and state 2 is the bad environment. This 
results in the following Markov chain habitat transition matrix H 
(Caswell, 2001, p. 379):

where p is the probability of switching from the good to the bad 
environment, and q is the probability of switching from the bad to 
the good environment. The serial or autocorrelation of the Markov 
chain equals ρ = 1 − p − q (Caswell, 2001, p. 379). High, positive 
values of ρ are referred to as red noise; high and negative values of 
ρ as blue noise; and ρ = 0 denotes white noise where the probabil‐
ity of switching states is independent of the current state. The 
temporal frequency at which the good environment occurs is 
given by f = q/(p + q) (Caswell, 2001, p. 379). We used a high feed‐
ing level E

(
Y
)
high

 and a low feeding level E
(
Y
)
low

 to define the good 
and bad environmental states, respectively. Specifically, above 
and below the feeding level where we predict population equilib‐
rium at λ = 1, we defined E

(
Y
)
low

 as the expected feeding level as‐
sociated with λ where reproduction was negligible and defined 
E
(
Y
)
high

 as the expected feeding level associated with a very high 
value of λ. For O. gammarellus, this implied the values E

(
Y
)
low

=0.4 
and E

(
Y
)
high

=1.0 (Smallegange & Berg, 2019), and for the reef 
manta ray values were, respectively, below and above the ex‐
pected feeding level of E

(
Y
)
=0.75 for which we previously pre‐

dicted population equilibrium at λ = 1 (Smallegange et al., 2017): 
E
(
Y
)
low

=0.50 and E
(
Y
)
high

=0.90. By iterating H (for all combina‐
tions of p and q) a time series of length 3,000 (with an initial tran‐
sient length of 500 discarded, a starting population of one 
individual in each size bin, and with the initial environment state 
chosen randomly [see also Tuljapurkar, Horvitz, & Pascarella, 

(8)H=

⎡
⎢⎢⎣

1−p q

p 1−q

⎤
⎥⎥⎦
,
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2003]) was generated (Smallegange et al., 2014). This sequence 
determines the environment state, and hence the feeding level 
E(Y ), that a population experiences at each time step, from which 
the individual‐level functions were calculated to construct A(t), 
that is, the DEB‐IPM at time t defined by the feeding level E(Y ) at 
time t. At each time step, A(t) was stored with associated vectors 
of population structure to calculate the log of the stochastic 
growth rate λs as log

�
�s
�
=

1

�

�−1∑
�=0

rt with rt= log
[
p
(
t+1

)
∕p (t)

]
, where 

τ = 3,000 − 500 = 2,500. At each time step, also the mean of the 
body size distribution was calculated, after which we used the 
pooled mean body size, calculated as the grand mean of all mean 
body sizes over time period τ, for our analysis. To explore to what 
extent demographic stochasticity affects patterning, we varied 
the standard deviation of the expected feeding level, σ(Y ), and ran 
all analyses first with σ(Y ) = 0.1, and then with σ(Y ) = 0.5.

2.6 | Perturbation analysis

We conducted a perturbation analysis to examine the elasticity of λs 
to perturbation of each of the model parameters Lb, Lp, Lm, Rm, 

⋅

r
B
, and 

µ (Table 1) to identify which life history parameters under which sto‐
chastic regimes were most influential to the long‐run, log stochastic 
population growth rate log(λs). For this, we perturbed each parame‐
ter by 1% and calculated the elasticity of log(λs) to each model pa‐
rameter. Again, we varied the standard deviation of the expected 
feeding level, σ(Y), and ran the perturbation analysis first with 
σ(Y) = 0.1, and then with σ(Y) = 0.5.

We excluded the parameter κ, because, apart from occurring in 
the starvation condition (Equation 2), κ is also related to Lm (which is 
mathematically proportional to κ) and Rm (which is mathematically 
proportional to [1 − κ]) (Kooijman & Metz, 1984). A perturbation 
analysis of κ is, therefore, mathematically challenging and biological 

interpretation of its results difficult as effects of variation in κ will 
carry over to affect survival, growth as well as reproduction. Finally, 
κ is the only parameter that cannot be measured directly on individ‐
uals, which would make it impractical as an indicator of population 
performance.

3  | RESULTS

3.1 | Shifts in log(λs) across stochastic environments

Under low variability in expected feeding level (σ(Y ) = 0.1), our 
stochastic analysis revealed for O. gammarellus that, across all 
combinations of the probability of switching from the bad to good 
environment (q), and the probability of switching from the good to 
bad environment (p), increases in log(λs) closely matched increases 
in the frequency of good environments (f) (Figure 2a: solid lines 
denoting constant values of log(λs) are closely parallel to dashed 
lines denoting constant values of f). Therefore, at intermediate 
values around f = 0.5, shifts in noise color, that is, the autocorrela‐
tion ρ, moving from red noise at the bottom‐left part of Figure 2a 
to blue noise at the top‐right part of Figure 2a, has little impact 
on log(λs) (Figure 2a: solid line of log(λs) = 0.1 is closely parallel 
to f = 0.5). In contrast, at low values of f, log(λs) increases slightly 
as noise color shifts from red to blue, whereas at high values of 
f, log(λs) decreases slightly as noise color shifts from red to blue 
(Figure 2a). For M. alfredi, a different pattern emerged. Like O. gam-
marellus, log(λs) increased with increasing f, but the correlation was 
less strong, particularly at low values of f (Figure 2b: solid lines of 
constant log(λs) are much less parallel to dashed lines of constant 
f). In contrast to O. gammarellus, log(λs) always decreased as noise 
colored shifted from red to blue (Figure 2b: moving along the arrow 
from red to blue, log(λs) always decreases); the magnitude of this 
decrease, however, increased with increasing values of f.

TA B L E  1   DEB parameters for female Orchestia gammarellus in a population on the island of Schiermonnikoog, The Netherlands and for 
female Manta alfredi in a population of Yaeyama Islands, Japan (Kashiwagi, 2014)

Symbol Description

O. gammarellus M. alfredi

Value Unit Value Unit

E(Y) Expected feeding level at which DEB parameters are measured NA — NA —

Lb Body length at birth 3.79 mm 130 cm

Lp Body length at puberty (maturity) 7.29 mm 380 cm

L∞ Ultimate length Lm ⋅E
(
Y
)

mm NA cm

Lm Maximum length at E(Y) = 1 15.61 mm 550 cm

Rm Maximum reproduction rate at Lm 32 # month−1 1 # year−1

⋅

rB
von Bertalanffy growth rate 0.13 month−1 0.18 year−1

κ Energy allocation fraction to somatic maintenance and growth 0.80 — 0.80 —

µ Mortality rate 0.27 month−1 0.05 year−1

σ(Y) Standard deviation of expected feeding level used in simulations 0.1 or 0.5 — 0.1 or 0.5 —

Note: For O. gammarellus, parameters were estimated using data from our field populations, except for 
⋅

rB and µ, which were estimated for a popula‐
tion of O. gammarellus in southern Portugal (Dias & Sprung, 2003).
Abbreviation: NA, not available.
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Under high variability in expected feeding level (σ(Y) = 0.5), very 
similar results emerged (Figure 2c,d). The most notable difference was 
that log(λs) of O. gammarellus was higher for each combination of p and 
q if σ(Y) = 0.5 than if σ(Y) = 0.1 (Figure 2c vs. 2a). Variability in expected 
feeding level had little effect on log(λs) of M. alfredi (Figure 2d vs. 2b). 
Log(λs) was overall slightly lower under high compared to low variabil‐
ity in expected feeding level (Figure 2d vs. 2b), and log(λs) levels off to a 
low plateau under white/blue noise and low values of f (top‐left corner 
of Figure 2d) if σ(Y) = 0.5, whereas if σ(Y) = 0.1, log(λs) values reached a 
shallow valley in that same region (top‐left corner of Figure 2b).

3.2 | Shifts in mean body size across stochastic 
environments

Under low variability in expected feeding level (σ(Y ) = 0.1), pooled 
mean body size for O. gammarellus decreased with increasing 

values of the frequency of good environments (f ) (Figure 3a: solid 
lines denoting constant values of mean body size were close to 
being parallel to dashed lines denoting constant values of f ). This 
is likely due to an increase in the number of smaller individuals 
(eggs, juveniles) as also log(λs) increased with increasing values of f 
(Figure 2a). Variation in noise color had some effect on pooled mean 
body size of O. gammarellus (Figure 3a): for low values of f, mean 
body size decreased when moving from red to blue noise, whereas 
the opposite pattern occurred at high values of f. In contrast to 
O. gammarellus, pooled mean body size of M. alfredi increased with 
increasing values of the frequency of good environments (f ), par‐
ticularly under red noise (Figure 3b). Like O. gammarellus, variation 
in noise color only had a small effect on pooled mean body size, 
which increased slightly when moving from red to blue noise for all 
but the highest values of f (Figure 3b). Interestingly, under certain 
conditions, the probability of moving to the bad environment (p), 

F I G U R E  2   Shifts in log(λs) across stochastic environments when 
variability in expected feeding level is low, (a) and (b), or high, (c) 
and (d). Contour plots show for Orchestia gammarellus (a) and (c) and 
Manta alfredi (b) and (d) how the log stochastic population growth 
rate (log(λs)) relates to the probability of switching from the bad 
to good environment (q) and the probability of switching from the 
good to bad environment (p) depending on variability in expected 
feeding level. The thick solid line denotes population equilibrium 
at log(λs) = 0. The colored arrows show values of p and q where the 
autocorrelation (ρ) in environmental regimes is red (bottom‐left‐
hand corner), white (antidiagonal) and blue (top‐right‐hand corner); 
the three dashed lines in each panel show values of p and q in which 
the good environment frequency f equals 0.25, 0.50 and 0.75. 
For O. gammarellus, E
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F I G U R E  3   Shifts in pooled mean body size across stochastic 
environments when variability in expected feeding level is low, (a) 
and (b), or high, (c) and (d). Contour plots show how pooled mean 
body size (mm) for Orchestia gammarellus, (a) and (c), and pooled 
mean body size (cm) for Manta alfredi, (b) and (d), the stochastic 
population growth rate (log(λs)) relates to the probability of 
switching from the bad to good environment (q) and the probability 
of switching from the good to bad environment (p) depending on 
variability in expected feeding level. The colored arrows show 
values of p and q where the autocorrelation (ρ) in environmental 
regimes is red (bottom‐left‐hand corner), white (antidiagonal) and 
blue (top‐right‐hand corner); the three dashed lines in each panel 
show values of p and q in which the good environment frequency 
f equals 0.25, 0.50 and 0.75. For O. gammarellus, E

(
Y
)
low

=0.4 and 
E
(
Y
)
high

=1.0; for M. alfredi, E
(
Y
)
low

=0.5 and E
(
Y
)
high

=0.9

p:
 p

ro
ba

bi
lit

y 
of

 m
ov

in
g 

to
 b

ad
 e

nv
iro

nm
en

t
q: probability of moving to good environment

1

0
10

1

Orches�a
gammarellus

Manta
alfredi

1

1

0
10

10

σ(Y ) = 0.1

σ(Y) = 0.5 σ(Y) = 0.5

4.64

4.66

4.7

5. 45.6

5.8

6

6

27
0

26
0

26
0

σ(Y) = 0.1(a) (b)

(c) (d)



     |  9357SMALLEGANGE ANd BERG

has little effect on pooled mean body size of both species. For 
O. gammarellus this was the case when values of q, the probability 
of moving to the good environment, were low. For M. alfredi, this 
was the case for a broad range of q values, as long as value of p 
was not low (Figure 3b).

Under high variability in expected feeding level (σ(Y) = 0.5), 
pooled mean body size for O. gammarellus was overall smaller than 
under low variability in expected feeding level (Figure 3c vs. 3a); 
again this matches the finding that log(λs) was overall higher under 
high than low variability in expected feeding level (Figure 2c vs. 2a), 
such that increased population growth leads to proportionally more 
smaller individuals (eggs, juveniles) in the population. Unlike under 
low variability in expected feeding level, pooled mean body size was 
insensitive to shifts in q, the probability of moving to the good envi‐
ronment, for almost all values of p, the probability of moving to the 
bad environment. Pooled mean body size slightly increased when 
moving from red to blue noise at higher values of f (Figure 3c). For 
M. alfredi, pooled mean body size was overall smaller under low vari‐
ability in expected feeding level (Figure 3d vs. 3b).

3.3 | Perturbation analysis

Under low variability in expected feeding level (σ(Y) = 0.1), for O. gam-
marellus, the perturbation analysis revealed that across nearly all 
values of p and q, perturbation of Lp elicited the maximum elasticity 
values of log(λs) (light gray area in Figure 4a), except for q = 0, where 
perturbation of maximum length, Lm, elicited the highest elasticity 
values (dark gray area in Figure 4a). For M. alfredi, log(λs) was most 
sensitive to, respectively, perturbation of Lm, length at birth Lb, and 
maximum reproduction rate, Rm, with increasing values of f (Figure 4b). 
Under red noise, log(λs) was most sensitive to perturbation of Lm or Rm.

Under high variability in expected feeding level (σ(Y) = 0.5), per‐
turbation results were very similar. For O. gammarellus, the only dif‐
ference was that for all values of p and q, the stochastic population 
growth rate was always most sensitive to perturbation of length at 
maturity (Figure 4c). For M. alfredi, a larger region under red noise 
and higher values of f (bottom‐left corner of Figure 4d) was now 
most sensitive to perturbation of Rm instead of Lm (Figure 4d vs. 4b).

4  | DISCUSSION

Our goal was to examine the functional pathways by which a typical 
fast and a typical slow life history species differ in their response 
to shifts in temporal autocorrelation when their individual growth 
and reproduction are described by functional, life history traits. We 
chose our study species such that this study is also a demonstra‐
tion of how a unified method like the DEB‐IPM can be applied to 
extremely different species. The reef manta ray M. alfredi (slow life 
history) consistently responded to a shift from red to blue noise with 
a decrease in stochastic population growth rate, regardless of the 
frequency at which good environments occurred. In contrast, the 
stochastic population growth rate of O. gammarellus (fast life history) 

either decreased or increased in response to a shift from red to blue 
noise, depending on whether the good environment frequency was 
high or low. More significantly, O. gammarellus stochastic population 
growth rate was more sensitive to shifts in good environment fre‐
quency than to shifts in temporal autocorrelation of food conditions: 
the higher the frequency value, the higher was the stochastic popu‐
lation growth rate. Qualitatively equivalent patterns emerged when 
the same stochastic analysis was applied to another fast life history 
species, the bulb mite Rhizoglyphus robini (Smallegange & Ens, 2018).

4.1 | Life history patterns across stochastic 
environments

Our findings on life history speed sensitivity to shifts in environ‐
mental autocorrelation from a mechanistic analysis are opposite to 

F I G U R E  4   Perturbation analysis results when variability in 
expected feeding level is low, (a) and (b), or high, (c) and (d). In case 
of Orchestia gammarellus, the stochastic population growth rate 
(log(λs)) was nearly always most sensitive to perturbation of length 
at puberty (Lp) (light gray areas) (a) and (c), except for a small region 
at very low values of q, the probability of moving from the bad 
to the good environment, and low variability in expected feeding 
level, where log(λs) was most sensitive to perturbation of maximum 
length (Lm) (dark gray areas) (a). In case of Manta alfredi, log(λs), was 
either most sensitive to perturbation of Lm, length at birth (Lb) or 
maximum reproduction rate (Rm) (b) and (d), which patterns differed 
slightly under red noise and higher values of f (bottom‐left corner 
of b and d). The three dashed lines in each panel show values of p 
and q in which the good environment frequency f equals 0.25, 0.50 
and 0.75. For O. gammarellus, E
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the recent outcome of the phenomenological, cross‐taxonomical 
analysis by Paniw et al. (2018). Although we only have stochastic 
functional trait analysis outcomes for three species (this study; 
Smallegange & Ens, 2018), we find there is merit in discussing po‐
tential reasons for why the two sets of results differ. Such a discus‐
sion is also urgent in light of the persistent problems that exist in the 
construction of standard matrix population models (Kendall et al., 
2019), such that Kendall et al. (2019) advocate to be cautious when 
interpreting results from, for example, cross‐taxonomical analyses 
that use such models. To start, it is important to note that the find‐
ing by Paniw et al. (2018) that fast life histories were on average 
more sensitive to environmental autocorrelation than slow species 
only explained 50% of the variance in sensitivity to autocorrelation. 
Our study species could therefore simply fall into the category of 
species that drive the unexplained variance. However, they might 
not in which case other explanations should be considered that 
focus on the difference in model approach. Standard stochastic 
analyses of matrix models perturb demographic rates directly to 
explore population consequences (Boyce et al., 2006; Morris et al., 
2008; Paniw et al., 2018). Because demographic rates in most such 
matrix models are statistical descriptors (with a mean and variance) 
of empirical observations (but see Klanjscek, Caswell, Neubert, & 
Nisbet, 2006), they lack a mechanistic underpinning of how envi‐
ronmental variation impacts demography through individual life 
history trajectories. An automatic assumption of such an model 
approach is that statistical descriptors of demographic rates apply 
to all explored environments (elsewhere we explain what problems 
can arise if this assumption is not justified; Smallegange et al., 2017). 
In a mechanistic approach, like ours, expected feeding level within 
a stochastic food time series defines the state of the current en‐
vironment, which subsequently determines an individual's growth 
and reproduction as dependent on its body size, and an energy al‐
location trade‐off (Smallegange et al., 2017). This presence versus 
absence of a mechanistic description of demography could explain 
the contrasting outcomes of our stochastic functional trait analy‐
sis and of standard stochastic analyses (Paniw et al., 2018). Further 
analyses are clearly warranted to confirm or reject this hypothesis, 
but we may need to be cautious with regard to the assumed mecha‐
nisms of how environmental variation affects demography. It also 
signifies the potential importance of integrating functional traits 
into demographic models (Salguero‐Gómez et al., 2018). The fact 
that in our functional trait approach species only differed in life his‐
tory trait values, and not in model structure as is often the case in 
standard stochastic analyses (Paniw et al., 2018), should facilitate 
future cross‐taxonomical comparative studies to evaluate which 
functional traits best describe and predict life history patterns and 
population dynamics across variable environments.

Interpreting a population's response to shifts in environmental 
patterning requires detailed knowledge of the variation in underlying 
demographic rates (Ezard & Coulson, 2010; Morris & Doak, 2004). 
Our perturbation analysis allows for a functional analysis of how en‐
vironmental change affects population responses, which revealed 
that the fast life history species O. gammarellus was most sensitive 

to perturbation of length at puberty: the body length at which indi‐
viduals start reproducing. The higher the feeding level, the quicker 
an individual reaches its length at puberty resulting in higher repro‐
duction, to which the stochastic population growth rate responds 
the strongest. Of the two quantities that defined the environmen‐
tal patterning in our simulations—good environment frequency 
and noise color—good environment frequency directly determines 
experienced feeding levels. Noise color, instead, is associated with 
both low and high good environment frequencies. It is therefore 
not surprising that a fast life history species responds more strongly 
to shifts in good environment frequency, as this directly affects its 
experienced feeding level, and thus reproductive output. The slow 
life history species M. alfredi was instead predominantly most sen‐
sitive to perturbation of two life history parameters important for 
growth: body length at birth and maximum body length. Only in very 
favorable environments, characterized by high good environment 
frequencies, was M. alfredi stochastic population growth rate most 
sensitive to a life history parameter associated with reproduction 
(maximum reproduction rate). Perhaps because M. alfredi was more 
sensitive to perturbation of growth parameters, it is less sensitive 
to shifts in good environment frequency, and, as a corollary, more 
sensitive to shifts in noise color. A stochastic functional trait anal‐
ysis of species from across the full fast‐slow life history continuum 
would reveal whether the relative influence of variation in good en‐
vironment frequency and noise color indeed shifts across the slow‐
fast life history continuum. Particularly for threatened species, this 
is important to ascertain, as these typically have slow life histories. 
Whereas standard stochastic analysis outcomes show that slow 
life history species are mostly buffered against shifts in temporal 
autocorrelation (Paniw et al., 2018), our functional trait analysis of 
one slow life history species reveals that its persistence could be af‐
fected by shifts in noise color, such as those of climate variables that 
are ongoing right now (García‐Carreras & Reuman, 2011).

4.2 | Body size as population performance indicator

Understanding how populations and communities respond to shifts 
in environmental patterning and how they can transition from stabil‐
ity to decline is an ongoing challenge in ecology (Carpenter et al., 
2011; Folke et al., 2004; Scheffer et al., 2009). The newest indices 
of population performances to predict such switches in popula‐
tion state include information on the dynamics of phenotypic traits 
(Baruah, Clements, Guillaume, & Ozgul, 2019), such as body size 
(Clements & Ozgul, 2016). However, despite many descriptive pat‐
terns of how trait and population dynamics relate (Baruah et al., 
2019; Clements & Ozgul, 2016), we know little about how life history 
processes drive body size as an indicator of population performance. 
For the fast life history species O. gammarellus, we find that shifts in 
stochastic population growth rate across variable environments are 
correlated with shifts in body size distribution resulting from varia‐
tion in reproductive effort. Specifically, reproduction is high (or low) 
in favorable (or unfavorable) environments, increasing (or decreasing) 
the relative abundance of eggs and juveniles, which shifts the body 
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size distribution toward smaller (or larger) sizes, affecting the popula‐
tion growth rate. For the slow life history species M. alfredi, shifts in 
body size distribution were also related to shifts in stochastic popu‐
lation growth rate, albeit more loosely and in a different manner, as 
population growth rate was most sensitive to perturbation of growth 
parameters and not reproduction. As environments become less 
favorable (or unfavorable) across the stochastic gradient, M. alfredi 
showed decreased (or increased) individual growth that shifts the 
body size distribution toward smaller (or larger) sizes, decreasing (or 
increasing) population growth rate. Such downward shifts in mean 
body size have been observed across a range of taxa in response to 
adverse environmental change (Gardner, Peters, Kearney, Joseph, & 
Heinsohn, 2011; Sheridan & Bickford, 2011), which has carried over 
to, for example, reduce survival rates in red knots Calidris canutus 
canutus (van Gils et al., 2016), and alter the shape of the density‐de‐
pendence function in Soay sheep Ovis aries (Coulson et al., 2008). 
All in all, our results support the recent proposition that shifts in 
body size can be indicative of a shift in a population's performance 
(Clements & Ozgul, 2016). In addition, in the case of ecosystem engi‐
neers, such as the soil bioturbator O. gammarellus, shifts in body size 
distribution can have direct effects on ecosystem functioning, as the 
impact of its bioturbation depends upon body size distributions and 
associated population size (Schrama, Boheemen, Olff, & Berg, 2015). 
It will be interesting to investigate how large a plastic or genetic shift 
in life history trait values should be to counter any negative effects 
of environmental change signaled by a shifts in body size distribution.

4.3 | Demographic stochasticity

Finally, we investigated the role of demographic stochastic‐
ity in all responses to shifts in environmental quality patterning. 
Demographic stochasticity has for a long time been ignored as its 
impact on the long‐term population growth rate levels off with 
population size (May, 1973). Recent insights, however, highlight 
how demographic variance, population structure and temporal au‐
tocorrelation of environmental conditions can interact to shape 
population dynamics (Vindenes & Engen, 2017). We found that an 
increase in demographic stochasticity elicited opposite responses 
for our fast and slow life history species. In case of O. gammarellus, 
pooled mean body size decreased (due to a proportional increase 
in small individuals) with increasing demographic stochastic‐
ity, whereas that of M. alfredi decreased (likely due to decreased 
growth), all else being equal. As a result, the stochastic population 
growth rate increased with increasing demographic stochasticity 
for O. gammarellus but decreased for M. alfredi. Given the fact that 
the stochastic population growth rate of each species is sensitive 
to other life history parameters, this could explain why a change in 
the variance in expected feeding level that fuels the demographic 
stochasticity, elicited difference responses, as it affects the life 
histories differently. An increase in demographic stochasticity also 
elicited a shift in the sensitivity of mean body size to the prob‐
abilities with which environments switched quality state. At low 
demographic stochasticity, mean body size of the slow life history 

species M. alfredi, and to a lesser extent that of the fast life his‐
tory O. gammarellus, was mostly insensitive to shifts in the prob‐
ability of moving to the bad environment. At high demographic 
stochasticity, the fast life history O. gammarellus was mostly insen‐
sitive to shifts in the probability of moving to the good environ‐
ment, whereas mean body size of M. alfredi was now sensitive to 
shifts in both probabilities. We do not know what the underlying 
cause is of these differences between the two species. However, 
given the important role of body size in population dynamics (De 
Roos & Persson, 2013), the resilience of food webs to disturbance 
(Woodward et al., 2005), and even the strength of trophic cas‐
cades (DeLong et al., 2015), investigating the life history mecha‐
nisms behind how species of different life history respond to shifts 
in demographic stochasticity plays will be a valuable effort.
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