
The Scientific World Journal
Volume 2012, Article ID 450124, 4 pages
doi:10.1100/2012/450124

The cientificWorldJOURNAL

Research Article

Sequence Comparison Alignment-Free Approach Based on Suffix
Tree and L-Words Frequency

Inês Soares,1, 2, 3 Ana Goios,2 and António Amorim1, 2

1 Faculdade de Ciências da Universidade do Porto, 4169 Porto, Portugal
2 Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200 Porto, Portugal
3 Centro de Matemática da Universidade do Porto, 4169 Porto, Portugal

Correspondence should be addressed to Inês Soares, isoares@ipatimup.pt

Received 15 June 2012; Accepted 5 August 2012

Academic Editors: J.-C. Aude, Y. Muto, and T. Roegnvaldsson

Copyright © 2012 Inês Soares et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The vast majority of methods available for sequence comparison rely on a first sequence alignment step, which requires a number
of assumptions on evolutionary history and is sometimes very difficult or impossible to perform due to the abundance of
gaps (insertions/deletions). In such cases, an alternative alignment-free method would prove valuable. Our method starts by a
computation of a generalized suffix tree of all sequences, which is completed in linear time. Using this tree, the frequency of all
possible words with a preset length L—L-words—in each sequence is rapidly calculated. Based on the L-words frequency profile
of each sequence, a pairwise standard Euclidean distance is then computed producing a symmetric genetic distance matrix, which
can be used to generate a neighbor joining dendrogram or a multidimensional scaling graph. We present an improvement to word
counting alignment-free approaches for sequence comparison, by determining a single optimal word length and combining suffix
tree structures to the word counting tasks. Our approach is, thus, a fast and simple application that proved to be efficient and
powerful when applied to mitochondrial genomes. The algorithm was implemented in Python language and is freely available on
the web.

1. Introduction

During the last decades many sequence comparison methods
have been developed in order to recover evolutionary and
phylogenetic signals as well as for the discovery of pathogenic
mutations [1, 2].

The most common approaches are based on sequence
alignments [3, 4]. However, alignment quality depends on
the penalties attributed to observed differences between
sequences during the alignment process [5, 6]. Alternatively,
many alignment-free methods have also been proposed [5,
7–9] which, being based on word frequencies or on match
lengths, are algorithmically simple and computationally
faster than alignment methods.

The basis of word frequency tasks is the determination
of the optimal word length, L, which should be computed
a priori. The L-words counting in a sequence is usually per-
formed considering a one base sliding window, overlapping

L − 1 consecutive bases, that is, shifting one base each time
until m− L + 1, m being the sequence length [7, 8].

Here, we present a new approach that determines a single
optimal word length, L, and generates L-words frequency
profiles using suffix tree theory. The algorithm was applied
to a variety of mtDNA sequences that are particularly
difficult to handle by automated alignment methods and the
performance was compared to the available word counting
alignment-free methodologies.

2. Methods

2.1. Algorithm. We present here a new algorithm repre-
senting an improvement of word counting alignment free
methodologies. The algorithm is described in Supplementary
Material available online at doi:10.1100/2012/450124 and
each step is summarized below.

mailto:isoares@ipatimup.pt


2 The Scientific World Journal

2.1.1. Suffix Tree Approach. The first step of the method is the
construction of a generalized suffix tree, T, of n sequences,
S1, S2, . . . , Sn, where every suffix in the data set is represented
only once. Therefore, the memory requirements when using
these structures are much more modest than when consid-
ering the original complete sequences. The construction of
a generalized suffix tree is based on Ukkonen’s algorithm,
described with detail by Gusfield [10]. Function GST in the
Supplementary Algorithm 1 automates the construction of
this structure.

Generalized suffix trees are potent structures, having the
useful property that each prefix of paths leading from the
root to any internal node points to all occurrences of this
prefix in the data set [10]. Thus, when aiming to determine
the number of times that a word w occurs in each sequence,
we only need to traverse the generalized suffix tree leading
from the root in the direction of the branch labeled by a
prefix of w − w[1, . . . , j], 1 ≤ j ≤ L. If such branch does
not exist, we conclude that w does not occur in the data
set. Otherwise, we must always skip from a node to its
descendant until the end of w. The indexes of all descendant
leafs from the last node reached, or from its descendant
nodes, are used to determine the sequences in the data set
which contain w as well as the number of occurrences of w
in each sequence. Each leaf indexes the sequences and the
corresponding starting positions of the associated suffixes
labeled in the path that leads from the root to this leaf.

An alternative approach, using a k-truncated suffix tree
deserves consideration, due to reduction in both memory
requirements and running time [11].

2.1.2. L-Words Frequencies. In the next step, we determine
all words in the DNA alphabet {A, C, G, T} with length L—
WL—determined a priori, following the method of Sims
et al. [7]. According to these authors, there is an optimal
resolution range in which any integer value should be
considered as the length of L. Any value inside this interval
is equally good. So, in order to increase the speed of the
process we start by considering only the lower limit of
resolution, which is given by the expression log4(m), where
m is the sequence length. Considering n sequences with
different lengths m, the expression log4(m) can obviously
generate different values. In order to find a value applicable
to all sequences under analysis, we choose m as the length
of the greater sequence and L as the smaller integer greater
than log4(m). Thus, in the present study, we work with the
following values:

m = max
{

length(Si), 1 ≤ i ≤ n
}

, (1)

L =
⌈

log4(m)
⌉

, (2)

where �x� is the ceiling function of x, defined as the smallest
integer is not less than x.

Notice that the total number of possible L-words is t = 4L

and WL = [wL1 ,wL2 ,wL3 , . . . ,wLt ]. For example, if L = 2 then
t = 16 and the following result is obtained:

W2 = [AA,AC,AG,AT ,CA,CC,CG,

CT ,GA,GC,GG,GT ,TA,TC,TG,TT].
(3)

Using the generalized suffix tree we can efficiently determine
the number of occurrences of eachwj ∈WL in each sequence
Si just by traversing the branch with path label wj from
the root towards the leafs only one time, as was thoroughly
explained in the previous section: Oij = #{wj in Si}.

Finally, we can determine the relative frequency of each
word wj in each sequence Si − fi j as the following:

fi j =
Oij

∑t
j=1 Oij

∈ [0, 1]. (4)

The resulting matrix FL with dimension n × t and entries
fi j represents a global profile of L-words frequencies of
all input sequences. The determination of each element
fi j is automated with function LwF in the Supplementary
Algorithm 1.

2.1.3. Genetic Distance. The generated frequencies matrix
may then be used to assign a pairwise correlation or a metric
distance between each pair or sequences. In this work we
calculate the pairwise standard Euclidean distance, which is
defined as

SED(X ,Y) =
√ ∑

w∈WL

(
fXw − fYw

)2 ∈ [0, 1], (5)

where w represents the L-words and fZw means the relative
frequency of w in the sequence Z.

Function Distance described in Supplementary Material
automates this procedure.

2.2. Software. The algorithm was written in Python, version
2.5.2, and tested on a Windows 7 x32 system and on a Linux
platform with a processor Intel (R) Pentium (R) Dual CPU,
T3400 @ 2.16 GHz and 4 Gb of RAM. It is freely available on
the web at http://www.portugene.com/SupMat/SuffixTree&
Lwords.rar.

3. Results and Discussion

3.1. Phylogenetic Reconstructions. The developed algorithm
was tested in different datasets of mtDNA sequences, proving
to be a simple and fast way to identify phylogenetic
relationships in the different sets of mitochondrial genomes.

The algorithm was first tested in a dataset composed of 29
complete primate mtDNA sequences representing genomes
of different families, ranging from 15467 bp to 17036 bp
long. Taking into account these lengths, we determined
L = 8, as explained in the Methods Section. This value has
proven to be a good choice, allowing the program to run
quickly, while still producing a genetic distance matrix that,

http://www.portugene.com/SupMat/SuffixTree\&Lwords.rar
http://www.portugene.com/SupMat/SuffixTree\&Lwords.rar


The Scientific World Journal 3

when used to construct a dendrogram, exhibits a clustering
that is in agreement with consensus primate phylogeny
(http://tolweb.org/Primates/15963).

In order to confirm that the algorithm was also able to
produce a correct phylogeny with closely related sequences
we tested it with mtDNA sequences from the same species,
in which the sequence length is more homogeneous. The
observed clusterings are in general agreement with those
published in the literature, grouping mtDNA genomes in
the same clades previously published methodologies (Sup-
plementary Material).

Aiming to check the performance of our algorithm as
well as to compare the quality of the results obtained by
our approach and Costa’s methodology, we compare the
topology of the resulting phylogenies. The dendrograms con-
structed using the genetic distance matrixes generated by our
algorithm are consistent with consensus phylogenies (Sup-
plementary Material), in contrast with the results obtained
by Costa et al. [8] methodology, which show some discrepan-
cies, namely, in the clade Platyrrhini, which is clustered with
Tarsii and Strepsirrhini ((http://tolweb.org/Primates/15963)
and [12]).

3.2. Running Time. Our algorithm takes a linear execution
time to determine the words frequencies and a quadratic
time to compute the pairwise distances, an improvement to
previous word counting alignment-free methodologies.

Our approach was compared to the method developed
by Costa et al. [8] in what concerns the running time (the
word counting alignment-free methodology proposed by
Sims et al. [7] could not be tested because it has not been
made available). While our approach computes the optimal
word length to determine the word frequency profiles and
generates a genetic distance matrix just by inputting a fasta
file with mtDNA sequences, the methodology proposed by
Costa et al. [8] involves four steps/algorithms: (1) converting
a fasta file containing n mtDNA sequences into n fasta
files with a single sequence; (2) converting each file into
a fa file, a simplified version of fasta files; running two
additional algorithms to (3) generate the histograms files
and (4) create a correlation similarity matrix. These last two
algorithms must be tested in increasingly longer windows
until a conserved correlation matrix is obtained.

Our approach was designed to be run in Windows x32
operative system but it was also tested in a Linux platform
in order to be compared to the alternative methodology
under the same operative system. We thus could demonstrate
that, independently of the operating system, the use of suffix
tree structures to compute the words frequency profiles
enables our methodology to run in a much shorter time.
Although for small sets of sequences the running time
required by Costa’s (2011) methodology [8] is shorter, when
increasing the number of sequences to over a hundred,
the performance of our method is clearly better (Table 1,
Figure 1, Supplementary Table 5).

3.3. Final Remarks. The algorithm described here has dem-
onstrated to be an improvement of word counting

0

200

400

600

800

1000

1200

R
u

n
n

in
g 

ti
m

e 
(s

ec
on

ds
)

Sequences

29 primates

Costa et al. 2011—Linux
Our approach—Linux
Our approach—Windows x32

10 pan-
troglodytes

22 pan-
paniscus

104 homo-
sapiens

150 homo-
sapiens

Figure 1: Differences between running times of Costa et al. 2011
[8] approach and our suggested methodology.

Table 1: Comparison of the running times between our approach
(Linux and Windows x32 operative systems) and Costa et al.
2011 methodology (Linux platform) [8]. The first column lists
the number of sequences and species used in each comparison;
the second and third summarize the running times of each
algorithm for each set of sequences, in seconds. The tabulated times
correspond to the sum of running times of each step. The time spent
by the user between each step, although highly time consuming, was
not included.

Running time (seconds)

Sequences Costa et al. 2011 [8] our approach

Linux Linux Windows

10 Pan troglodytes 8 51 70

22 Pan paniscus 27 72 105

29 primates 46 66 90

104 Homosapiens 537 226 353

150 Homosapiens 1159 355 666

alignment-free methods for sequence clustering, showing
to be computationally very fast, particularly with large
datasets, while still producing good quality results. In fact,
by combining suffix tree structures with word counting
tasks, as well as automating the determination of a single
optimal word length, a significant decrease in running
time and memory requirements for L-words frequencies
determination was obtained.

The method proved to be efficient and powerful when
applied to complete mitochondrial genomes, either from dif-
ferent species or intraspecifically, being able to quickly cluster
the sequences in accordance to acknowledged phylogenetic
relationships.

Authors’ Contribution

I. Soares developed the algorithm, performed the tests, and
wrote the paper. A. Goios participated in the design of the
study and wrote the paper. A. Amorim conceived the study,

http://tolweb.org/Primates/15963
http://tolweb.org/Primates/15963


4 The Scientific World Journal

and participated in its design and coordination and wrote the
paper. All authors read and approved the final paper.

Acknowledgments

The authors want to thank to António Guedes de Oliveira
and Pedro Silva for their helpful suggestions and the three
anonymous reviewers for helpful comments that greatly
improved the manuscript. I. Soares has a doctoral Grant
(SFRH/BD/38171/2007) and A. Goios has a postdoctoral
Grant (SFRH/BPD/43646/2008) from Fundação para a
Ciência e Tecnologia. IPATIMUP is an Associate Laboratory
of the Portuguese Ministry of Science, Technology and
Higher Education and is partly supported by Fundação para
a Ciência e Technology. CMUP was funded by the European
Regional Development Fund through the programme COM-
PETE and by the Portuguese Government through the FCT
under the Project PEST-C/MAT/UI0144/2011. The funding
sources had no involvement in any part of this study.

References

[1] H. J. Bandelt, V. Macaulay, and M. Richards, “Median net-
works: speedy construction and greedy reduction, one simu-
lation, and two case studies from human mtDNA,” Molecular
Phylogenetics and Evolution, vol. 16, no. 1, pp. 8–28, 2000.

[2] M. Wu and J. A. Eisen, “A simple, fast, and accurate method
of phylogenomic inference,” Genome Biology, vol. 9, no. 10,
article R151, 2008.

[3] N. Homer, B. Merriman, and S. F. Nelson, “BFAST: an align-
ment tool for large scale genome resequencing,” PLoS ONE,
vol. 4, no. 11, Article ID e7767, 2009.

[4] S. V. Angiuoli and S. L. Salzberg, “Mugsy: fast multiple
alignment of closely related whole genomes,” Bioinformatics,
vol. 27, no. 3, Article ID btq665, pp. 334–342, 2011.

[5] S. Vinga and J. Almeida, “Alignment-free sequence com-
parison—a review,” Bioinformatics, vol. 19, no. 4, pp. 513–523,
2003.

[6] R. C. Edgar, “MUSCLE: multiple sequence alignment with
high accuracy and high throughput,” Nucleic Acids Research,
vol. 32, no. 5, pp. 1792–1797, 2004.

[7] G. E. Sims, S. R. Jun, G. A. Wu, and S. H. Kim, “Alignment-
free genome comparison with feature frequency profiles (FFP)
and optimal resolutions,” Proceedings of the National Academy
of Sciences of the United States of America, vol. 106, no. 8, pp.
2677–2682, 2009.

[8] A. M. Costa, J. T. Machado, and M. D. Quelhas, “Histogram-
based DNA analysis for the visualization of chromosome,
genome and species information,” Bioinformatics, vol. 27, no.
9, pp. 1207–1214, 2011.

[9] M. Domazet-Lošo and B. Haubold, “Efficient estimation of
pairwise distances between genomes,” Bioinformatics, vol. 25,
no. 24, Article ID btp590, pp. 3221–3227, 2009.

[10] D. Gusfield, Algorithms on Strings, Trees, and Sequences: Com-
puter Science and Computer Biology, Cambridge University
Press, New York, NY, USA, 1997.

[11] M. H. Schulz, S. Bauer, and P. N. Robinson, “The generalised
κ-truncated suffix tree for time-and space-efficient searches in
multiple DNA or protein sequences,” International Journal of
Bioinformatics Research and Applications, vol. 4, no. 1, pp. 81–
95, 2008.

[12] M. A. Carrigan, O. Uryasev, R. P. Davis, L. Zhai, T. D. Hurley,
and S. A. Benner, “The natural history of class I primate
alcohol dehydrogenases includes gene duplication, gene loss,
and gene conversion,” PLoS ONE, vol. 7, no. 7, Article ID
e41175, 2012.


	Introduction
	Methods
	Algorithm
	Suffix Tree Approach
	L-Words Frequencies
	Genetic Distance

	Software

	Results and Discussion
	Phylogenetic Reconstructions
	Running Time
	Final Remarks

	Authors' Contribution
	Acknowledgments
	References

