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Abstract: Acquired Immune Deficiency Syndrome (AIDS) treatment with combination antiretroviral
therapy (cART) has improved the life quality of many patients since its implementation. However,
resistance mutations and the accumulation of severe side effects associated with cART remain
enormous challenges that need to be addressed with the continual design and redesign of anti-HIV
drugs. In this review, we focus on the importance of the HIV-1 Gag polyprotein as the master
coordinator of HIV-1 assembly and maturation and as an emerging drug target. Due to its multiple
roles in the HIV-1 life cycle, the individual Gag domains are attractive but also challenging targets for
inhibitor design. However, recent encouraging developments in targeting the Gag domains such as
the capsid protein with highly potent and potentially long-acting inhibitors, as well as the exploration
and successful targeting of challenging HIV-1 proteins such as the matrix protein, have demonstrated
the therapeutic viability of this important protein. Such Gag-directed inhibitors have great potential
for combating the AIDS pandemic and to be useful tools to dissect HIV-1 biology.

Keywords: HIV-1 Gag polyprotein; antiretrovirals; matrix protein; capsid protein; nucleocapsid
protein; p6 protein

1. Introduction and Current Status of Antiretroviral Therapies

AIDS (Acquired Immune Deficiency Syndrome) is a global epidemic caused by HIV (human
immune-deficient virus) infection [1]. At the end of 2018, 37.9 million people were living with HIV
worldwide, with 1.7 million newly infected and 770,000 AIDS-related deaths [2]. By the end of 2017,
the Food and Drug Administration (FDA) has approved 43 anti-retroviral drugs for clinical use [3].
With the introduction of combination antiretroviral therapy (cART) in 1996, AIDS-related deaths
have declined dramatically. cART is a three-component treatment, composed of drugs with at least
two independent mechanisms of action. Typical combinations are usually two nucleoside/nucleotide
reverse transcriptase inhibitors (NRTIs) combined with a protease inhibitor (PI), a non-nucleoside
reverse transcriptase inhibitor (NNRTI) or an integrase strand transfer inhibitor (INSTIs) [4,5]. Patients
on cART display decreased virus loads and increased CD4+ cell numbers that have prolonged patient
survival and led to the establishment of AIDS as a manageable chronic disease. However, eradication
of HIV is not possible via cART due to a pool of latently infected CD4+ T cells in the acute early
infection phase, and if the dosing regimen is not followed accurately, viral load rebounds can occur
accompanied by viral resistance [4,6]. Long-term cART therapy also leads to side effects and age-related
comorbidities such as diabetes, cardiovascular, renal, and bone diseases and can result in a reduced life
expectancy of HIV-1 infected patients [7,8]. This highlights the continued need for new antiretroviral
drugs with low cytotoxicity, long-acting formulations, and new targets in the HIV-1 replication cycle.
One such emerging therapeutic target is the HIV-1 Gag protein, which is the master regulator of
co-factor packaging, assembly, and release of the immature virion.
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In this review, we describe topologically (from the N-terminal, matrix protein to the C-terminal,
p6 domain) the importance of targeting the HIV-1 Gag polyprotein and its component domains for the
development of novel antivirals. In addition to current Gag-targeted inhibitors, we highlight some of
the new developments for each Gag domain and speculate, based on these recent findings, on possible
future antiviral designs.

2. The Gag Polyprotein and Its Role in the HIV-1 Replication Cycle

In the late stage of the HIV-1 replication cycle, the assembly of newly synthesized virions and the
incorporation of viral and cellular components need to be orchestrated and directed to the plasma
membrane. The HIV-1 Gag polyprotein is the master coordinator of the assembly of viral particles.
The HIV-1 Gag polyprotein is translated in the host cell cytosol as a 55 kDa protein, comprised of
several domains that are cleaved into individual proteins post-viral budding. Gag contains the matrix
(MA), capsid (CA), and nucleocapsid (NC) proteins, in addition to a small p6 domain and two spacer
peptides (Figure 1) [9].

Figure 1. Domain architecture of the Gag precursor polyprotein. The function (bottom) and type of
interaction (top) are highlighted. Matrix (MA) is responsible for Gag targeting to cholesterol-enriched
lipid rafts for virus budding at the plasma membrane (PM) and incorporation of Env. Capsid (CA)
is crucial for Gag assembly and the formation of the conical core structure. Interaction with host cell
factors such as cyclophilin A (CypA) or transportins regulates the nuclear import of the pre-integration
complex. SP1 is involved in Gag assembly. Nucleocapsid (NC) is involved in Gag assembly and,
with its two zinc fingers, binds to RNA and exerts RNA chaperone activity. P6 is involved in the
recruitment of the endosomal sorting complex required for transport (ESCRT) for virus egress and in
Vpr incorporation.

These individual proteins play multiple essential roles in the life cycle of the virus by interacting
with host dependency factors. As such, the regions on the proteins responsible for these interactions
and processes display high conservation, making them ideal areas to target using small molecules
or peptides. Accordingly, Gag has recently emerged as an attractive therapeutic target. The surface
conservation of the individual Gag domains is highlighted in Figure 2.
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Figure 2. Surface conservation of the HIV-1 Gag polyprotein and inhibitor target sites. Alignment
of 9547 HIV-1 Gag sequences were retrieved from the HIV Los Alamos database (www.hiv.lanl.gov).
Sequences were aligned against the HxBc2 reference. Conservation analysis was performed using the
ConSurf server [10]. Structures of the HIV-1 Gag domains with PDB entries: matrix, 2H3Z; capsid,
6ES8; sp2, 1U57; nucleocapsid, 2M3Z; p6, 2C55. Orange boxes represent target sites for inhibitor
binding highlighted in this review. Low conservation in light cyan to high conservation in dark
purple.Gag’s constituent proteins act at different points in the viral life cycle. MA binds specifically to
phosphoinositide 4,5-bisphosphate (PI [4,5]P2) and specific phospholipids on the plasma membrane,
triggering the exposure of an attached myristoyl (myr) chain and directing Gag to the membrane. This
membrane interaction is required for the correct incorporation of the viral envelope protein (Env) into
the budding virus [11–14]. In the late stages of the replication cycle, CA is responsible for the assembly
of Gag at the plasma membrane by providing intermolecular contact sites for Gag oligomerization at
the plasma membrane [15,16]. In the early stages of replication, CA disassembly regulates the process
of reverse transcription, and its engagement of cellular transportins and nuclear pore components
facilitate the import of the viral pre-integration complex into the nucleus, where integration takes
place [17]. NC functions as a nucleic acid chaperone at multiple steps in the HIV-1 replication cycle,
and it’s overall positively charged character and two zinc-finger motifs allow it to interact with viral
genomic RNA via the RNA packaging signal and thereby facilitate virion assembly [18–21]. Finally,
the p6 domain (late domain) recruits the endosomal sorting complex required for transport (ESCRT)
machinery to promote virus budding and final release [22]. Two spacer peptides (SP1 and SP2) flanking
the NC domain regulate the kinetics of Gag maturation, and SP1 also provides, as part of the C-terminus
of CA, another Gag-Gag multimerization interface [23,24]. Because Gag functions in so many different
aspects of viral infection and replication, Gag inhibitors have the potential to exert their effects in both
early and late stages of the replication cycle, making this polyprotein a particularly attractive target for
the development of new therapeutics.

3. HIV-1 Protease and Maturation Inhibitors

Maturation is an essential step in the HIV-1 replication cycle and results in the release of the
individual Gag domains, which perform multiple crucial functions. Maturation inhibitors represent
a novel class of antiretrovirals targeting the CA-SP1 cleavage site. HIV-1 maturation can be divided
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into two steps: (1) assembly and release at the PM, and (2) proteolytic cleavage by the viral protease
(PR). During assembly and budding, Pr55Gag (immature Gag precursor) hexamerizes at the plasma
membrane. Through orchestrated interactions, primarily with the ESCRT proteins, virions are initially
released as immature virus particles. Immature virus particles are non-infectious and have a hexameric
Gag lattice without the characteristic conical core architecture [15,25]. Proteolytic processing of Gag
and Gag-Pol polyprotein (Gag precursor encoding viral protease, integrase, RNase H, and reverse
transcriptase) by the viral protease (PR) is a complex multilayer process with multiple cleavage sites
and substrates. One of many cleavage sites occurs between the C-terminal portion of CA and SP1
junction and triggers a conformational switch that destabilizes the immature Gag and the formation
of the mature conical core [26,27]. Maturation inhibitors target this cleavage site, resulting in the
accumulation of CA-SP1 precursor, which in turn causes an infectivity loss. Inhibition of maturation
can be subdivided into (1) inhibition of the viral PRs catalytic activity as PR-Inhibitors and (2) inhibition
of Gag cleavage by maturation inhibitor (MI) [28].

The first identified maturation inhibitor was Bevirimat (BVM) or also known as
3-O-(3′,3′-dimethylsuccinyl) betulinic acid, PA-457, or MPC-4326 (1) (Figure 3 and Table 1). BVM caused
abnormal virion morphology and inhibition of viral replication with an IC50 of around 10 nM [29].
Resistance mutation generation confirmed the CA-SP1 junction site as the target binding site [30].
Additionally, electron cryomicroscopy and electron diffraction of thin 3D microcrystals (MicroED)
provided insight into the mechanism of action of BVM and revealed that one BVM molecule binds and
stabilizes the six-helix bundle in a CA hexamer via both electrostatic and hydrophobic interactions [31].
Binding in the center of the six-helix bundle stabilizes the hexameric immature Gag lattice and
ultimately prevents the final cleavage event in Gag processing, the separation of CA from its spacer
peptide (SP1).

Figure 3. Structure of maturation inhibitors (MI) discussed in this review. (1) Bevirimat (BVM);
(2) PF-46396; (3) GSK3532795.
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Table 1. HIV-1 Gag inhibitors from pre-clinical and clinical development.

Protease (PR) and
Maturation Inhibitors

(MI)

Target and
Binding Site Mechanism of Action Antiviral

Potency (IC50) CC50 Clinical Status

Bevirimat (BVM) CA-SP1
junction site

Stabilizes six-helix
bundle in CA hexamer
and prevents CA-SP1

cleavage

~10 nM ~25 µM Failed in phase IIb due to
resistance mutations in CA-SP1

PF-46396 CA-SP1
junction site

Implications for Gag
assembly, release and

virus replication

0.005–7 µM
(PBMCs) 17 µM (PBMCs) Not entered

GSK3532795 CA-SP1
junction site

Late-stage inhibition of
CA-SP1 cleavage 21 nM 2.3 to > 15 µM

Post phase IIb termination due to
high rates of adverse

gastrointestinal events, and
frequency of treatment-emergent
nucleoside reverse transcriptase

inhibitor (NRTI) resistance

Matrix (MA) Inhibitors Target and
Binding Site Mechanism of Action Antiviral

Potency (IC50) CC50 Clinical Status

(Thiadiazolane class)
e.g., TD2

MA RNA
binding site RNA displacement 1–5 µM 5-20 µM Not entered

Compound 7 and 14 MA PI[4,5]P2
binding site PI[4,5]P2 displacement

7.5–15.6 µM
(group M
isolates)

Compound 7
and 14 = >100
µM (PBMCs);

compound 7 =
>1 mM (293T

cells)

Not entered

Capsid (CA) Inhibitor Target and
Binding Site Mechanism of Action Antiviral

Potency (IC50) CC50 Clinical Status

CAP-1 NTD
Blocks CA

self-association in late
events

EC95 ≈ 100 µM >100 µM Not entered

Peptide Inhibitors (CAI,
NYAD-1) CTD

Blocks assembly of
immature and

mature-like particles

N.D. (CAI)
= 4.29–21.6 µM

(NYAD-1
PBMCs)

N.D. (CAI)
N.D. (NYAD-1) Not entered

BD-1 NTD Blocks CA assembly 70 ± 30 nM >28 µM Not entered

BM-1 NTD Blocks HIV-1 maturation 62 ± 23 nM >20 µM Not entered

PF74 NTD-CTD

Stabilizes CA core in
early-stage and inhibits

reverse transcription.
Distorts CA lattice in the

late stage, causing
aberrant virus

morphology that does
not undergo maturation

80–640 nM
(PBMCs)

>10 µM
(PBMCs) Not entered

BI Compounds (BI-1,
BI-2) NTD

Destabilizes HIV-1
capsid by interfering in

early and late events

7.5 ± 2.1 µM
(BI-1)

1.4 ± 0.66 µM
(BI-2)

>91 µM (BI-1)
>76 µM (BI-2) Not entered

C1 NTD

Inhibits HIV-1
replication in late events

by disrupting the
assembly of the mature

capsid

57 µM N.D. Not entered

Ebselen Undetermined
Reverse transcription

inhibition and impaired
uncoating

3.37 µM >30 µM
(PBMCs) Not entered

GS-CA1 and GS-6207 NTD-CTD

Most likely, stabilizes CA
core in early-stage and

inhibits reverse
transcription.

Probably, distorts CA
lattice in the late stage,
causing aberrant virus
morphology that does

not undergo maturation

140 pM
(GS-CA1,
PBMCs)
100 pM

(GS-6207, MT-4
cells)

27 µM
(GS-6207) Phase 1b (GS-6207)
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Table 1. Cont.

Nucleocapsid (NC)
Inhibitors

Target and
Binding Site Mechanism of Action Antiviral

Potency (IC50) CC50 Clinical Status

NOBA Zinc finger Class 1 - electrophilic
attack of the zinc fingers N.D. 10.6 µM Not entered

DIBA-1 Zinc finger Class 1 - electrophilic
attack of the zinc fingers 2.3 µM >200 µM Not entered

PATE-45 Zinc finger Class 1 - electrophilic
attack of the zinc fingers 6.2 µM >316 µM Not entered

SAMT-19 Zinc finger Class 1 - electrophilic
attack of the zinc fingers 2.9 µM 461 µM Not entered

[SP-4-2]-[PtCl(NH3)
(quin)(9-EtGH)] Zinc finger

Class 3 - covalent
binding of Cys residues

by platinum
41.9 µM >200 µM Not entered

NVO38 Zinc finger Class 2 - zinc chelation 17 µM >300 µM Not entered

WDO-217 Zinc finger Class 1 - electrophilic
attack of the zinc fingers 7.9 µM 72 µM Not entered

Compound 3

Two molecules
bind each zinc
knuckle of the

NC

Mimicking the
guanosine base found in

many reported NC
complex structures

0.95 µM
(NC-oligonucleotide
binding assay)

N.D. Not entered

A1752 NC

Inhibits NC-mediated
dimerization of Psi RNA

and cTAR DNA
destabilization. Inhibits

also proper Gag
processing

~1 µM >50 µM Not entered

Late domains (P6)
Inhibitors

Target and
Binding Site Mechanism of Action Antiviral

Potency (IC50) CC50 Clinical Status

Cyclic peptide 11 P6-Tsg101
interface

Blocking the p6-Tsg101
interaction 7 µM N.D. Not entered

N16
Ubiquitin E2

variant domain
of Tsg101

Reduces Gag assembly
and virus production

in vitro

EC50 between
25 and 50µM
(p24 ELISA)

>50 µM Phase I as a proton pump inhibitor

N.D. Not determined; half-maximal inhibitory concentration (IC50) is represented from cell-based assays if not
other stated in the table; half-maximal cytotoxic concentration (CC50). References and structures for the individual
inhibitors can be found within the corresponding Gag domain sections.

Despite successful phase I and phase II clinical trials, the phase IIb trial failed due to the
non-responsiveness of a large patient group because of the rapid emergence of resistance mutations
found in the CA-SP1 site of those patients. Interestingly, a single nucleotide polymorphism (SNP) at
Val7 to Ala in the SP1 region is present in the consensus sequences of subtype C, D, F, and G [32,33].
As the Subtype C virus accounts for approximately 50% of the HIV-1 infections worldwide, the presence
of these SNPs resulted in discontinuation of BVM as a clinically viable antiretroviral.

Further explorations identified a second compound, PF-46396 (2), although with a lower potency
compared to BVM [34] (Figure 3 and Table 1). PF-46396 is structurally different from BVM, but both
target Gag cleavage at the CA-SP1 site, as indicated by in vitro resistance mutation development [34,35].
Besides targeting a similar binding site, PF-46396 induced resistance mutations at different locations,
suggesting a different binding mode as compared to BVM. PF-46396 resistance mutations were identified
in three regions of Gag: around the CA-SP1 cleavage site similar to BVM but additionally also, at CA
amino acid 201 (I201V), and in the CA major homology region (MHR, G156E, P157S, P160L), indicating
implications for Gag assembly, release and virus replication [35]. However, these two compounds,
BVM and PF-46396, as first in class maturation inhibitors, highlight the feasibility of this strategy
for antiviral development and warranted further study and optimization. Generating a targeted
library of betulinic acid derivatives, and screening against a panel of engineered reporter viruses with
site-directed alterations in Gag that reduced susceptibility for BVM resulted in the identification of a
second-generation MI, GSK3532795 (3) (formerly known as BMS-955176) [36] (Figure 3 and Table 1).
This second-generation MI displayed promising potency against a panel of subtype B isolates (EC50 of
21 nM) and had a significantly improved preclinical profile as compared to BVM. Time-of-addition
studies also confirmed inhibition of HIV-1 replication in a late-stage by inhibiting CA-SP1 cleavage.
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Freed and colleagues further demonstrated that this second-generation inhibitor could partly
overcome the resistance problem of BVM with markedly higher potency and activity against subtype B
and the world’s dominant circulating subtype C [37–43]. This encouraging study leads to the transition
of these second-generation inhibitors into the phase II trial with a promising outlook for patients with
a developed resistance to currently available therapies. A recent randomized phase IIb study showed
that GSK3532795 could reduce plasma HIV-1 RNA below 40 copies/mL at Week 24 [44]. Despite these
significant efficacy rates, the clinical development of GSK3532795 was terminated due to high rates of
adverse gastrointestinal events, and frequency of treatment-emergent nucleoside reverse transcriptase
inhibitor (NRTI) resistance. However, the antiviral response rates and immunologic reconstitution
for GSK3532795, together with a novel mechanism of action is promising and support the continued
development of MI inhibitors as anti-HIV-1 agents. The microED structure of BVM in complex with
HIV-1 CA provides additional insights for rational drug design on MIs [31].

4. Matrix (MA, p17)

The HIV-1 matrix (MA) protein is a key player in virus assembly. It is encoded as the N-terminal
portion of the Gag polyprotein, and like the other Gag components (CA, NC, and p6), it displays
high conservation in functional regions between HIV-1 subtypes, making it a very attractive target
for intervention. This small, multifunctional protein is responsible for directing the viral and cellular
components to the site of assembly and regulating the incorporation of the envelope (Env) glycoproteins
into the budding virus [12,45,46]. A buried hydrophobic myristoyl group (myr) and a basic patch
at the N-terminus of the MA protein are crucial for the association of the MA protein to the PM.
The basic region of MA has been demonstrated to specifically interact with PI[4,5]P2 and other PM
lipids such as phosphatidylserine, phosphatidylcholine, and phosphatidylethanolamine [47]. The basic
patch also has nucleic acid binding properties, and it is thought that the interplay between lipid and
RNA binding is critical for a specific interaction with only the plasma membrane [11,48]. Host cell
proteins such as Arf (ADP ribosylation factor) and GGA (Golgi-localized γ-ear containing Arf-binding
protein) have been demonstrated to facilitate the trafficking of Gag/MA to the PM [49]. Binding
to PI[4,5]P2 facilitates the exposure of the buried/folded myr moiety and promotes oligomerization
at the PM (Figure 4A,B) [12,50,51]. Myristate exposure is believed to be triggered by an allosteric
mechanism, by which PI[4,5]P2 binding induces conformational changes at the N-terminal β-hairpin
and helix α-1. This conformational alteration repositions hydrophobic residues and displays the
myristyl group and stabilizes the myr (exposed) state of the MA protein. Early structural work
revealed that HIV-1 MA forms crystallographic trimers, and recently identified trimerization interface
mutants have been demonstrated to interfere with Env incorporation, suggesting a biological relevance
of the MA trimers [52–55]. In agreement with these observations, the HIV-1 MA and MA-CA
fusion proteins organize as hexamers of trimers predominantly at lipid rafts (PI[4,5]P2/Cholesterol
containing membranes) [56]. Those hexameric structures also have implications for Env incorporation
in immature HIV-1 virions [54,55,57–59]. HIV-1 Env incorporation into immature virions is believed to
be directed by the long cytoplasmic tail (CT) of gp41 and steric trapping within these MA hexamers of
trimers [13,60–65]. This process is highly regulated, considering the low number of Env incorporated
into released particles (7–14 trimers) [66].
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Figure 4. MA inhibitors targeting the PI[4,5]P2 binding site. (A) The NMR structure of MA with
its myristic acid (in yellow) buried in a hydrophobic groove at the N-terminus (PDB code: 2H3I).
(B) The NMR structure of MA bound to di-C4-PI[4,5]P2 displacing the myristic acid (PDB code: 2H3Z).
(C) Docking model of compound 7 bound to MA and displacing di-C4-PI[4,5]P2. In red are the residues
highlighted that are involved in di-C4-PI[4,5]P2 binding.

Because of its fundamental roles in virion assembly and the high degree of conservation of its
PI[4,5]P2/nucleic acid binding site, the HIV-1 MA protein has emerged as an attractive, antiviral
target [11,48,67,68].

Besides its high conservation, the highly basic PI[4,5]P2/RNA binding site, which is currently the
main target site for inhibitor design, represents major challenges for small molecule targeting, such as
its shallow architecture and a high degree of entropy based on positively charged residues, mainly
lysines and arginines.

Nevertheless, compounds have been described targeting the nuclear localization signal (NLS) of
MA [69] or the MA-RNA interaction [70]. Thiadiazolane based compounds (4) that target the MA-RNA
interaction could inhibit HIV-1 replication in cell cultures; however, inhibition was associated with
significant levels of toxicity (Figure 5 and Table 1) [70]. Using virtual and surface plasmon resonance
(SPR)-based screening, Zentner et al. discovered the first inhibitors targeting the PI[4,5]P2 binding
site in MA without cytotoxic effects [71,72]. The best Compound 7 (5) displayed cross-clade anti-HIV
activity with IC50 values of 7.5—15.6 µM for group M isolates (Figures 4C and 5, and Table 1).

Figure 5. Structure of MA inhibitors discussed in this review. (4) TD2; (5) compound 7; (6) compound 14.

Site-directed mutagenesis and PI[4,5]P2 SPR-based competition assay confirmed the PI[4,5]P2

binding site as the interaction site for Compound 7, and accordingly, mutations such as L21A
and T81A in a pseudotyped virus lost susceptibility to the compounds tested. This work first
demonstrated the feasibility of targeting the MA protein with small drug-like molecules. Unfortunately,
the initial chemotypes identified were subject to activity cliffs and have been abandoned (Cocklin et al.,
Unpublished). Despite this initial setback, Cocklin et al. have continued to pursue the identification



Molecules 2020, 25, 1687 9 of 25

of MA-targeted inhibitors and have recently discovered a promising new chemotype (Cocklin et al.,
Unpublished). Work is actively ongoing in optimizing the affinity/potency of this new chemotype,
in the hopes that it may serve as a template to a new class of anti-HIV-1 therapeutics.

Despite the highlighted progress targeting the challenging PI[4,5]P2/RNA binding site, new sites
of attack are highly desirable. One such point of attack could be the involvement of MA in Env
incorporation. As mentioned above, MA trimerization and hexamerization of these trimers are crucial
for Env incorporation. Mutagenesis of trimer interface residues clearly showed a correlation between
loss of MA trimerization by introducing trimer disrupting mutations and loss of Env incorporation in
the context of the virus [54,55,73]. Consequently, the stabilization of the MA trimers by introducing
a glutaraldehyde crosslinking approach at Ser66 and Gln62 or introducing a Gln62Arg mutation in
the trimer interface (Gln62 represented as orange and Ser 66 as yellow spheres in Figure 6) increased
Env-CT binding (in a pool down assay) and highlighted the importance of MA trimers for gp41-CT
recognition. Disrupting this trimerization interface with small molecules or peptides could, therefore,
actively interfere with the MA trimerization and hexameric Gag structures and possibly with Env
incorporation and virus assembly.

Figure 6. HIV-1 MA trimerization is essential for HIV-1 Env incorporation. Residues involved in the
trimerization interface Gln62 in orange and Ser66 in yellow are putative target sites for novel inhibitor
designs. PDB code: 1HIW.

A recent solution NMR structure of the gp41-CT revealed an unstructured N-terminal portion
and a membrane-bound amphipathic helical region divided into three domains known as lentivirus
lytic peptides, LLP2, LLP3, and LLP1 [74]. This structure can serve as a surrogate to identify a
minimal binding region of this gp41-CT to MA. Peptides or small molecules mimicking this interaction
could also potentially disrupt Env incorporation resulting in viruses devoid of Env, and therefore,
noninfectious HIV-1 virus particles.

5. Capsid (CA, p24)

As a structural component of HIV-1, the capsid (CA) protein is responsible for the morphology
of the immature Gag and the mature viral core with its characteristic conical structure. Within
HIV-1 subtypes, CA is one of the most conserved proteins, and mutations are not well tolerated [75].
These characteristics make CA a highly attractive target for inhibitor design. Structurally, the CA
protein is divided by a flexible interdomain linker into two domains, an N-terminal domain (NTD)
and a C-terminal domain (CTD) (Figure 7) [76]. The CTD is the central driving unit during Gag
oligomerization, and the NTD encodes a Pro-rich loop crucial for binding to cyclophilins [77,78]. During
viral maturation (late-phase) and translocation of the immature Gag precursor (Pr55Gag) to host cell
membranes, CA-dependent hexagonal lattice structures can be observed [79,80]. Further processing
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by the virally encoded protease forms the mature CA hexagonal conical structure with pentameric
rings at both ends of the cone to close off the cone [81]. Hexamers and pentamers are stabilized by
NTD-NTD interactions and intermolecular NTD-CTD interactions, while the extended hexameric
lattice is connected via CTD-CTD interactions [82]. Core stability is essential for viral replication,
and due to its high conservation, mutations that stabilize or destabilize the core result in altered
infectivity [83]. The viral core undergoes uncoating by interacting with various host cell proteins such
as dyneins, the kinesin-1 adaptor FEZ1, and transportin-1; however, also partly dissembled structures
can be found at the nuclear pore gates [84–88]. Host cell restriction factors have also been shown to
recognize CA such as MxB [89,90], TRIM5a [91] and TRIMCyp [92], which accelerates uncoating and
release of viral DNA, which can be sensed by other restriction factors such as the cyclic guanosine
monophosphate–adenosine monophosphate synthase (cGAS) [93]. The CA domain in the Gag protein
is crucial for multiple steps in the viral replication cycle, and inhibitors can target both early and
late-stage processes by stabilizing or destabilizing core structures. This involvement in numerous steps
throughout the lifecycle and its high conservation resulting in a high barrier for resistance mutations
makes CA an attractive target. During the last years, small molecules and peptide-based antivirals
have been designed that disrupt CA-CA interactions in the immature Gag lattice, the mature core, or
both, and the following section will describe the evolution of inhibitor design that target different
bindings sites of the HIV-1 CA protein.

Figure 7. CA Inhibitors and binding site locations. CA is depicted in the context of a hexamer (left),
and inhibitor/peptide-binding site is highlighted in the monomer (right). PDB code: 6ES8.

Tang and colleagues developed the first small molecule targeting the CA protein in 2003 via a
computational screen [94]. CAP-1 (7) inhibits HIV-1 in a dose-dependent manner (Infectivity reduced
by 95% at 100 µM of CAP-1), and virus particles in the presence of CAP-1 showed abnormal core
morphologies, consistent with inhibited CA–CA interactions during virus assembly and maturation.
CAP-1 acts during the late-stage and defective core structures resulted in noninfectious particles.
NMR and X-ray crystallography revealed that CAP-1 binds and alters the conformation of the NTD
by displacing Phe32 and providing a hydrophobic pocket for an aromatic ring from CAP-1, thus
leading to disruption of intermolecular NTD-CTD interactions within a hexamer ( Figure 7; Figure 8,
Table 1) [95]. Besides classical small molecule compounds, a 12-mer peptide CA inhibitor (CAI (8))
was discovered in 2005 using a phage display library screen [96]. CAI binds in a hydrophobic CA
dimerization interface and inhibits CA self-association in vitro. As with many peptides, CAI cannot
penetrate the cell membrane, limiting its application as an antiviral agent. However, hydrocarbon
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stapling of the peptide resulted in the more stable alpha-helical peptides NYAD-1 (9) (IC50 = 4–15 µM)
and NYAD-13 (10) [97,98]. Those peptides bind at the same site as CAI but display enhanced affinity,
increased cell permeability, and inhibit the replication of numerous laboratory and clinical HIV-1
strains (Figures 7 and 8, Table 1).

Figure 8. Structure of CA inhibitors discussed in this review. (7) CAP-1; (8) CAI; (9) NYAD-1;
(10) NYAD-13; (11) BD-1; (12) BM-1; (13) PF74.

Other classes of CA-assembly inhibitors are the benzodiazepiene (BD) (11), and benzimidazole
(BM) (12) compounds with EC50 < 100 nM. These compounds bind similar to CAP-1 at the tip of
the NTD (Figures 7 and 8, Table 1). However, in contrast to CAP-1, BDs inhibit the assembly of the
immature Gag lattice, preventing virus production while BMs disrupt virus maturation and reduce
infectivity [99,100].

The interprotomer pocket composed of regions from NTD and CTD is the binding site of maybe
the best known CA inhibitor to date, the Pfizer compound PF-3450074 (13) (also known as PF74),
which inhibits HIV-1 replication at submicromolar potencies (EC50 = 8–640 nM) [101,102]. PF74 binds
at the NTD-CTD subunit interface and occupies a similar pocket used by the host proteins CPFS6 and
Nup153, two nuclear import factors known to enhance infectivity by increasing nuclear import and
integration (Figures 7 and 8, Table 1) [103–105]. PF74 stabilizes the CA core structure upon infection,
which inhibits the uncoating process and, subsequently, HIV-1 reverse transcription [101,106,107] in
the early stage and destabilizes CA in the late-stage causing aberrant virus morphologies that do
not undergo maturation. PF74, however, suffers from extremely poor drug-like properties due to its
peptidic nature, most notably its poor metabolic stability, which limits its clinical utility. During the last
decade, numerous research groups, therefore, have tried to improve metabolic stability and potency of
PF74 [107–110].

The pyrrolopyrazolones BI-1 (14) (EC50 = 8.2 µM) and BI-2 (15) (EC50 = 1.8 µM), discovered by
Boehringer Ingelheim occupy the same binding site as PF74, and show a similar stabilizing effect on the
CA lattice [111] and seems to compete with CPSF6 and Nup153 for CA binding, suggesting disruption
of nuclear import (Figures 7 and 9, Table 1) [104,112].
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Figure 9. Structure of CA inhibitors discussed in this review. (14) BD-1; (15) BM-1; (16) C1; (17) GS-CA1;
(18) GS-6207.

Close to the CypA binding loop (NTD), C1, another novel inhibitor, was found to bind (Figures 7
and 9, Table 1) (IC50 = 57 µM) [113]. C1 also inhibits CA assembly in vitro. However, the exact
mechanism of action is still under debate, but inhibition of HIV-1 replication might be achieved
by acting at the late stage and disrupting the mature viral capsid [114]. Recently, using a novel
time-resolved fluorescence resonance energy transfer (TR-FRET) assay screening, a 1280 compound
library, Ebselen, was discovered [115]. Ebselen inhibits CA dimerization in vitro and inhibits HIV-1
replication with an EC50 of 3.37 µM without affecting particle assembly and maturation, indicating an
early stage effect. Ebselen also inhibits reverse transcription and impairs uncoating by CA stabilization
according to a cell fractionation assay and NMR studies. However, further studies are needed to
confirm CA as the actual target through which these antiviral effects are mediated.

The CA inhibitors described thus far have not passed preclinical testing due to low potency
or suboptimal drug-like properties; however, in 2017, a new CA inhibitor was described. GS-CA1
exhibits high antiviral potency in human peripheral blood mononuclear cells (EC50 = 140 pM) and
broad-spectrum inhibition against all major HIV-1 clades [116]. In multiple preclinical species, the low
systematic drug clearance and long half-life (7.2–18.7 h) combined with low aqueous solubility imply a
long-acting potential [117]. In vitro resistance mutations were also identified; however, none of the
five identified mutations are currently present in 132 analyzed circulating strains. Most recently, a
derivative of GS-CA1, GS-6207, was presented at the Conference on Retroviruses and Opportunistic
Infections in Seattle, Washington. GS-6207 has a potent and selective antiviral activity in MT-4 cells
(EC50 = 100 pM, CC50 = 27 µM) and a mean EC50 of 50 pM in 23 clinical isolates [118]. GS-6207 is a
promising CA inhibitor that stabilizes the HIV-1 capsid and disturbs the formation of the mature core.
Molecular docking studies of both GS-CA compounds predict binding in the pocket that is shared
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by PF74 and host cell factors such as CPSF6 and Nup153 within the NTD-CTD intersubunit interface
(Figures 7 and 9, Table 1) [119]. GS-CA1 and GS-6207 are born out of the PF74 and share the same
polyphenyl core and are believed to possess a similar but more potent mechanism of action compared
to PF74.

GS-6207 demonstrated in vitro low solubility, high lipophilicity, and high metabolic stability in
human hepatocyte assays, and in multiple animal models, one single subcutaneous application showed
low clearance, moderate volume distributions, and long half-life (15–38 h). To date, GS-6207 is the only
CA inhibitor that has entered the clinical phase; and Phase I and Ib randomized studies to establish
safety, tolerability, and pharmacokinetics show promising results for the first long-acting CA inhibitor.
However, future Phase 2 and 3 clinical trials are crucial and will provide important long-term safety
and efficacy data of this CA inhibitor.

6. Nucleocapsid (NC, NCp7)

The nucleocapsid (NC) protein is a small (7 kDa) basic protein, also known as NCp7, and is located
at the C-terminal portion of the Gag polyprotein [120]. NC binds nucleic acids via its two CCHC
motif zinc fingers that are highly conserved among retroviruses, and nucleic acid binding promotes
Gag oligomerization (Figure 10) [20,121]. The NC domain is, therefore, crucial in recruiting viral
genomic RNA into the virus particles, explicitly recognizing the packaging signal in the genomic RNA.
In addition to Gag assembly and nucleic acid binding, NC also facilitates post-entry events such as
reverse transcription [122,123]. NC, therefore, contributes to HIV-1 replication mainly by its chaperone
functions via specific interactions with various forms of nucleic acids. Due to its involvement in
reverse transcription and integration, single point mutations can lead to fully non-infectious viruses
highlighting NCs importance in the HIV-1 life cycle [124,125]. Given this multifunctional role of
this small but crucial protein, several inhibitors have been designed over the last years, including
zinc-ejectors, non-zinc ejecting NC binders, nucleic acid intercalators, peptidomimetics, and RNA
aptamers [126].

Figure 10. NMR complex structure with an NCI (compound 3) (2:1 stoichiometry). The NCI binds
within a hydrophobic pocket and is stabilized by π-π stacking with Trp37 (highlighted in green).
The model was derived from PDB code: 2M3Z. Zn2+ ions are represented as orange balls in both
zinc fingers.
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6.1. Zinc-Ejectors

Given the importance of zinc ions to fold NC into its functional form, zinc ejectors are
among the first developed NC inhibitors. The ejectors were found to induce NC unfolding
and total loss of HIV-1 infectivity [127,128]. Most of them display high antiviral activity
with low resistance mutation rates; however, their systematic application was limited due to
their cytotoxic effects. This includes compounds such as 3-nitrosobenzamide (NOBA) from the
C-nitroso-class [127], 2,2-dithiobisbenzamide disulfides (DIBA) [129], pyridinioalkanoyl thioesters
(PATE) [130], Sacyl- 2 mercaptobenzamide thioesters (SAMT) [131], and transchlorobispyridine
(9-ethylguanine) platinum(II) [132]. The most recent NC inhibitors from the ejector class
are N,N′-bis(4-ethoxycarbonyl-1,2,3- thiadiazol-5-yl)benzene-1,2-diamine (NV038) [133] and
2-methyl-3-phenyl-2H-[1,2,4]thiazol-5-yideneamine (WDO-217) [134] (Figure 11 and Table 1).
The mechanism by which the ejector targets the NC can be classified into three mechanisms:
1) electrophilic attack of the zinc fingers 2) zinc chelation, and 3) covalent binding of Cys residues by
platinum (Pt) (Figure 12). Although both Cys residues are reactive, the distal (C-terminal) nucleophilic
cysteine thiolate is the main target for an electrophilic attack, due to its higher accessibility [135,136].
The electrophilic attack is facilitated by intra- or intermolecular disulfide bond formation or acylation
of cysteine and lysine residues. This is supported by the fact that the class 1 ejectors are prodrugs and
acylated intracellularly prior to target recognition.

Figure 11. Structure of NC inhibitors discussed in this review. (19) NOBA; (20) DIBA; (21) PATE;
(22) SAMT; (23) trans-chlorobispyridine (9-ethylguanine)platinum(II); (24) NVO38; (25) WDO-217.
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Figure 12. Zinc ejecting mechanisms: Class 1) Electrophilic attack of the zinc fingers. The nucleophilic
attack of the cysteine 39 results in the formation of a thioester by SAMTs. This covalent linkage stimulates
the reaction of additional reactants with the other Cys residues of the same motif and leads to reduction
in Zn2+ affinity of the zinc finger and finally zinc ejection and NC unfolding [131]. Class 2) Zinc
chelation by the two carbonyl oxygens of the ester from NVO38 [133]. Class 3) Covalent binding of Cys
residues by platinum (Pt) as represented by trans-chlorobispyridine(9-ethylguanine)platinum(II) [137].
Cys (N) and Cys (C) represent N-terminal and C-terminal cysteines in the zinc finger.

6.2. Small Molecules as Non-Zinc Ejectors

In addition to zinc ejectors, several non-covalent inhibitors (NCIs) were identified during the
last decade. However, none of them are in preclinical or clinical development to date, highlighting
the challenges to target NC. Given the higher specificity of NCIs to NC, this class is a promising
pharmaceutical goal to discover new and less cytotoxic compounds that compete with NC for
RNA/DNA or other interaction partners. A more detailed evaluation of these inhibitors is reviewed
in [126,138]. We, therefore, focus on a few recent developments in the following section (Table 1).

In a high-throughput fluorescence polarization assay, Breuer et al. discovered two compounds
that specifically bind to NC with nanomolar affinity and inhibit HIV-1NL4-3 with EC50 values of 0.32
and 3.5 µM [139]. Boehringer Ingelheim described in 2013 another NCI (compound 3) that disrupts the
interaction of NC with RNA and inhibits HIV-1 replication with low-micromolar EC50s [140]. Due
to its high flexibility, X-ray crystallography is challenging, and most of NC structures are solved by
NMR. The NMR structure of HIV-1 NC in complex with the Boehringer Ingelheim inhibitor provided
important structural insights into RNA displacement (Figure 10).

The NCI binds in a 2:1 ratio in a hydrophobic pocket, providing π-π stacking interactions
with Trp37, thus mimicking the guanosine base of the NC nucleic acid binder. Facilitated by the
NMR high-resolution structure, rational optimization in silico resulted in the generation of AN3
(2-amino-4-phenylthiazole NCI), an efficient, non-toxic NCI with antiviral activity in cells [141]. Taken
together, these structures provided important insights and supported the drugability of NC towards
more improved and efficient drug-like NCIs. In a recent study, a new inhibitor was identified; A1752
shows antiviral activity with an IC50 of around 1 µM [142]. A1752 recognized NC directly, thereby
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inhibiting specifically its chaperone function, including Psi RNA dimerization and complementary
trans-activation response element (cTAR) DNA destabilization. In addition, A1752 disrupted proper
Gag processing and generated noninfectious viral particles with uncoating and reverse transcription
defects in infected cells. These few examples highlight the possibility and future need to target a highly
flexible multifunctional key player in HIV-1 replication. The genetic barrier for resistance mutations is
extremely high and not without consequences for virus replication and provides a strong argument for
future NC inhibitor development.

7. Late Domains (P6)

HIV-1 and many other non-retroviral enveloped viruses utilize the host cell machinery for virus
particle budding, scission, and release at the plasma membrane. One of the main pathways hijacked
by the virus involves the ESCRT machinery comprising four complexes, namely ESCRT-0, I, II, III,
including other host adaptors associated with this machinery. One key player is the cellular protein
Tsg101 (tumor susceptibility gene 101) as part of ESCRT-I. Tsg101 is recruited to viral assembly sites via
the late domain of the Gag polyprotein, also known as p6. The directed particle release is accomplished
via a Pro-Thr-Ala-Pro (PTAP) motif in p6 that serves as a docking site for Tsg101 [143–145]. This
interaction is critical for HIV release, highlighted by the high conservation within the PTAP motif [146].
Additionally, the Tyr-Pro-Xn-Leu motif in p6 (YPXnL with X is any residue and n can vary from 1 to 4
amino acids) binds to the ESCRT-associated factor Alix (ALG-2 (apoptosis-linked gene 2-interacting
protein X).

The majority of HIV-1 budding antagonists are focused on the disruption of the Tsg101 or Alix
interface [147–149]. Liu and colleagues in 2006 designed and tested N-substituted glycine variations of
PTAP by incorporating hydrazine amides (peptoid hydrazones) [150]. The best n-butyl containing
peptoid hydrazine (KD = 9.8 µM) displayed a five-fold increased affinity towards Tsg101 compared to
wild-type PTAP peptide. In another attempt to identify peptides blocking the p6-Tsg101 interaction, a
bacterial reverse two-hybrid system was utilized to screen a cyclic peptide library of 3.2 × 106 members,
and the best peptide (cyclic peptide 11) inhibited the production of virus-like particles (VLPs) of
cultured human cells with an IC50 of 7 µM (Table 1) [151]. Besides the development of peptides to
disrupt the p6-Tsg101 interaction, a recent study identified via a high-throughput screen of a small
molecule library, two small molecules F15 (esomeprazole) and N16 (tenatoprazole) that are capable of
binding to the UEV (ubiquitin E2 variant) domain of Tsg101 [152]. F15 is currently used for indications
of heartburn (or indigestion), and N16 was undergoing phase I clinical trials in July 2016 as a proton
pump inhibitor as a potential treatment of reflux oesophagitis. Both compounds could reduce Gag
assembly and virus production in vitro, highlighting the possibility of using small molecules like F15
and N16 to interfere with a previously unrecognized Tsg101 contribution to budding. The solution
NMR complex structure of N16 together with Tsg101 also provides a rational and future perspective
for the improvement of Tsg101 inhibitors (Figure 13 and Table 1).
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Figure 13. Solution NMR structure of Tsg101 complexed with N16. N16 binds in a hydrophobic
groove defined by Thr56 (in green), similar to other peptide-based Tsg101 inhibitors. (26) N16. PDB
code: 5VKG.

8. Conclusions

Despite the incredible success of AIDS treatment during the last years with current ART therapies,
resistance mutations, and the accumulation of severe side effects is an enormous challenge that
continually needs to be addressed. In this review, we highlight the importance of the HIV-1 Gag
polyprotein as the master coordinator of HIV-1 assembly and maturation. The individual Gag domains
play crucial roles in the HIV-1 replication cycle and are therefore appropriate but also challenging
targets of inhibitor development. However, recent positive developments in targeting the Gag domains
such as the capsid protein with highly potent and potentially long-acting inhibitors, as well as the
exploration and successful targeting of challenging HIV-1 proteins such as the matrix protein, are very
encouraging in the fight against the AIDS pandemic. Such new inhibitors can also serve as novel
probes to dissect and better understand HIV-1 biology.
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