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Abstract
Individuals with chronic stroke have reduced perfusion of the paretic lower limb at rest; how-

ever, the hyperemic response to graded muscle contractions in this patient population has

not been examined. This study quantified blood flow to the paretic and non-paretic lower

limbs of subjects with chronic stroke after submaximal contractions of the knee extensor

muscles and correlated those measures with limb function and activity. Ten subjects with

chronic stroke and ten controls had blood flow through the superficial femoral artery quanti-

fied with ultrasonography before and immediately after 10 second contractions of the knee

extensor muscles at 20, 40, 60, and 80% of the maximal voluntary contraction (MVC) of the

test limb. Blood flow to the paretic and non-paretic limb of stroke subjects was significantly

reduced at all load levels compared to control subjects even after normalization to lean mus-

cle mass. Of variables measured, increased blood flow after an 80%MVC was the single

best predictor of paretic limb strength, the symmetry of strength between the paretic and

non-paretic limbs, coordination of the paretic limb, and physical activity. The impaired

hemodynamic response to high intensity contractions was a better predictor of lower limb

function than resting perfusion measures. Stroke-dependent weakness and atrophy of the

paretic limb do not explain the reduced hyperemic response to muscle contraction alone as

the response is similarly reduced in the non-paretic limb when compared to controls. These

data may suggest a role for perfusion therapies to optimize rehabilitation post stroke.

Introduction
Following stroke, blood flow to the musculature of the paretic limb is decreased at rest com-
pared to the non-paretic limb and the limbs of healthy subjects.[1–3] Presumably, the reduc-
tion in paretic limb blood flow is due to both muscle atrophy caused by reduced neural drive to
the affected limb as well as deconditioning due to decreased use of the paretic limb. [4, 5] Meta-
bolic changes such as augmented lactate production and reduced oxygen uptake have also been
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reported in the paretic muscle during low level exercise.[6] These observations, coupled with
deficient central neural activation of the paretic muscle during exercise,[7] combine to severely
limit paretic lower limb function in this subject population and limit the potential impact of
rehabilitation on motor recovery.

To date, the hyperemic response to paretic limb muscle contraction has not been examined
in the chronic stroke population. The purpose of this study was to examine femoral artery
blood flow in both the paretic and non-paretic lower limb of stroke survivors, and in neurologi-
cally intact control subjects, in response to graded, submaximal contractions of the knee exten-
sor muscles. In healthy subjects peripheral blood flow is tightly matched to the metabolic
demand of exercising muscle. Given the reduced neural activation of the paretic musculature
[7, 8] and a shift in paretic muscle physiology to favor a more fatigue-prone state post stroke,
[6, 9] we hypothesize that the hyperemic response to contractions of the knee extensor muscles
will be blunted in the paretic limb of subjects with chronic stroke, and that subjects with a
more robust hyperemic response will have greater lower limb function and strength.

Materials and Methods

Subjects
All activities in this study were approved by the Institutional Review Boards of Marquette Uni-
versity and the Medical College of Wisconsin. All participants gave written informed consent
prior to study participation. Ten participants with chronic stroke (� 6 months) and ten age-
and sex-matched, neurologically intact subjects were recruited (see Table 1 for details). Stroke
subject inclusion criteria: 1) history of a single, unilateral stroke and 2) the ability to ambulate

Table 1. Characteristics of all Subjects.

Characteristic Control (n = 9) Stroke (n = 10)

Sex, Male 6 6

Age (yr) 60±6 63±7

Height (cm) 173.2±14.7 172.1±11.7

Weight (kg) 80.3±14.6 85.9±19.7

Body Mass Index (kg/m2) 27±4 29±4

Total Body Fat (%) 35.8±6.5 39.8±4.5

Estimated Visceral Fat (%) 27.3±10.5 34.0±11.7

Waist Circumference (cm) 94.4±7.7 103.8±11.4

Hip Circumference (cm) 103.4±6.5 107.8±4.0

Waist to Hip Ratio 0.91±0.04 1.00±0.08

Total Cholesterol (mg/dl) 200±22* 170±32

LDL Cholesterol (mg/dl) 123±26* 91±26

HDL Cholesterol (mg/dl) 60±21 59±21

Triglycerides (mg/dl) 94±50 104±48

Systolic Blood Pressure (mmHg) 125±9 123±15

Diastolic Blood Pressure (mmHg) 80±11 74±9

Heart Rate (bpm) 73±18 75±8

Fugl-Meyer Score NA 23±7

Physical Activity (Met-h/week) 14±7 13 ±7

All values are expressed as mean ± SD. HDL, high density lipoprotein; LDL, low density lipoprotein; n,

number of subjects.

*Significant difference (p<0.05) Stroke vs. Control–unpaired t-test.

doi:10.1371/journal.pone.0144023.t001
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at least 30 feet with or without an assistive device. Stroke subject exclusion criteria: 1) history of
multiple strokes, 2) brainstem stroke, 3) any uncontrolled medical condition, 4) lower extrem-
ity contractures, 5) resting systolic blood pressure�140 mmHg or 6) inability to follow 2–3
step commands. One control subject refused the body composition scan (see below), and non-
paretic lower limb blood flow could not be quantified for one stroke subject during the equal
torque test session. Subjects were not instructed to abstain from taking their current
medications.

Torque Measurements
Participants sat on a Biodex chair with their tested knee and hip flexed to 90°. The isometric
torque of the knee extensors was measured with a load cell (JR3 force-torque transducer) sam-
pled at 1000 Hz. Please see below in the Experimental Protocol for detailed description of tor-
que measurements.

Vascular Measurements
All experimental protocols were performed in a temperature controlled room between 8:00
and 10:00 AM. Subjects were seated in an upright position in the Biodex dynamometer (see
below) and rested for a minimum of 15 minutes prior to assessments of blood flow. Subjects
had a belt placed around their waist to reduce movement, and all vascular measurements were
taken on the inner thigh by the same individual who stabilized the ultrasound probe by hand.
The diameter, mean blood flow velocity, maximum blood flow velocity, and calculated volume
of blood flow through the superficial femoral artery were measured and analyzed using a Vivid
e ultrasound machine (General Electric, Fairfield, CT) equipped with a linear array 4.0–12.0
MHz transducer designed for vascular imaging with an isonation angle of 60°. Five unique
measurements consisting of 3 complete cardiac cycles per measurement were averaged prior to
testing the MVC of the lower limb (see below) to establish resting values. Immediately follow-
ing each submaximal contraction subjects remained seated in the upright position in the bio-
dex dynamometer still while a ten second video clip of the artery was recorded. Because
subjects were secured to the chair with a lap belt and the isometric contractions do not result in
movement of the lower limb, the same portion of the artery was able to be visualized following
all contractions. Because local blood flow is tightly coupled to metabolic demand and blood
flow rapidly returns to baseline following muscle contractions, only measurements obtained
during the first three complete cardiac cycles following the submaximal contractions were
included for analysis. To account for atrophy of the paretic limb, blood flow through the femo-
ral artery was normalized to lean muscle mass of the whole lower limb as determined by dual-
energy X-ray absorptiometry (DXA) analysis (below). To describe conditions the endothelium
of the superficial femoral artery was exposed to following muscle contractions, peak shear
stress through the femoral artery was calculated using the equation SS = 8μVPeak/D where SS is
shear stress, μ is blood viscosity (estimated to be 0.035 dyne x s/cm2), V is peak flow velocity,
and D is femoral artery diameter.[10, 11]

Body Composition and Clinical Measurements
All anthropomorphic measurements were performed in triplicate by a licensed bionutritionist.
Body composition analysis to determine the estimated visceral fat percentage, total lower limb
mass, lean muscle mass of the limbs, and percent fat composition of each limb was conducted
using an iDXA (GE Lunar Medical Systems, Madison, Wisconsin). Lower extremity Fugl-
Meyer (a quantitative assessment of motor impairment) and ten meter walk tests were
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performed by a licensed physical therapist. Each subject completed a physical activity question-
naire (estimates Mets-h/week).[9]

Experimental Protocol
Subjects were seated in a Biodex dynamometer chair with their hips and knees at 90 degrees of
flexion. Torso and lap belts were secured around the participant to prevent compensatory
movements. The lower limb was securely stabilized by straps into the dynamometer attach-
ment. After resting femoral artery blood flow measurements were made, each participant per-
formed 3–5 isometric knee extension MVCs (5 s each). MVC measurements were made in the
right lower limb of controls and both lower limbs of subjects with stroke. The peak knee exten-
sion torque from the trials was used as the MVC. Subjects were instructed to kick as “hard and
as quickly” as possible. MVC attempts were stopped when subjects repeatedly kicked within
3% of maximal torque recorded. Subjects were given verbal encouragement during each MVC
attempt. One minute rests were given between each attempt. Subjects then completed a single
10 second isometric contraction at 20, 40, 60, and 80% of the peak MVC (order randomized).
A 10 second contraction was chosen (vs. longer or repeated contractions) in order to examine
load-dependent hyperemic responses while minimizing muscle fatigue. Visual and verbal feed-
back was given throughout the duration of the kick to all subjects. A one minute rest was given
between contractions. Blood flow and heart rate were measured immediately prior to each sub-
sequent sub-maximal contraction trial to confirm blood flow values returned to baseline
values.

Stroke subjects performed two sets of submaximal contractions in the non-paretic lower
limb. During the first set, the target torque matched torque values of the paretic limb at each
graded intensity (“equal torque”). This allowed for comparison of flow while each limb per-
formed a similar amount of work despite different amounts of effort. The second set of sub-
maximal contractions were performed based on the measured MVC of the non-paretic lower
limb (“equal effort”). This protocol allowed for comparison of flow following similar graded
levels of effort, resulting in different degrees of work. To prevent muscle fatigue, the paretic
and non-paretic limbs were tested on separate days. The order of testing (non-paretic vs.
paretic limb) was counterbalanced.

Data Processing
Data processing was performed in Matlab (Mathworks, Natick, MA). Torque was zero phased
lowpass filtered at 10 Hz using a 2nd order Butterworth filter prior to analysis. MVC amplitude
was recorded as the average force during a 100 ms window surrounding the peak torque. An
MVC ratio was calculated between the paretic and non-paretic lower limb to assess asymmetry
of strength (paretic MVC/non-paretic MVC). The average torque for each 10 second contrac-
tion was found by calculating the mean torque value between 2 and 8 seconds of the
contraction.

Statistical Analysis
All data are reported as mean ± SD. A student’s t-test was used to test for differences between
control and stroke subjects for the subject characteristics. Separate one-way analysis of vari-
ances (ANOVAs) were used to test for differences in lower limb composition and the blood
flow response to exercise between the paretic, non-paretic, and control limbs. Differences
between individual means after ANOVA were determined using a post hoc Tukey’s test. To
test for differences in lower limb composition between the paretic and non-paretic limbs of
stroke subjects only, a paired t-test was performed. A mixed model repeated measures
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ANOVA was used to detect statistical differences in normalized blood flow between the tested
limb (non-paretic, paretic and control) and load level (baseline, 20%, 40%, 60%, and 80%
MVC). Separate Pearson correlation coefficients were calculated to determine relationships
between femoral artery blood flow and the following variables: MVC, MVC ratio between
limbs, Fugl-Meyer score, and physical activity. Statistical analyses were performed in SPSS 20.0
(IMB, Armonk, NY). Separate multiple regressions (forward stepwise method) were performed
to identify the single best predictor (dependent variables: ml/min/kg lean muscle mass at rest,
20%, 40%, 60%, and 80%MVC) of the following independent variables in the individuals with
stroke: Fugl-Meyer score, paretic MVC, MVC ratio, and level of physical activity. Normality of
the data from the separate groups was evaluated by visual inspection of Q-Q plots and the Kol-
mogorov-Smirnov test (normal distribution was accepted with p values> 0.05). Separate
regression analysis was performed to determine the linear relationship between torque gener-
ated and the hyperemic response for the paretic and control limbs (α = 0.05). To assess differ-
ences in the slope magnitude of these lines, we first examined the respective overlap of the 95%
confidence intervals of b1 co-efficient calculated for each line. We then used a t-test to deter-
mine the probability that the slopes of the 2 lines were different (α = 0.05). For all analyses, sig-
nificance was accepted at p< 0.05.

Results
Subject characteristics are presented in Table 1. Control subjects had higher LDL and total cho-
lesterol than stroke subjects. The average time post-stroke was 14.3±7.1 years. Of the ten stroke
subjects, eight had a middle cerebral artery stroke while two had a stroke in the posterior cere-
bral artery. Eight of the ten subjects were left side affected. Medications that all subjects were
taking are listed in S1 Table. Control subjects were not taking any medications.

Leg Strength, Size, Composition and Resting Blood Flow
Consistent with previous studies performed in stroke subjects,[8] the MVC of the paretic lower
limb was lower compared to either the non-paretic lower limb or the lower limbs of age and sex-
matched control subjects (Table 2). Further, compared with the non-paretic limb, the paretic
limb was (1) significantly smaller, (2) had reduced muscle mass, (3) a higher fat percentage, and
(4) reduced femoral artery diameter at rest (Table 2). Absolute blood flow (ml/min) was not sig-
nificantly different amongst any of the groups at rest (Table 3). In this cohort of subjects, when

Table 2. Leg strength, size and composition of all subjects.

Characteristic Control (n = 9) Non Paretic (n = 10) Paretic (n = 10)

Maximum Voluntary Contraction (Nm) 134.4±48.1* 87.2±53.0 50.6±31.3#

Thigh Circumference (cm) 54.7±4.6 53.1±3.9 51.2±4.7

Calf Circumference (cm) 37.5±3.2 36.7±3.5 34.5±2.5

Total Lower Limb Mass (kg) 13.0±2.6 14.3±2.9 13.0±0.8#

Lean Muscle Mass of Lower Limb (kg) 8.4±2.7 9.0±2.7 7.8±2.3#

Fat Mass of Lower Limb (kg) 4.1±1.3 4.7±0.6 4.7±0.6

Fat Tissue in Lower Limb (%) 32.5±9.9 35.8±8 38.4±7.3#

Femoral Artery Diameter (mm) 6.46±1.11 6.03±1.23 5.08±1.04#

All values are expressed as mean ± SD. n, number of subjects.

*Significant difference (p<0.05) Control vs. Paretic–one way ANOVA.
#Significant difference (p<0.05) Paretic vs. Non Paretic–paired t-test

doi:10.1371/journal.pone.0144023.t002

Hyperemic Response in Stroke

PLOS ONE | DOI:10.1371/journal.pone.0144023 December 2, 2015 5 / 13



resting blood flow was normalized to lean muscle mass of the limb, blood flow was 8% lower in
the paretic limb compared to the non-paretic limb, however this difference was not statistically
significant (p = 0.32). Compared to control subjects, the resting blood flow (when normalized to
lean muscle mass) was significantly lower in the paretic leg compared to control subjects.

Cardiovascular Response to Submaximal Contractions of the Knee
Extensor Muscles
Blood flow increased in a linear manner with the amount of effort performed in all three limbs
tested as shown in Table 3 and S2 Table. There were no differences in heart rate or peak blood
flow velocity between groups following submaximal contractions of the knee extensor muscles.
For all groups, femoral artery diameter did not change during the protocol; however, the diam-
eter of the artery was significantly greater in control subjects compared to either the paretic or
non-paretic limbs of stroke subjects during all conditions. Blood flow (ml/min) through the
femoral artery was not different among the groups at rest; however, flow was higher in the fem-
oral artery of control subjects compared to both the paretic and non-paretic limbs (equal tor-
que session) of stroke subjects during all load conditions.

Table 3. Vascular measurements during submaximal isometric contraction protocol.

Condition Test Limb Percent Maximum Voluntary Contraction

Rest 20 40 60 80

Heart Rate (bpm) Control 73±14 76±13 79±14 80±15 81±18

Non Paretic—Equal Effort 73±8 73±11 77±8 75±9 80±11

Non Paretic—Equal Torque NA 75±12 74±7.5 76±8 77±10

Paretic 73±8 73±10 74±8 78±10 77±10

Femoral Artery Diameter (mm) Control 6.46±1.11 6.49±1.09 6.47±1.11 6.47±1.09 6.48±1.11

Non Paretic—Equal Effort 6.03±1.23 6.07±1.25 6.00±1.24 6.04±1.27 6.06±1.22

Non Paretic—Equal Torque NA 6.10±1.15 6.08±1.24 6.11±1.23 6.10±1.18

Paretic 5.08±1.08* 5.09±1.12* 5.10±1.21 5.05±1.11* 5.04±1.12*

Mean Blood Flow Velocity (cm/s) Control 6.9±2.0 11.3±4.2 13.1±5.0 15.2±6.6 19.0±4.4

Non Paretic—Equal Effort 6.2±2.5 8.1±3.1 11.0±4.7 12.7±1.9 13.7±5.0

Non Paretic—Equal Torque NA 7.2±3.2* 9.6±4.0 12.2±7.3 11.8±3.7

Paretic 6.1±1.7 7.2±1.8* 9.9±3.5 10.6±3.6 11.0±3.8*

Peak Blood Flow Velocity (cm/s) Control 62.5±11.8 69.6±13.8 74.1±17.1 83.2±11.7 87.2±17.9

Non Paretic—Equal Effort 65.2±21.7 67.3±20.6 68.9±20.4 72.4±22.8 77.9±5.9

Non Paretic—Equal Torque NA 67.3±3.6 69.0±7.0 75.5±8.6 72.7±14.5

Paretic 62.2±17.0 64.9±11.1 73.0±13.9 70.9±11.5 74.4±15.2

Blood Flow (mL/min) Control 136±56 260±99 343±137 388±89 443±172

Non Paretic—Equal Effort 110±69 161±92 207±110 237±118* 264±135*

Non Paretic—Equal Torque NA 129±51* 171±73* 205±112* 217±114*

Paretic 80±40 101±49* 141±76* 137±70* 163±85*

Peak Shear Stress (dyne/cm2) Control 27.7±7.3 30.7±8.7 33.0±10.5 37.3±9.8 38.4±9.1

Non Paretic—Equal Effort 31.1±14.3 32.4±15.1 32.7±12.8 33.9±16.7 37.1±13.1

Non Paretic—Equal Torque 34.4±15.1 34.6±15.2 36.3±17.5 39.8±23.2 36.5±14.4

Paretic 36.0±14.5 38.0±15.3 42.6±16.9 41.3±14.4 43.3±15.5

All values are expressed as mean ± SD. NA, Not applicable. The same resting values were used in the equal torque and equal effort conditions for the

non-paretic lower limb. Control n = 9; Non Paretic–Equal Effort n = 10; Non Paretic–Equal Torque n = 9; Paretic n = 10. n = number of subjects.

*Significant difference (p<0.05) vs. Control–one way ANOVA.

doi:10.1371/journal.pone.0144023.t003
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Change in Femoral Artery Blood Flow in Response to Submaximal
Contractions of the Knee Extensor Muscles
Representative ultrasound images showing blood flow through the superficial femoral artery of
a control subject and the paretic and non-paretic lower limb of a stroke subject at rest and
immediately following an 80%MVC contraction are shown in Fig 1. As shown in Fig 2A, both
the paretic and non-paretic limb of stroke subjects had a reduced hyperemic response to graded
muscle contractions compared to control subjects when contractions were performed at equal
effort. The paretic and non-paretic limbs of stroke subjects had an equal hyperemic response to
graded, submaximal muscle contractions performed during the equal torque test condition (i.e.
both limbs generated equal force during each test condition, regardless of differences in limb

Fig 1. Representative ultrasound images showing blood flow through either the superficial femoral artery of a neurologically intact control subject
or the paretic and non-paretic lower limb of a stroke subject at rest or immediately following an 80%MVC. Paretic and non-paretic superficial femoral
artery images are from the same subject. D, diameter; FBF, femoral blood flow.

doi:10.1371/journal.pone.0144023.g001
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Fig 2. (A) Blood flow through the superficial femoral artery was significantly reduced in the paretic
(n = 10) and non-paretic lower limb (n = 10) of stroke subjects in response to 10-second submaximal
isometric contractions of the knee extensor muscles compared to age and sexmatched control
subjects (n = 9). All subjects performed work based on the perceivedmaximal effort of the test limb
(i.e., equal effort). *Significant difference (p<0.05) control vs. paretic and non-paretic lower limb,
mixedmodel repeatedmeasures ANOVA. (B) Blood flow through the superficial femoral artery was
similar between the paretic (n = 10) and non-paretic (n = 9) lower limb of stroke subjects when the
non-paretic limb achieved target torques equal to the paretic limb (i.e., equal torque). Blood flow data
could not be quantified in the non-paretic limb of one subject following the equal torque test session.
n, number of subjects.

doi:10.1371/journal.pone.0144023.g002
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strength; Fig 2B). The increased hyperemic response to knee extensor muscle contractions in
control subjects vs. stroke subjects also was not solely determined by the absolute magnitude of
torque generated, as the slope of the response of control subjects was higher than the stroke
subjects (p = 0.02, S1 Fig).

The Hyperemic Response to Sub-maximal Contractions of the Paretic
Leg Correlates with Leg Function
Increased blood flow through the femoral artery of the paretic limb in response to an 80%
MVC positively correlates with 1) paretic lower limb strength (as assessed by maximum torque
generated; Fig 3A), 2) the symmetry of strength between the paretic and non-paretic limb (as
assessed by the paretic to non-paretic MVC ratio; Fig 3B), 3) the Fugl-Meyer score (a measure-
ment of motor recovery; Fig 3C), and 4) self-reported physical activity (Fig 3D). Resting blood
flow in the paretic limb was not correlated with any of the measured parameters, nor was rest-
ing blood flow in the non-paretic lower limb (data not shown, p> 0.05).

Blood flow through the femoral artery of the paretic lower limb following an 80%MVC was
the single best predictor of physical activity (r2 = 0.51, β = 0.71, p = 0.02), knee extensor MVC
ratio between the paretic and non-paretic lower limbs (r2 = 0.58, β = 0.76, p = 0.01), and Fugl-
Meyer score (r2 = 0.36, β = 0.658, p = 0.039). The single best predictor of the MVC of the
paretic limb knee extensor muscles was the blood flow response following the 20% MVC (r2 =
0.71, β = 0.845, p = 0.002).

Discussion
This is the first study to assess stroke-related changes in peripheral blood flow regulation in
response to submaximal muscle contractions in the chronic stroke population. There are two
major novel findings in this study. First, blood flow through the superficial femoral artery in
response to equal effort contractions of the knee extensor muscles is significantly reduced in
both the paretic and non-paretic lower limb of stroke subjects compared to neurologically
intact control subjects. Because blood flow was similar through the superficial femoral artery in
the paretic and non-paretic limbs of stroke subjects in response to equal torque knee extensor
muscle contractions, this suggests a systemic change in the regulation of peripheral blood flow,
rather than a change to the paretic lower limb only. Second, the hyperemic response to muscle
contraction in the paretic limb, as opposed to resting measurements, is positively correlated
with metrics of limb strength, the symmetry of limb strength between the paretic and non-
paretic limbs, Fugl-Meyer score, and levels of physical activity. Though this study included a
relatively small number of stroke subjects (n = 10), these findings suggest a potentially impor-
tant relationship between the peripheral regulation of blood flow in response to exercise/mus-
cle activity and motor function post stroke which warrants further investigation.

Although others have shown that resting blood flow is lower in the paretic lower limb of
stroke subjects [1–3] and that resting blood flow can increase in response to therapy,[1] we are
the first to quantify the flow response to graded levels of muscle activity. This is important
since it provides information in regard to the hemodynamic response to exercise that may be
useful in predicting functional outcomes. Data from this study indicate that individuals with
stroke demonstrate the ability to increase blood flow to the lower limb in a load-dependent
manner. However, the overall magnitude of the response in both limbs is blunted in compari-
son with controls when contractions are performed at an equal level of perceived effort.

Control subjects did not perform submaximal contractions to absolute torque levels match-
ing those measured in the paretic lower limb of the stroke subject with whom they were age-
and sex-matched. Therefore; it is possible that the larger hyperemic response observed in
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control subjects is a function of them performing more work than those with stroke as the aver-
age MVC in control subjects was 54% greater than the non-paretic limb, and 166% larger than
the paretic limb of stroke subjects (Table 2). However, as shown in S1 Fig, even when the knee
extensor muscles of the control subjects were generating low torque that was similar to values
reported in the paretic leg of stroke subjects, hyperemic blood flow was still greater, indicating
that the magnitude of hyperemic blood flow is not solely dependent on the amount of work
being performed. It is also not likely that the primary mechanism of the blunted hyperemic
response observed in stroke subjects is due to atrophy of the muscle because (1) the blunted
response occurs in both the paretic and non-paretic lower limbs, (2) the non-paretic lower

Fig 3. An increased blood flow response in the paretic lower limb following an 80%MVCwas positively correlated with (A) paretic limb strength,
(B) symmetry of limb strength, (C) Fugl Meyer score and (D) physical activity. There were no correlations between any of the measured parameters and
paretic lower limb blood flow at rest.

doi:10.1371/journal.pone.0144023.g003
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limb of stroke subjects and the lower limb of control subjects had equal amounts of lean muscle
mass, and (3) blood flow was normalized to lean muscle mass of the limb in all groups.

Alternatively, a general lack of physical activity and disuse of the lower limbs could explain
the blunted hemodynamic response in both limbs of the stroke subjects. The results of our
study indicate that stroke subjects who were the most physically active had the most robust
hyperemic response to exercise (Fig 3D). Subjects with stroke often have limited mobility; con-
sequently the amount of daily physical activity they perform can be pathologically low.[12, 13]
However, in our study the individuals with stroke and control subjects self-reported similar
levels of physical activity (Table 1). Due to the strong positive correlation between physical
activity and the hyperemic response to blood flow in the paretic leg, this is an area which war-
rants more detailed investigation with quantifiable measures of lower body physical activity
(for example, using pedometers and accelerometers in an at home setting).

It is also possible that autonomic dysregulation contributes to the blunted hyperemic
response in the stroke subjects. It has been shown that after stroke, individuals can have
decreased parasympathetic activity with a concordant increase in sympathetic activity,[14–16]
which may result in peripheral vasoconstriction. While these types of measurements are
beyond the scope of this study, it is worth noting that there were no differences in resting sys-
tolic blood pressure and heart rate between stroke subjects and control subjects. Future studies
will monitor blood pressure and heart rate during muscle contractions to determine if there is
an increased pressor response in stroke subjects.

To our knowledge, a comprehensive study to concordantly examine the effects of altered
paretic lower limb blood flow on strength and muscle performance has not been performed,
and is necessary to examine a cause-and-effect relationship between changes in paretic lower
limb blood flow and limb function. Importantly, data from this study demonstrate a positive
relationship between lower limb function and the hyperemic response to muscle contractions
in the paretic lower limb, while no relationship exists between lower limb function and resting
blood flow values. This highlights important activity-dependent differences in the hyperemic
response post stroke that are often overlooked or not characterized. In addition to providing a
more telling snapshot of cardiovascular function and physical fitness, this data allows us to
speculate that improving the hyperemic response to exercise could help optimize motor recov-
ery. Current stroke rehabilitation strategies primarily focus on lower limb strength, movement
quality, and cardiovascular fitness as separate issues. Data from this study suggest that examin-
ing the blood flow response to a single muscle contraction may potentially be used as another
assessment tool of impairment/cardiovascular health during the rehabilitation process. Future
studies will examine the hyperemic response to longer contractions that may more closely
mimic strengthening regimens or activities of daily living.

Study Limitations
Subjects were not in a fasting state during this study. Studies which assess endothelial function
of conduit arteries using the flow mediated dilation (FMD) technique recommend a minimum
8 hour fast prior to performing the technique as the postprandial phase can reduce peripheral
endothelial function.[17] Though we did not specifically test endothelial function with FMD, it
is conceivable that a non-fasting state could contribute to variation within our measurements
of active hyperemia. However, the stroke subjects served as their own controls and were tested
at the same time of the day, thus day-to-day variation should be minimal assuming no change
in diet.

Subjects also did not abstain from medications. While it would be advisable for subjects to
discontinue medication prior to assessment of endothelial function, we chose not to require the
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participants to discontinue medications they used for the medical management of stroke. A list
of medications the stroke subjects were taking is listed in S1 Table (note: control subjects were
not taking any medication).

The distance from the bifurcation of the femoral artery into the deep and superficial
branches was also not measured, however based on the location of the artery in the thigh, the
artery depth, and the observed diameter being consistent with published values,[18] we con-
cluded that the superficial femoral artery was visualized.

The results of this study indicate that the hyperemic response to graded muscle contractions
is reduced in both the paretic and non-paretic limb of stroke subjects compared to control sub-
jects; however, it cannot be concluded whether the reduced blood flow is either contributing to
the muscle weakness or is a consequence of the weakness of the knee extensor muscles. S1 Fig
indicates that although the hyperemic response in the paretic limb is still linear, the slope of the
response is less than controls (p = 0.02). Still, future larger studies which modulate blood flow
to the limb are necessary to determine if a cause-and-effect relationship exists between limb
blood flow and knee extensor muscle force generating capabilities.

Finally, this study has a relatively small sample size. Future studies with a larger sample size
will allow better examination of the relationship between blood flow and function by control-
ling for co-variance among independent measures.

Supporting Information
S1 Table. Medications taken by all stroke subjects. Control subjects were not taking any med-
ications.
(DOCX)

S2 Table. Maximum voluntary contraction, lower limb muscle mass, and femoral artery
blood flow values at each contraction level of all subjects. Scatter plots indicate that the
hyperemic response to muscle contractions increased linearly with increased torque in all
groups (r2 � 0.92).
(XLSX)

S1 Fig. Blood flow increased linearly with torque generated by the knee extensor muscles in
control subjects (closed circles) and in the paretic limb of stroke subjects (open circles).
While control subjects generated higher torque levels than stroke subjects, blood flow was still
greater in control subjects at torque levels comparable to those measured in stroke subjects.
(TIF)
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