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Abstract
N6-methyladenosine (m6A) regulates many aspects of RNA metabolism and is involved in learning and memory processes. 
Yet, the impact of a dysregulation of post-transcriptional m6A editing on synaptic impairments in neurodegenerative disorders 
remains unknown. Here we investigated the m6A methylation pattern in the hippocampus of Huntington’s disease (HD) mice 
and the potential role of the m6A RNA modification in HD cognitive symptomatology. m6A modifications were evaluated in 
HD mice subjected to a hippocampal cognitive training task through m6A immunoprecipitation sequencing (MeRIP-seq) and 
the relative levels of m6A-modifying proteins (FTO and METTL14) by subcellular fractionation and Western blot analysis. 
Stereotaxic CA1 hippocampal delivery of AAV-shFTO was performed to investigate the effect of RNA m6A dysregulation 
in HD memory deficits. Our results reveal a m6A hypermethylation in relevant HD and synaptic related genes in the hip-
pocampal transcriptome of Hdh+/Q111 mice. Conversely, m6A is aberrantly regulated in an experience-dependent manner in 
the HD hippocampus leading to demethylation of important components of synapse organization. Notably, the levels of RNA 
demethylase (FTO) and methyltransferase (METTL14) were modulated after training in the hippocampus of WT mice but 
not in Hdh+/Q111 mice. Finally, inhibition of FTO expression in the hippocampal CA1 region restored memory disturbances 
in symptomatic Hdh+/Q111 mice. Altogether, our results suggest that a differential RNA methylation landscape contributes 
to HD cognitive symptoms and uncover a role of m6A as a novel hallmark of HD.

Keywords Huntington’s disease · m6A · Memory · Gene expression · Synaptic genes · Hippocampus · Post-transcriptional 
regulation · RNA chemical modifications

Introduction

Huntington's disease (HD) is an autosomal dominant neuro-
degenerative disorder that typically develops in young-mid-
dle adulthood. This disease is characterized by choreiform 
movements that appear in the later, more advanced disease 

stages, and by cognitive deficits and psychiatric symptoms 
that often appear at early stages even before the onset of 
motor symptoms [1, 2]. Though these impairments are com-
monly attributed to corticostriatal dysfunction, accumulating 
evidence demonstrates that memory decline in HD is likely a 
reflection of a widespread brain circuitry defect that involves 
hippocampal dysfunction [3–5]. Accordingly, HD patients 
present alterations in associative learning, spatial short-term 
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memory, spatial working memory and recognition memory, 
which all are known to involve the participation of the hip-
pocampus and temporal lobe structure [3, 6, 7].

Studies in HD mouse models have revealed that these 
early cognitive deficits better associate with synaptic dys-
function rather than with neuronal cell loss [8–13]. To under-
stand this neuronal dysfunction, these studies have focused 
on the control of gene expression at the transcriptional level 
by transcription factors or epigenetic modifications of DNA 
or histones [14–16]. However, post-transcriptional mecha-
nisms such as the regulation of miRNA expression, mis-
splicing and altered polyadenylation [17–21] have also been 
described to be critical in the regulation of gene expression 
in HD. Notably, all these processes can be regulated by RNA 
modifications, in particular N6-methyladenosine (m6A), the 
most abundant internal modification in mRNA that is espe-
cially enriched in the mammalian brain [22, 23].

The m6A mark can be dynamically incorporated in 
the RNA by a methyltransferase complex consisting of 
METTL3, METTL14 and WTAP [24, 25] and removed by 
the demethylases FTO and ALKBH5 [26–28]. Transcrip-
tome-wide mapping of m6A revealed that this modification 
is mainly deposited at the DRACH (where D = A, G or U; 
H = A, C or U) consensus motif displaying a conserved pat-
tern across mRNAs and lncRNAs [23, 29]. A range of m6A 
binding proteins have been reported to mediate multifaceted 
functions of mRNA metabolism including splicing, nuclear 
export, stability, translation, microRNA processing, and 
subcellular targeting of m6A-modified mRNAs [30–34]. In 
the mammalian brain, m6A is also important in the fine-
tuning of the transcriptome during learning and memory 
consolidation, particularly in the hippocampus, striatum and 
prefrontal cortex [35–39]. Indeed, m6A has been found to 
be present in the synaptic transcriptome, selectively modi-
fying a number of transcripts in all cellular domains of tri-
partite synapses [40]. The possibility that dysregulation of 
m6A modifications could contribute to the disruption of 
the mRNA metabolism in neuronal dysfunction has already 
been suggested; however, only few studies have addressed its 
importance in neurodegenerative disorders [41–46].

In the present study, we aimed to investigate the potential 
role of m6A RNA modifications in HD cognitive deficits. 
Our data indicate that m6A methylation changes occur in 
the RNA along HD progression and that dysregulated m6A 
RNA modifications are involved in HD cognitive distur-
bances. Taken together, our findings identify m6A pertur-
bations as a novel mechanism involved in memory impair-
ments in HD, proposing this RNA modification as a potential 
therapeutic target for HD treatment.

Methods

Animals

HdhQ7/Q7 wild-type mice and heterozygous Hdh+/Q111 
knock-in mice [47, 48] were bred and maintained on a 
C57BL/6 genetic background. Hdh+/Q111 mice present 
a targeted insertion of 109 CAG repeats in the murine 
huntingtin gene that extends the resulting polyglutamine 
segment to 111 residues. At 6 months of age, heterozy-
gous mice present a HD-like phenotype with hippocampal 
long-term memory deficits, followed by motor coordina-
tion impairments at 8 months of age [13, 47]. To obtain 
age matched WT and Hdh+/Q111 littermates, male WT mice 
were crossed with female heterozygous Hdh+/Q111 mice. 
Only males from each genotype were used for the experi-
mental procedures.

Behavioral training

We trained 4–5- and 8-month-old WT and Hdh+/Q111 mice 
(pre-symptomatic and symptomatic disease stages, respec-
tively) in the object location task (OLT) to induce hip-
pocampal neuronal activity. Mice were first habituated to 
an open field in the absence of objects and spatial cues for 
two consecutive days (10 min/day). This open field con-
sisted of a white open-top squared arena: 40 × 40 × 40 cm. 
The third day, mice were placed in the open field with two 
identical objects and four different black spatial cues on 
each wall. Mice were allowed to explore for 10 min and 
then returned to their home cage. 30 min after the training 
task, mice were sacrificed by cervical dislocation.

Stereotaxic surgery and viral transduction in vivo

To knock down FTO expression, mice were stereotaxi-
cally injected with AVVs encoding eGFP scramble con-
trol shRNA or shFTO generated by Vector Biolabs. After 
anaesthesia with a mixture of oxygen and isoflurane, bilat-
eral injection of AVVs (0.5 µl: 3.8 ×  109 GC/hemisphere) 
in the CA1 of the dorsal hippocampus was performed 
according to the following coordinates from the bregma 
(millimetres); antero-posterior − 2.0; Lateral ± 1.5, and 
dorsoventral: − 1.3 (CA1). Injection was carried out as pre-
viously described [13]. Animals were carefully monitored 
for 2 h and then returned to their home cage for 1 month. 
After this period, animals from the different experimental 
groups were subjected to behavioral assessment.
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Behavioral assessment

Animals were tracked and recorded with SMART Junior 
software (Panlab, Spain). Percentage of preference was 
calculated as (time exploring relocated object or new 
object)/(total time exploring both objects) × 100.

Object location task

OLT was performed as previously described [13]. During the 
acquisition phase on the third day, mice were presented with 
two identical objects (A and A’) placed in two adjacent cor-
ners of the experimental apparatus for 10 min, after which 
they were returned to their home cage. Twenty-four hours 
after the training phase, one of the objects was moved to the 
opposite corner, and mice were tested for 10 min.

Novel object recognition test

NORT was performed 3 days after the OLT as previously 
described [13]. Mice were presented with two identical 
objects on the third day (B and B´). After a delay of 24 h, 
animals were tested in the arena with a familiar object and 
a new object (B and C) placed in the same location, which 
they were allowed to explore for 10 min.

RNA isolation

RNA from the hippocampus was extracted using the RNe-
asy® Lipid Tissue Mini Kit from Qiagen® (cat no. 74804), 
following the instructions of the manufacturer. Concentra-
tion of purified RNA eluted in nuclease-free  H2O was meas-
ured using the Nanodrop 1000 spectrophotometer (Thermo 
Fisher Scientific®).

Global m6A measurements

Total hippocampal  m6A levels were assessed using the 
EpiQuik®  m6A RNA Methylation Quantification Kit (Epi-
gentek®, cat no. P-9005) and LC–MS/MS. EpiQuik was 
performed according to the manufacturer’s recommenda-
tions. RNA mass spectrometry was performed as previously 
described [49]. Mass spectrometric detection was performed 
using an Agilent 6495 Triple Quadrupole system.

MeRIP‑seq

m6A immunoprecipitation sequencing was performed 
following the refined protocol of Zeng et al. [50], with 
minor modifications. Briefly, 3 µg of total hippocampal 
RNA from 3 animals/condition were chemically frag-
mented to 150–200 nt. Ten percent of the fragmented 
RNA sample was set aside to serve as the input and the 

remainder was then used to proceed with the IP. For this 
purpose, magnetic Protein A Dynabeads® (Invitrogen® by 
Thermo Fisher Scientific®, cat no. 10002D) were tumbled 
for 6 h with 5 µg of rabbit polyclonal anti-m6A antibody 
(Millipore®, cat no. ABE572) in IP buffer at 4ºC. After 
incubation, the antibody–beads mixture was washed and 
incubated overnight with 500 µL of the IP reaction mixture 
containing 9 µL of the fragmented RNA, 100 µL of 5× IP 
buffer and 10µL of SUPERase-IN® RNase Inhibitor (Inv-
itrogen® by Thermo Fisher Scientific, cat no. AM2696) 
with constant rotation at 4 ºC. The immunoprecipitated 
RNA was subjected to two rounds of competitive elution 
with an m6A containing buffer and the eluted RNA was 
then concentrated using the RNeasy® MinElute® Cleanup 
kit (Qiagen®, cat no. 74204). Library construction was 
performed following the instructions provided by the 
SMARTer® Stranded Total RNA-Seq kit v2- Pico Input 
Mammalian (Takara Bio®, cat no. 634412). Dual com-
binatorial indexes were assigned to each sample to allow 
for multiplexing. After normalization of the concentra-
tion, libraries were pooled volumetrically and sequenced 
on the NovaSeq platform [Illumina®, BGI (Hong Kong)] 
performing paired end sequencing (2 × 150 bp).

MeRIP‑seq data analysis

Quality control and adapter trimming

Coverage of the sequenced libraries was ~ 100 million reads 
(Q20% > 97 and Q30% > 93). Of those, the percentage of 
uniquely mapped reads was in the range of 65–85%, with 
5% of multi-mapped reads. Adapter trimming was per-
formed using Bbduk tool (BBtools—http:// jgi. doe. gov/ 
data- and- tools/ bb- tools/), and the adapter.fa file obtained 
from BBTools (containing Illumina adapters). Additional 
trimming parameters were ktrim = r (indicating trimming 
from the right side), with Kmer size of 23, mink = 11 and 
hdist = 1. The command tbo was given to trim the adapter 
if it was based on pair overlap, and further tpe command 
allowed to trim both reads of the paired end sequencing to 
the same length.

Alignment of reads

Alignment of all the paired end reads with the mouse 
genome assembly mm9 was performed using STAR [51]. 
Samtools [52] view command was used to convert bam files 
to sam files. Further, to pick only uniquely mapped reads, 
Samtools view -q 255 filter was applied. Removal of repeti-
tive regions was performed by filtering out the reads using 
bedtools intersect command [53].

http://jgi.doe.gov/data-and-tools/bb-tools/
http://jgi.doe.gov/data-and-tools/bb-tools/
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Calculation of coverage

To count the reads mapping with all the overlapping features, 
quantification of the genes was performed using bedtools 
multicov. To obtain aligned reads, bam files belonging to 
all the replicates of an experimental condition were merged 
with the help of samtools merge command and reproducible 
regions were obtained from merged replicates.

Detection of m6A sites

Narrow peaks of each MeRIP/input sample pair were called 
using MACS2 [54] callpeak. We considered peaks that are 
present in at least two of the three replicates as reproduc-
ible, hence two out of three replicates were combined, using 
bedtools and irreproducible discovery rate (IDR). Further, 
IDR [55] was used to check the reproducibility between the 
replicates taking p-value as a ranking measure. Combined 
peaks were filtered to find significant peak calls using IDR 
score filter (< = 0.05). Coordinates of all of the reproducible 
peaks in combination of two were concatenated and later 
collapsed using mergeBed [53]. Annotation of the reproduc-
ible merged peaks with the gencode.vM1.annotation.gtf file 
was performed using intersectBed [53].

Differential peak analysis, annotation and enrichment 
analysis

Differential peak analysis was performed between condi-
tions with the reproducible peaks, using a DiffBind tool 
(annotationdbi) [56]. Statistically differential peak-sets were 
obtained using DESeq2 and filtered using p value < 0.05. 
Adjusted p-value was obtained by Benjamin and Hochberg 
multiple testing adjustment. Further, annotation of the differ-
ential peaks to the corresponding genes was performed with 
bedtools intersect using mm9.knownGene.bed. Annotation of 
gene biotypes (3′/5′ UTR, CDS exons and introns) of differ-
entially bound peaks was performed using ChIPseeker [57].

Gene ontology

For gene ontology (GO), significant differential peaks were 
analyzed with Ingenuity Pathway Analysis (IPA) software 
(QIAGEN—http:// www. ingen uity. com) and Synaptic Gene 
Ontologies (SynGo) [58].

Motif identification

Motif analysis was run de novo using HOMER (version 
4.11) [59], considering ± 100 nucleotide intervals around the 
peak summit of ~ 3500 best scoring reproducible peaks in the 
3’UTR. Background sequences were generated from respec-
tive input sequences using the scrambleFasta.pl script. Next, 

de novo motif search was run using findMotifs.pl script with 
-rna -p 10 -len 6 as parameters.

Differential gene expression

For analysis of RNA expression, readcounts from input sam-
ples were used applying a CPM cutoff of 1 or above in all 
three biological replicates [60] to discriminate expressed 
genes for the entire dataset. Genes were normalized using 
TMM algorithm [60] and calcNormFactor of edgeR [61]. 
The relationship function voom [62] from the limma pack-
age was used to establish the mean variance relationship and 
generate weights for each observation. The lmFit function 
of limma was used to transform the RNA-Seq data before 
linear modeling and find differentially expressed (DE) genes.

Subcellular fractionation and western blot analysis

Nuclear enrichment was performed as described previously 
[13]. Enrichment of the nuclear fraction was assessed by the 
presence of the specific nuclear marker Histone H3.

Synaptosomal fractionation was performed as described 
elsewhere in Bruyere et al. [63]. Enrichment of each frac-
tion was assessed by the presence or absence of specific 
synaptosomal markers: synaptophysin (non-PSD fraction) 
and postsynaptic density protein 95 (PSD95) (PSD fraction).

A standard Western blot protocol was employed to quan-
tify protein levels from the subcellular fractionations with 
the following antibodies: FTO (1:1000, NovusBio, cat nº 
NB110-60,935), METTL14 (1:2000, Sigma-Aldrich, cat 
nº HPA038002), PSD-95 (1:1000, Cell Signalling Tech-
nology, cat no. 3450), synaptophysin (1:1000, Synaptic 
Systems, cat no. 101011), Histone H3 (1:1000, Cell Sign-
aling Technology). Immunoreactive bands were developed 
by the enhanced chemiluminiscence method, detected 
using ChemiDoc imaging system (Bio-Rad®) or films. 
ImageLab® Software Version 6.0 (2017) or Image J were 
used for quantification.

Tissue fixation, immunofluorescence and confocal 
imaging

Animals were deeply anaesthetized and immediately per-
fused intracardially with 4% (weight/vol) paraformaldehyde 
in 0.1 M phosphate buffer. Immunofluorescence was per-
formed as previously described [13]. Following permeabi-
lization and blocking, free floating brain sections were incu-
bated overnight at 4 ºC with the primary antibodies against 
FTO (1:200, NovusBio, cat no. NB110-60935) and m6A 
(1:200, Synaptic Systems, cat no. 202 111). Samples were 
incubated with appropriate secondary antibodies (1:200, 
Cy3-coupled fluorescent secondary antibody, Jackson Immu-
noResearch Laboratories, cat no. 715-165-150; 1:200, Alexa 

http://www.ingenuity.com
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Fluor 647 goat anti-mouse, Invitrogen, cat no. A21236) for 
2 h at room temperature. Nuclei were stained for 10 min 
with 4′,6-diamidino-2-phenylindole (DAPI) (1:5000, Sigma 
Aldrich, cat nº D9542). Representative images from the CA1 
nuclear layer were obtained with a Leica SP5 laser scanning 
confocal microscope (Leica). Integrated optical density of 
nuclear FTO was analyzed with Image J.

Statistical analysis

Raw data were processed using Excel® Microsoft Office and 
for further analysis transferred to Graphpad Prism® version 
8.0.2 for Windows. Results are expressed as mean ± SEM. 
Normal distribution was assessed with the Shapiro–Wilk 
test. For statistical analysis, unpaired Student’s t-test (two-
tailed) or two-way ANOVA was performed, and the appro-
priate post-hoc tests were applied as indicated in the figure 
legends. A 95% confidence interval was used, considering 
differences statistically significant when p < 0.05.

Results

Landscape of m6A in the Hdh+/Q111 mouse 
hippocampus under naive and cognitive‑trained 
conditions

Previous studies have shown that dynamic regulation of 
m6A on mRNA confers transcriptome plasticity while 
altered m6A methylation severely impacts gene expression 
and impairs learning and memory [35–40]. Therefore, we 
sought to evaluate whether HD mutation alters the m6A 
profile on mRNA under naive and cognitive training condi-
tions in Hdh+/Q111 heterozygous mice. Behavioral analysis 
of mice subjected to the training session in the spatial task 
(Fig. 1a) showed no significant differences between geno-
types at 5 months of age while at 8 months of age Hdh+/Q111 
mice reproduced the well-described defects in cognition 
and motor coordination (Supplementary Fig. 1a–f) [13, 47]. 
Next, global m6A levels were assessed in total hippocam-
pal RNA from naive mice by liquid chromatography-tandem 
mass spectrometry (LC–MS/MS). We found increasing m6A 
levels in hippocampal RNA from Hdh+/Q111 mice when com-
pared to WT mice (Supplementary Fig. 2a). Similar upregu-
lation under naive conditions was observed when m6A lev-
els were further measured using the EpiQuik m6A RNA 
Methylation Quantification Kit. Interestingly, we observed 
that following training, similar m6A levels were observed 
in WT mice compared to naive conditions while a signifi-
cant decrease was found in Hdh+/Q111 mice (Supplementary 
Fig. 2b).

To further identify and characterize the m6A RNA 
modification pattern, m6A RNA immunoprecipitation and 

sequencing (MeRIP-seq) was performed. The distribution 
of the peaks is represented as a metagene plot in Fig. 1b 
and c, showing a similar enrichment of m6A density at the 
coding sequence (CDS) and 3′-untranslated regions (UTR) 
in all conditions. Analysis of the sequence context around 
called peaks showed enrichment of the m6A consensus site 
DRACH in the different conditions analyzed (Fig. 1d and 
e). These data indicate that our m6A profiling results are 
in accordance with the published m6A features [23, 29]. 
MeRIP-seq analysis identified around 30,000 m6A peaks for 
each of the conditions corresponding to around 11,000 m6A 
modified mRNAs (Fig. 1f and g; Supplementary table 1). 
Consistent with our findings showing increased m6A levels 
in RNA from naive symptomatic Hdh+/Q111 mice (Supple-
mentary Fig. 2), the number of m6A peaks in these mice 
was 1.4-fold higher compared to WT mice (Fig. 1f and g).

Altered transcriptome methylation 
in Hdh+/Q111 mouse hippocampus affects synaptic 
and HD‑related genes at pre‑ and symptomatic 
disease stages

In order to characterize basal m6A methylation signa-
tures along the disease progression, we analyzed the dif-
ferential m6A methylation peaks between naive WT and 
Hdh+/Q111 mice by a differential enrichment analysis at 
5 and 8 months of age (Supplementary Tables 2 and 3). 
Adjusted p value < 0.05 and log2fold change > 1 or < − 1 
were used as screening threshold of differential peaks. At 
5 months of age, 270 peaks were hypermethylated and 149 
peaks were hypomethylated in Hdh+/Q111 mice when com-
pared to WT mice, while at 8 months of age 417 peaks were 
hypermethylated and 109 hypomethylated (Fig. 2a and b). 
When comparing all the differential peaks observed at pre-
symptomatic and symptomatic stages, we identified only 
5% of overlapping m6A tagged genes, while 42% and 53% 
of the differential methylated genes were unique for each 
stage (Fig. 2c), indicating a unique pattern of pathological 
methylation at each disease stage. To investigate the associa-
tion between m6A methylation and mRNA expression, we 
intersected differential mRNA expression with differential 
m6A peaks. At 5 months of age, we found a greater number 
of m6A-containing mRNAs with significant differences in 
mRNA expression (47%) than at 8 months of age (23%) 
(Supplementary Fig. 3a), although no significant correla-
tion between down and upregulation of mRNA species and 
m6A enrichment was found (Supplementary Fig. 3b and 
c). At both stages, we identified changes in the levels of 
m6A in different genes linked to HD, such as Pde10a and 
Eif3b (at 5 months), Kalrn, Ntrk2, Gnaq, Grin2b, Dyrk1a (at 
8 months) and Htt itself (at 5 and 8 months), thus strength-
ening our hypothesis that altered m6A methylation plays a 
role in HD pathology (Tables 1 and 2). We also detected 
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significant changes in m6A methylation in synaptic genes 
such as Nefl (at 5 months) and Slc6a17, Frx1 (at 8 months) 
(some representative genes are shown in Fig. 2d).

Since the unique distribution of m6A along the tran-
scripts provides hints as to its functions [23, 29], we deter-
mined the location of the up and downregulated m6A peaks 
in Hdh+/Q111 mice at 5 and 8 months of age. We divided 
the transcript into four areas: 5'UTR, 3′UTR, CDS exon, 
and intron (Fig. 2e and f). All the differential m6A peaks 
showed similar distribution at 5 and 8 months, with a slight 
but not significant increase of upregulated peaks in the 3′ 
UTR and a decrease of upregulated peaks in the 5´UTR 
at 8 months compared to 5-month-old mice (Supplemen-
tary Fig. 3d). Moreover, we found around 40% of the m6A 

peaks located in introns. Since m6A changes may also influ-
ence RNA splicing and polyadenylation [64–67], we next 
explored whether the observed alterations in methylation in 
Hdh+/Q111 mice could be related with known genes affected 
by mis-splicing or aberrant polyadenylation in HD [18, 
21]. We integrated our dataset with published datasets of 
alternative splicing and polyadenylation analysis from the 
R6/1 HD mouse model at symptomatic disease stages (3,5 
and 7–8 months, respectively) [18, 21]. Integration analysis 
showed a significant over-enrichment of genes with changes 
in m6A levels and genes described to be mis-spliced, both 
at 5 and 8 months of age (Supplementary Fig. 4a, b and 
Supplementary Tables 4 and 5). Notably, the majority of 
the m6A peaks present in overlapping methylated and 
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miss-spliced genes were found in introns and exon (Data not 
shown). At 8 months, we also detected a significant overlap 
between genes with m6A changes and genes described to 
have an altered poly(A) tail length in 7–8 month-old R6/1 
mice (Supplementary Fig. 4c and d and Supplementary 
Tables 6 and 7). These results suggest that alteration of m6A 
methylation in hippocampal genes could be associated to 
aberrant alternative splicing and/ or polyadenylation in HD.

To analyze whether these changes in the m6A landscape 
along disease progression are associated to distinct func-
tional signatures, we performed Ingenuity Pathway Analysis 
(IPA) with the lists of all transcripts differentially hypo- or 
hypermethylated between Hdh+/Q111 and WT mice at 5 and 
8 months of age. Top diseases and bio functions obtained 
with IPA are given in Supplementary Fig. 5a–d. IPA for dis-
eases and disorders revealed an enrichment in neurological 
diseases specifically in the hypermethylated transcripts, both 
at 5 and 8 months of age. Likewise, among molecular and 
cellular functions, terms related to cells morphology includ-
ing “microtubule dynamics” and “formation of cellular pro-
trusions,” were particularly enriched in hypermethylated 

transcripts at 5 months of age, while “synaptic depression,” 
“neurotransmission,” “formation of cellular protrusions” as 
well as “processing of mRNA,” among others, were enriched 
in hypermethylated transcripts at 8 months (Fig. 2g, h and 
Supplementary Tables 8 and 9 for complete lists of all bio-
logical functions and their associated genes). The top physi-
ological system development and functions at 8 months of 
age were “cognition,” “learning” and “locomotion.” These 
processes have been described to be influenced by mutant 
huntingtin toxicity [2, 68–72] and our findings suggest that 
this is in part mediated by altered regulation of m6A post-
transcriptional mRNA modifications.

Our data revealed differential m6A methylation patterns 
between WT and Hdh+/Q111 mice along the disease pro-
gression. Next, we sought to investigate whether mutant 
huntingtin expression was associated with changes in 
methylation dynamics in hippocampal cognition. To 
this aim, we analyzed the differential methylated peaks 
between Hdh+/Q111 and WT mice after the spatial train-
ing in the OLT. We found 277 hypermethylated m6A 
peaks and 170 hypomethylated m6A peaks at 5 months 

Table 1  Differential m6A peaks in genes linked to HD in 5-month-old naive mice

Table showing the differential m6A peaks in 5-month-old naive mice (KI vs WT) in genes that have been linked to Huntington’s disease. Pub-
Med identifiers (PMID) for references supporting the link to HD are indicated. FC fold change

Gene name Gene symbol Log2FC Adjusted p value Peak width PMID

Eukaryotic translation initiation factor 3 subunit b Eif3b 9.12 7.18E−23 424 25,959,826
Phosphodiesterase 1b Pde1b 8.76 2.65E−19 585 14,751,289
Huntingtin Htt 5.52 1.28E−303 502 6,316,146
Limbic system associated membrane protein Lsamp 4.75 0.00623 537 17,500,595
Glutamate metabotropic receptor 4 Grm4 3.03 4.06E−06 351 29,643,462, 21,177,255
Caspase 9 Casp9 1.99 1.73E−05 368 12,095,160
NALCN channel auxiliary factor 1 Fam155a 1.68 0.00165 895 34,721,539
Calcium voltage-gated channel auxiliary subunit beta 4 Cacnb4 1.58 0.00058 566 29,936,182
Protein tyrosine phosphatase receptor type f Ptprf 1.42 0.0435 240 27,378,699, 22,748,968
Integrin subunit alpha 7 Itga7 1.39 0.0417 326 29,328,442
Twist family BHLH transcription factor 1 Twist1 1.36 0.00422 612 29,891,550, 31,813,126
Potassium voltage-gated channel interacting protein 4 Kcnip4 1.33 0.00275 228 34,721,539, 22,965,876
Phosphodiesterase 10a Pde10a 1.32 0.0499 694 26,198,591, 15,610,167
CUGBP elav-like family member 2 Celf2 1.26 0.00369 402 22,848,491
Sortilin related VPS10 domain containing receptor 2 Sorcs2 1.19 0.0119 426 28,469,074
F-box protein 41 Fbxo41 1.14 0.048 288 34,151,850
Inhibitor of nuclear factor kappa b kinase regulatory 

subunit gamma
Ikbkg − 1.05 0.0487 318 26,949,515

Fas cell surface death receptor Fas − 1.07 0.000394 586 11,054,182, 25,800,750
Dihydropyrimidine dehydrogenase Dpyd − 1.13 0.00313 395 34,233,199
Contactin 1 Cntn1 − 1.27 0.000166 277 33,305,259, 30,554,964
Glutamate ionotropic receptor AMPA type subunit 3 Gria3 − 1.27 0.00785 262 24,211,138
Potassium voltage-gated channel interacting protein 4 Kcnip4 − 1.38 0.00251 229 34,721,539, 22,965,876
Solute carrier family 1 member 3 Slc1a3 − 1.38 0.0208 298 32,070,434
Caveolin 1 Cav1 − 1.61 7.52E−14 849 24,021,477
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of age in trained Hdh+/Q111 mice compared to WT mice, 
while at 8 months only 165 peaks were hypermethylated 
whereas 392 peaks were hypomethylated (Fig. 3a, b and 
Supplementary Tables 10 and 11). To deepen about the 
functional consequences of these changes, IPA pathway 
analysis between trained Hdh+/Q111 and WT mice was 
performed (Supplementary Tables 12 and 13 for com-
plete lists of all biological functions and their associated 
genes), analyzing hypo- and hypermethylated transcripts 
independently. We found that the strongest enrichment in 
relevant functional terms was obtained in the hypomethyl-
ated transcripts, with an important enrichment in “motor 
or movement disorder,” including “Huntington´s disease” 
within both ages (Fig. 3c, d and Supplementary Fig. 6a–d). 
Importantly, at 8 months of age, training in Hdh+/Q111 mice 
induced the hypomethylation of genes tightly involved 
in synaptic transmission when compared to WT trained 
mice (Fig. 3d). No significant terms could be detected 
in the hypermethylated transcripts at 8 months, and only 

a few interesting terms were found in hypermethylated 
transcripts at 5 months (Data shown in supplementary 
tables 12 and 13).

Symptomatic Hdh+/Q111 mice show aberrant 
m6A demethylation after hippocampal cognitive 
training.

Our previous data have revealed altered m6A RNA patterns 
between WT and Hdh+/Q111 mice at pre- and symptomatic 
stages, both in basal and after cognitive engagement condi-
tions. However, when comparing Hdh+/Q111- vs WT-trained 
mice, we observed a stronger enrichment of differentially 
methylated genes on the “Synaptic Transmission” function 
in symptomatic disease stages. To get further insight into 
the specific changes in m6A associated with cognitive train-
ing, we compared the differential m6A peaks in training vs 
naive conditions within each genotype at 8 months of age 
(Supplementary Tables 14 and 15). Using the same filtering 

Table 2  Differential m6A peaks in genes linked to HD in 8-month-old naive mice

Table showing the differential m6A peaks in 8-month-old naive mice (KI vs WT) in genes that have been linked to Huntington’s disease. Pub-
Med Identifiers (PMID) for references supporting the link to HD are indicated. FC fold change

Gene name Gene symbol Log2FC Adjusted p value Peak width PMID

Kalirin rhoGEF kinase Kalrn 8.07 8.56E−18 239 26,464,483
G protein subunit alpha q Gnaq 7.05 2.31E−06 705 27,924,190
Glutamate ionotropic receptor NMDA type subunit 2b Grin2b 6.83 5.30E−06 213 21,989,477, 

17,569,088
Dual specificity tyrosine phosphorylation regulated kinase 1a Dyrk1a 6.57 1.47E−07 318 15,906,374
Huntingtin Htt 6.49 3.91E−36 491 6,316,146
Calpain 5 Capn5 5.08 0.00263 205 14,981,075
Integrin subunit alpha 7 Itga7 3.85 0.00139 317 29,328,442
Proteasome 26S subunit, non-ATPase 13 Psmd13 3.09 2.02E−08 484 25,959,826
Phospholipase c beta 1 Plcb1 2.59 0.0286 228 17,519,223
Jumonji domain containing 6, arginine demethylase and lysine 

hydroxylase
Jmjd6 2.19 0.0378 311 25,927,346

Hexose-6-phosphate dehydrogenase H6pd 1.99 1.73E−05 691 25,761,110
Neurotrophic receptor tyrosine kinase 2 Ntrk2 1.96 1.93E−07 193 16,487,146
Proteasome 26S subunit, non-ATPase 3 Psmd3 1.9 0.0093 569 25,910,212
LDL receptor related protein 1b Lrp1b 1.45 0.000134 752 34,233,199
Protein kinase c epsilon Prkce 1.45 0.00331 184 15,815,621
Histone deacetylase 8 Hdac8 1.36 0.00474 233 25,535,382
Caveolin 1 Cav1 1.32 1.27E-05 357 24,021,477
Growth factor receptor bound protein 2 Grb2 1.29 3.95E-09 364 24,116,161
Ryanodine receptor 2 Ryr2 1.22 0.0306 299 32,897,880
Calcium/calomodulin dependent protein kinase 2 beta Camk2b 1.21 0.0232 196 30,451,379
Glutamate ionotropic receptor delta type subunit 2 Grid2 1.06 0.0275 287 29,480,208
Limbic system associated membrane protein Lsamp − 1.16 7.02E−05 431 17,500,595
Limbic system associated membrane protein Lsamp − 1.18 0.00056 912 17,500,595
Kalirin rhoGEF kinase Kalrn − 1.39 0.0123 387 26,464,483
Ubiquinol-cytochrome c reductase core protein 2 Uqcrc2 − 3.04 0.00553 411 17,500,595
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criteria as above (Fig. 2a, b) we identified in trained vs naive 
WT mice, 473 hypermethylated m6A peaks and 221 hypo-
methylated m6A peaks (Fig. 4a). In contrast, when trained 
Hdh+/Q111 mice were compared to naive Hdh+/Q111 mice, 
the differential analysis revealed only 168 hypermethylated 
m6A peaks and 359 hypomethylated m6A peaks (Fig. 4b). 
The extent of overlap among differential methylation in 
each genotype at 8 months of age in response to training 
is shown in Fig. 4c, d. We observed a unique pattern of 
hypermethylation and hypomethylation in each genotype, 
with only a minority of differential m6A marked transcripts 
in common between WT and Hdh+/Q111 mice. In addition, 
the extent of m6A changes of differential m6A-marked 
transcripts identified in WT did not resemble the methyla-
tion pattern observed in KI (Fig. 4e), re-enforcing the idea 
that memory-induced m6A methylation is impaired in KI 

mice. Moreover, the hierarchical heatmap representation 
of differential methylated transcripts in common (Supple-
mentary Fig. 7a, b) showed a cluster of Immediate-Early 
Genes (IEGs) which are similarly hypermethylated after the 
training task (Fig. 4b), in line with previous evidence show-
ing increased methylation of IEGs after behavioral training 
[39] and a cluster of 34 transcripts with opposite genotype-
dependent m6A regulation.

When comparing trained versus naive conditions in both 
WT and Hdh+/Q111 mice, the percentage of m6A marked 
transcripts with differential mRNA expression was around 
30% (Supplementary Fig. 8a), indicating that m6A might 
not affect RNA decay or stability in the remaining tran-
scripts but could affect other aspects of RNA function or 
metabolism. The association between m6A methylation and 
mRNA expression in the m6A marked transcripts showed a 
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positive and significant correlation between the magnitude 
of change in expression and the magnitude of m6A peak 
enrichment in upregulated mRNAs for both genotypes. In 
contrast, a statistically significant but weak correlation was 
found between the downregulated mRNA species and m6A 
peak enrichment, only for Hdh+/Q111 mice (Supplementary 
Fig. 8b and c). These results suggest that only the addition 
of m6A to RNA species in response to cognitive engagement 
correlates with their increased mRNA expression levels 

in both genotypes. We further analyzed the distribution 
of the differential m6A peaks along the transcripts. Here, 
Hdh+/Q111 and WT mice show an equal distribution in CDS 
exon, 5’UTR and 3′UTR, with the most frequently occur-
ring position being within introns (Fig. 4f and g). Neverthe-
less, in trained WT mice we observed a higher percentage 
of upregulated m6A peaks in introns compared with trained 
Hdh+/Q111 mice, which in turn showed a higher percentage 
of downregulated m6A peaks (Supplementary Fig. 8d). To 
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illustrate these results, four representative genes showing 
the m6A methylation pattern have been depicted (Fig. 4h).

Given the role of m6A methylation in synaptic signal-
ing and potentiation during neuronal activation, we next 
explored the functional signature displayed by the differ-
entially methylated transcripts using the Synaptic Gene 
Ontologies (SynGO) database. We observed that training-
induced hypermethylated genes in WT mice were signifi-
cantly enriched in “synaptic organization,” “synaptic signal-
ing” and “presynaptic and postsynaptic processes” (Fig. 5a), 
when compared to enriched hypermethylated genes in 
Hdh+/Q111 mice (Fig. 5c). By contrast, in Hdh+/Q111 mice, 
synaptic processes involving “organization” and “synaptic 
signaling” were enriched for hypomethylated genes (Fig. 5b, 
d). A similar gene ontology signature of hypomethylation 

after behavioral training was observed in Hdh+/Q111mice 
at the age of 5 months, further supporting the idea that 
m6A methylation is altered during neuronal activity in 
Hdh+/Q111 mice (Supplementary Fig. 9a–f and Supplemen-
tary Tables 16 and 17). These results indicate that the HD 
mutation impacts on the regulation of m6A methylation, 
decreasing in synaptic mRNAs after cognitive engagement, 
which might critically contribute to synaptic and memory 
dysfunction in Hdh+/Q111 mice.

Finally, since the acquisition of spatial memories dur-
ing the cognitive training task is known to be modulated by 
activity-dependent modifications of cornu ammonis 1 (CA1) 
synapses [73], we performed data integration of MeRIP-seq 
data from 8-month-old WT and Hdh+/Q111 mice after train-
ing with data from a cell type-specific CA1 hippocampal 
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transcriptomic database [74]. This analysis showed that at 
8 months, transcripts enriched in CA1 neurons, which pre-
sent structural and functional synaptic deficits in HD [11–13, 
70], were highly and significantly overlapping with training-
induced hypermethylated transcripts in WT mice, while a 
lower enrichment was found in Hdh+/Q111 mice hippocampus 
(48 genes enriched in CA1 neurons in WT mice and 11genes 
in Hdh+/Q111 mice) (Fig. 6a). In addition, hypomethylated 
transcripts were also associated with CA1 neuronal-enriched 
transcripts in WT hippocampus while Hdh+/Q111 hypometh-
ylated transcripts were enriched in both CA1 neuronal and 
glial enriched transcripts after training (Fig. 6b). Together, 
these results indicate that m6A dysregulation affects CA1 
neuronal transcripts in Hdh+/Q111 mice suggesting a role of 
m6A in transcriptional remodeling underlying acquisition 
of spatial memory.

Subcellular expression of FTO is modulated in WT 
but not Hdh+/Q111 mice following a hippocampal 
cognitive training task

Regulation of m6A in response to sensory experience 
and learning is supported by methyltransferases and dem-
ethylases [28, 35, 75, 76]. To define whether altered m6A 
methylation patterns in Hdh+/Q111 mice were related with 
changes in the levels of m6A-modifying proteins, expres-
sion of METTL14 and FTO was analyzed in WT and 
Hdh+/Q111 mice hippocampus under naive and training 
conditions. Since both enzymes are enriched in the nucleus 
[25, 27], subcellular fractionation assays in hippocampal 
lysates were performed to determine the levels of nuclear 
METTL14 and FTO. At 5 months of age, similar levels of 
FTO and METTL14 were found in nuclear fractions between 
genotypes and conditions (Supplementary Fig. 10a–c). By 

contrast, at 8 months of age a significant increase of both 
proteins was observed in WT mice in response to hippocam-
pal training while no significant changes were detected in 
Hdh+/Q111 mice (Fig. 7a–c). Since FTO and METTL14 have 
also been found in synapsis and distal neuronal processes 
[36, 40] and given the changes detected at 8 but not 5 months 
of age following training, we next analyzed the levels of 
both m6A regulatory enzymes in postsynaptic density (PSD) 
and non-PSD fractions (Fig. 7d–g). We observed that FTO 
levels decrease in the postsynaptic fraction in WT mice 
after training while no changes were observed in Hdh+/Q111 
mice (Fig. 7d, e). Altogether, these findings indicate that at 
a symptomatic stage characterized by hippocampal cogni-
tive deficits, Hdh+/Q111 mice display altered protein levels of 
FTO and METTL14.

Inhibition of m6A demethylation in hippocampal 
CA1 region improves exploratory behavior 
and spatial memory in Hdh+/Q111 mice

In view of the results showing decreased levels of m6A 
methylation in synaptic-related genes in trained Hdh+/Q111 
mice, we hypothesized that synaptic and cognitive defects in 
HD mice could be related with a dysregulation of m6A mod-
ification dynamics. To test our hypothesis, we investigated 
the effect of FTO knockdown on the hippocampal-dependent 
memory deficits previously described in Hdh+/Q111 mice 
[13]. Adeno-associated viruses (AAV) encoding eGFP 
scramble control shRNA or shFTO were injected bilater-
ally into the dorsal hippocampus of WT and Hdh+/Q111 mice 
at 8 months (Fig. 8a). To test the efficiency of shRNA in 
knocking down FTO expression, we measured by immuno-
fluorescence intensity the levels of FTO levels in the CA1 
region following shFTO injection. A significant reduction 
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of around 30% was found when compared to scramble con-
trol (Fig. 8b). Moreover, immunofluorescence co-labelling 
studies of FTO and m6A confirmed that m6A immunoreac-
tivity was reduced in the pyramidal neurons of the CA1 in 
Hdh+/Q111 mice compared with WT mice while increased 
in Hdh+/Q111 mice following shFTO injection (Fig. 8c). To 
study the effect of FTO knockdown in the hippocampus, we 
first analyzed spatial memory by the OLT (Fig. 8d) [77, 78]. 
During training, all mice similarly explored both objects, 
indicating no object or place preferences between geno-
types (Supplementary Fig. 11a and b). However, Hdh+/Q111 
mice displayed decreased total exploration time (Supple-
mentary Fig. 11c). When long-term spatial memory was 
assessed 24 h after training, Hdh+/Q111 mice injected with 

AAV control shRNA exhibited a significantly lower prefer-
ence for the object displaced to the new location when com-
pared to WT mice and Hdh+/Q111 mice injected with AAV 
shFTO (Fig. 8e), confirming previous results from our lab 
showing hippocampal-dependent deficits in Hdh+/Q111 mice 
[13, 16]. Importantly, FTO knockdown in Hdh+/Q111 mice 
lead not only to a significant preference for the new object 
location but also to an increase in total exploration time 
indicating that recovery of m6A levels in Hdh+/Q111 mice 
rescue spatial memory deficits (Fig. 8e, f). Similar results 
were obtained when we evaluated recognition memory by 
Novel Object Recognition Test (NORT) (Fig. 8g) [79]. No 
significant object preference between genotypes was found 
during the training period, while a significant decrease in 
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total exploration time was observed in Hdh+/Q111 compared 
to WT mice (Supplementary Fig. 11d–f). Twenty-four hours 
after training, Hdh+/Q111 mice injected with AAV control 
shRNA exhibited a significantly lower preference for the 

novel object compared with WT mice and with Hdh+/Q111 
mice injected with AAV shFTO (Fig. 8h), indicating pre-
served long-term recognition memory in Hdh+/Q111 mice 
with normalized levels of FTO and restored levels of m6A. 
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As previously observed during OLT test, memory rescue 
was accompanied by an increase in exploratory behavior 
(Fig. 8i). Taken together, these data show that modulation of 
m6A levels in symptomatic Hdh+/Q111 mice by knockdown 
of FTO expression in the CA1 of the dorsal hippocampus 
restores HD spatial and recognition memory.

Discussion

Our study provides for the first time, evidence of m6A hyper-
methylation in relevant HD and synaptic-related genes in 
the hippocampal transcriptome of Hdh+/Q111 mice. We also 
found that m6A is aberrantly regulated in an experience-
dependent manner in the HD hippocampus leading to dem-
ethylation of important components of synapse organization 
which could underlie HD cognitive deficits. In agreement 
with these data, we show that FTO knockdown in HD mice 
improves hippocampal spatial and recognition memories. 
Overall, these findings suggest that m6A RNA modifications 
represent a new RNA post-transcriptional signature under-
lying gene expression dysregulation and cognitive deficits 
in HD.

Here, we identified in a HD mice model, hypermethyla-
tion in several transcripts of genes previously described 
to be altered in HD such as, Pde10a [80, 81], Eif3b [82], 
Kalrn [47], Ntrk2 [83], Grin2b [84, 85], Dyrk1a [86] and 
Htt itself. These findings suggest a possible contribution 
of m6A modifications in the HD physiopathology. To date 
studies in Alzheimer´s and Parkinson´s Disease have sug-
gested that m6A dysregulation is a common feature of many 
neurodegenerative diseases [42, 46] and have emphasized 
the importance of an appropriate m6A equilibrium for an 
accurate hippocampal function. Accordingly, we have shown 
that hypermethylated transcripts in symptomatic Hdh+/Q111 
mice under naive conditions are enriched in synapse-related 
functions, supporting a role of m6A in mediating HD synap-
tic and memory deficits. This finding reveals a new layer of 
dysregulation in the expression of synaptic genes, a process 
previously associated in HD to changes in the activity or 
levels of transcription factors and epigenetic modifications 
[14–16, 87, 88]. Indeed, recent studies have revealed that 
m6A is present in the synaptic transcriptome, modifying 
in a selective manner different transcripts and shaping the 
synaptic proteome [40], which support our hypothesis that 
disruption or dysregulation of m6A modifications would 
impact memory processes in HD mice. In this regard, 
behavioral studies have demonstrated the activity-dependent 
nature of neuronal m6A in response to behavioral experience 
and memory formation in different brain regions [35, 36, 
76]. In accordance, we found that mRNA methylation was 
actively regulated in the dorsal hippocampus of both WT 
and Hdh+/Q111 mice in response to spatial learning, though a 

different m6A pattern was observed in the transcriptome of 
Hdh+/Q111 mice when compared to WT mice. Thus, although 
both genotypes showed similar methylation in IEGs and syn-
aptic genes known to be target of m6A modifications [39, 
76, 89, 90], Hdh+/Q111 mice failed to increase methylation 
or induced demethylation of some synaptic genes critical 
for proper learning. Since an increase of m6A in the mouse 
hippocampus or prefrontal cortex in response to learning has 
been associated with the constrain of the sorting efficiencies 
or turnover of nascent RNAs, the reduced m6A methyla-
tion observed in Hdh+/Q111 hippocampus could indicate that 
the degradation and stability of several synaptic genes is 
affected in these mice.

An interesting finding of this study is the consistent and 
differentially methylated peak in intron 1 of mHtt, in both 5- 
and 8-month-old Hdh+/Q111 naive and trained mice. Remark-
ably, studies have shown that the increased number of CAG 
repeats in mHtt leads to a slower transcription rate of RNA 
polymerase II in this intronic region [91]. In turn, slow tran-
scription speeds have been associated to an elevated m6A 
content [92] pointing to a possible link between the number 
of CAG repeats and m6A deposition in Htt intron. This evi-
dence further strengthens the contribution of m6A in HD 
physiopathology, although its function on Htt RNA fate 
remains to be investigated.

RNA m6A methylation can have mixed effects beyond 
regulation of transcript abundance. Indeed, the specific 
location of m6A can determine alternative polyadenylation 
usage [65, 93], deadenylation-mediated RNA degradation 
[64], and alternative splicing [34, 67]. In this sense, when 
comparing naive WT and Hdh+/Q111 mice, we observed a dif-
ferential m6A methylation in the distinct transcript regions 
(5´ and 3´UTR, exons and introns), which could induce such 
effects on downstream mRNA processing and metabolism in 
the HD condition. Supporting this possibility, we found sev-
eral transcripts hypermethylated that have previously been 
described to be affected by mis-splicing or polyA changes 
[18, 21]. Majority of the m6A peaks of the methylated tran-
scripts that overlap with mis-spliced genes are found in 
introns and exons, which are more likely to undergo alter-
native splicing as previously described [29]. Indeed, m6A 
modifications in introns are associated with long, slowly 
processed introns and alternative splicing events [67].

Our data also suggest a possible role of m6A in the 
activity-dependent alternative splicing processes required 
to achieve homeostatic control of neuronal output in health 
and diseased states. We observed under training conditions 
that most upregulated or downregulated peaks in WT and 
Hdh+/Q111 mice occur in introns. In the mammalian nervous 
system, alternative pre-mRNA splicing generates distinct 
functional isoforms that play key roles in normal physiology, 
supporting development, plasticity, complex behaviors, and 
cognition [94]. Strikingly, among the differential methylated 
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genes in Hdh+/Q111 mice after training we identified Shank1 
and Nrxn1. Shank 1, which plays an important role as scaf-
fold protein in the formation of the PSD, contains diverse 
domains that appears to be regulated by alternative splicing 
[95]. Neurexin 1 (Nrxn1) also generates isoforms by alterna-
tive splicing enhancing postsynaptic NMDA-receptor-medi-
ated synaptic responses [96]. All this evidence supports our 
hypothesis that m6A dysregulation could affect the fine tune 
of alternative splicing in Hdh+/Q111 mice, both under naive 
and trained conditions.

To understand the differential dynamic nature of the m6A 
RNA modifications observed in Hdh+/Q111 mice, we inves-
tigated the protein expression levels of FTO and METTL14 
at different disease stages. In accordance with evidence 
showing correlation between abundance of METTL3 and 
METTL14 and learning efficiency in mouse hippocam-
pus [39], we found increased nuclear METTL14 levels in 
WT mice after training. Importantly, this nuclear increase 
in the levels of METTL14 in response to neuronal activ-
ity demands during learning was not observed in Hdh+/Q111 
mice and could be associated to the reduced methylation of 
transcripts observed after training. On the other hand, our 
data show that in WT mice after a memory-inducing activ-
ity, FTO levels rapidly increase in the nucleus and decrease 
in postsynaptic fractions. Within the nucleus, the observed 
increase of FTO levels in WT mice could clearly underlie 
synaptic remodeling by RNA processing as previous stud-
ies reported that overexpression of FTO results in increased 
co-localization with RNA processing factors [97]. On the 
contrary, memory-inducing activity is also known to rap-
idly decrease FTO in synapses increasing m6A to facilitate 
translation [35, 36, 76]. These local changes in FTO that 
are observed in response to behavioral experiences are also 
compatible with a role in regulation of synaptic plasticity 
in memory functions [75]. Remarkably, in Hdh+/Q111 mice 
FTO levels remain unchanged and steady FTO levels likely 
maintain a demethylation activity that would inhibit or dis-
rupt translation or proper processing of synaptic genes which 
have already been described to be altered in HD [98–100].

Consistent with this dysregulation of FTO levels in 
Hdh+/Q111 mice, we detected an increased demethylation 
pattern in critical genes involved in memory processes and 
enriched in CA1 neurons. In accordance, FTO knockdown 
in CA1 region before training was sufficient to enhance spa-
tial and recognition memory in Hdh+/Q111 mice. Interest-
ingly, FTO knockdown improved the exploratory behavior 
in Hdh+/Q111 mice raising the question whether the enhanced 
memory observed by FTO knockdown was due to this 
increased exploratory behavior. It is known that processes 
like exploration, novelty and choice affects hippocampal 
function and memory via dopaminergic signaling which can 
be modulated by FTO [101–105]. Alterations in hippocam-
pal dopaminergic signaling in HD mice has been reported to 

participate in hippocampal-dependent learning and memory 
deficits [106]. Hence, we hypothesize that FTO knockdown 
in CA1 neurons increased methylation of genes involved in 
the control of dopamine circuitry neurotransmission dur-
ing training, promoting exploratory behavior and facilitat-
ing learning. Further analysis of FTO target genes in HD 
mice would provide better understanding of the signaling 
pathways affected by FTO dysregulation during memory 
formation in the affected HD brain.

The m6A dysregulation demonstrated in this study pro-
vides a missing signature that might define the aberrant post-
transcriptional events underlying neuronal dysfunction in 
HD. Furthermore, our results open new avenues of investi-
gation into the pathophysiological function of m6A during 
disease progression which might guide the development of 
new therapeutic strategies for HD.
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