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Background: Artificial intelligence (AI) is a continuously expanding field with the potential to transform
a variety of industriesdincluding health caredby providing automation, efficiency, precision, accuracy,
and decision-making support for simple and complex tasks. Basic knowledge of the key features as well
as limitations of AI is paramount to understand current developments in this field and to successfully
apply them to shoulder surgery. The purpose of the present review is to provide an overview of AI within
orthopedics and shoulder surgery exploring current and forthcoming AI applications.
Methods: PubMed and Scopus databases were searched to provide a narrative review of the most
relevant literature on AI applications in shoulder surgery.
Results: Despite the enormous clinical and research potential of AI, orthopedic surgery has been a
relatively late adopter of AI technologies. Image evaluation, surgical planning, aiding decision-making,
and facilitating patient evaluations over time are some of the current areas of development with
enormous opportunities to improve surgical practice, research, and education. Furthermore, the
advancement of AI-driven strategies has the potential to create a more efficient medical system that may
reduce the overall cost of delivering and implementing quality health care for patients with shoulder
pathology.
Conclusion: AI is an expanding field with the potential for broad clinical and research applications in
orthopedic surgery. Many challenges still need to be addressed to fully leverage the potential of AI to
clinical practice and research such as privacy issues, data ownership, and external validation of the
proposed models.

© 2023 The Author(s). Published by Elsevier Inc. on behalf of American Shoulder & Elbow Surgeons.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
The term artificial intelligence (AI) was first coined by McCarthy
et al in 1955 on the basis that “every aspect of learning or any other
feature of intelligence can in principle be so precisely described that
a machine can be made to simulate it”.52 The field has evolved
dramatically over time, and more notably over the last decade. It
has transformed various industriesdincluding health caredby
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providing automation, efficiency, precision, accuracy, and decision-
making support for simple and complex tasks.42 The use of virtual
assistants, targeted marketing, content prediction, and many other
applications have become so routine in our daily lives that
frequently wemiss the fact that we use AI technologies every day.42

Electronic medical records (EMRs) are an unprecedented source of
medical unstructured data (ie, big data). Extracting relevant clinical
data from big data is a well-recognized challenge75,84 and AI has
emerged as a useful tool to accomplish this task.39,43,63 Despite the
enormous clinical and research potential of AI, shoulder surgeons
have been relatively late adopters of these technologies.25,50 Or-
thopedic surgery has recently adopted AI and a variety of
der & Elbow Surgeons. This is an open access article under the CC BY-NC-ND license
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Figure 1 Interrelation of different subfields of Artificial Intelligence. AI, artificial in-
telligence; ML, machine learning; DL; deep Learning; NLP, Neuro-linguistic
Programming.
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applications have been published over the past few years.49,62 Most
of the literature available on AI in orthopedics encompasses hip and
knee related studies.39,49 A recent systematic review of AI literature
related to shoulder surgery25 found 48 articles, and their external
validity is yet to be determined. Being able to understand the
principles behind AI represents one of the barriers to translate
these techniques into our surgical practice as well as research and
education efforts. The purpose of the present review is to provide
an overview of AI within orthopedics and shoulder surgery.
Furthermore, we review the recent literature to explore current and
forthcoming AI applications.

Artificial intelligence, machine learning and deep learning

AI encompasses every computer-performed task that simulates
or improves upon human intelligence. Machine learning (ML) is a
subcategory of AI that uses algorithms to automatically learn in-
sights and recognize patterns from data, applying that learning to
make increasingly better decisions. ML can be utilized to identify
relationships between a group of variables (eg, possible risk factors)
and one or more outcomes (eg, complications, revision surgery, or
another dependent variables) without preconceived criteria
(Fig. 1).33 To achieve this, algorithms are created to “learn” from
large data sets with known variables called training data. Next, the
trained algorithm is used to suggest outcomes from unseen data
(testing data). ML algorithms are referred to as “supervised” when
human input is needed to label or group variables, whereas “un-
supervised” ML algorithms are fed with unlabeled data and are
programed to find clusters or patterns within that data.62,63 In or-
thopedic surgery, most ML algorithms62 correspond to supervised
ML and focus on classification or regression (prediction) tasks. Al-
gorithms vary widely depending on the nature of each specific task
(Fig. 2). Examples of ML applications include fitting a linear
regression algorithm to predict a stock price10 or using a decision
tree algorithm to learn to classify patients into different risk
groups.55 Deep learning (DL) is a subfield of ML in which
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algorithms are structured in multiple layers of complexity which
allows to establish “deeper” interactions between the variables
being analyzed as more layers are added (Fig. 3). These structures
are usually referred to as “artificial neural networks” and have been
proposed to represent how the human brainworks. DLmodels have
been developed for different tasks, such as training a convolutional
neural network (CNN) to classify natural images35 or to detect
pneumonia in chest X-rays.30 Initial uses also include programs that
were designed to accept patient images for detecting pathology
such as skin cancer, diabetic retinopathy, and mammographic le-
sions.17,24,34 Essentially, AI allows automation of complex and
tedious tasks and the understanding of complex relationships. AI
will likely be implemented in many facets of health care that
include Patient Evaluation, Research, Medical Education, EMR an-
alyses, Imaging, Surgery, and Rehabilitation among many others.

Patient-specific predictions for complications, outcomes, and
costs

Within routine clinic visits, physicians often gather information
through evaluation of the patients’ history, physical examination,
and imaging prior to generating an initial (or definitive) diagnosis.
After weighting the risks and benefits of possible interventions,
recommendations are given to the patient that are largely based on
the clinical expertise and knowledge of a particular surgeon or
caregiver. Within AI, DL algorithms work similarly by establishing
complex (multilayer) relationships between “predictor variables”
and outcomes.50 The ability to analyze large data sets through AI-
based strategies may change the way we make every day clinical
decisions by hopefully providing safer and more informed options
for patients.

In shoulder surgery, advancements are being made in applying
AI for patient-specific risk predictions, including predicting com-
plications, outcomes, and costs.2,6,13,21,31,36,37,46-48,53,60 Most
recently published studies are focused on predicting perioperative
complications in shoulder arthroplasty, particularly within the 30-
day postoperative period.2,6,13,14,21,31,46 In 2021, Lopez et al used
21,544 elective primary shoulder arthroplasty cases from a national
database to develop and test ML models for predicting nonhome
discharge and the occurrence of 1 or more postoperative compli-
cations within 30-days.46 Similarly, Devana et al used a California
database to test several ML models for predicting the occurrence of
at least one major postoperative complication following primary
reverse shoulder arthroplasty.13 Certain complications have
generated particular interest. For example, multiple studies have
applied AI for predicting postoperative readmission.2,13,14,21 This is
especially important with the increase in outpatient shoulder
arthroplasty and concomitant need for identifying optimal
candidates.6

AI is also being increasingly explored for predicting functional
outcomes, patient satisfaction, and costs following shoulder
arthroplasty.36,37,53 Kumar et al used 2153 primary anatomic total
shoulder arthroplasty (TSA) and 3621 reverse arthroplasty patients
to develop and test a ML model for predicting achievement of the
minimal clinically important difference and substantial clinical
benefit for the American Shoulder and Elbow Surgeons score,
Constant Score, Global Shoulder Function score, and other func-
tional outcomes at 2-3 years postoperatively.36 Similarly, ML
models for predicting achievement of the minimal clinically
important difference and substantial clinical benefit patient
satisfaction-based thresholds for active internal rotation following
anatomic TSA and reverse TSA have been tested.37 Only one study
has applied AI for predicting patient satisfaction following shoulder
arthroplasty.60 This study by Polce et al tested several ML models
using 413 patients for predicting patient satisfaction 2 years



Figure 2 Machine Learning can be divided into Supervised Learning, Unsupervised Learning and Reinforcement Learning. Though Supervised Machine Learning algorithms are
more frequently found in orthopedic surgery literature, each subfield has its own applications. AI, artificial intelligence.

Figure 3 Scheme of an Artificial Neural Network. Input values (input layer) are pro-
cessed through an interconnected network referred to as “Hidden Layers” that
generate a response at the Output Layer mimicking the human brain architecture.
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following primary anatomic TSA or reverse TSA.60 In regards to
costs, Karnuta et al tested AI for predicting total costs following
primary shoulder arthroplasty (anatomic TSA, reverse TSA, hemi-
arthroplasty) using a national database with 111,147 patients.31

As highlighted from the aforementioned studies, these ad-
vancements are predominantly within shoulder arthroplasty.
Nonetheless, patient-specific predictions are beginning to be
explored in other areas of shoulder surgery, such as in rotator cuff
repair (RCR) and shoulder instability, with yet very scarce published
literature.47,48 In regards to RCR, Lu et al used 33,976 patients from a
New York state database to test several ML models for predicting
total charges after elective outpatient RCR.47 Likewise, in another
publication by the same authors, 654 patient records from a
regional database were used to test several ML models for pre-
dicting recurrence, progression to surgery after initial trial of
nonoperative management, and development of symptomatic
osteoarthritis following an initial shoulder instability event.48 Thus,
there remains a large gap in the literature applying AI to non-
arthroplasty areas, warranting numerous additional studies that
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predict complications, functional scores, and other perioperative
outcomes for these patients.

Collectively, these studies highlight the potential utility of AI for
patient-specific decision making and value-based medicine. As
such, AI may allow for development and implementation of risk-
based patient-specific payment models in shoulder surgery. These
types of models are being explored in other subspecialities of or-
thopedics, such as primary total knee arthroplasty (TKA) and total
hip arthroplasty, and have shown promising results.57,67 In the
future, the availability of AI-based predictive algorithms may aid
both patients and shoulder surgeons to make better and more
informed decisions, and also may allow for more personalized pa-
tient care.
Computer vision for image analysis

One of the most exciting features of AI is its breadth of capa-
bilities. While the prediction of outcomes such as complications
and costs after surgery has been themost common application of AI
in shoulder surgery to date, novel applications have been devel-
oped in order to 1) assist surgeons with preoperative planning and
2) help to streamline and improve efficiency of routine tasks.

In 2020, Taghizadeh et al developed an AI model capable of
automatically quantifying and characterizing the level of degener-
ation of rotator cuff muscles from shoulder computed tomography
images, including both muscle atrophy and fatty infiltration.78

Likewise, Ro et al developed an magnetic resonance imaging
(MRI) based DL framework to assist surgeons with analysis of the
occupation ratio and fatty infiltration of the supraspinatus muscle
during evaluation of patients with rotator cuff tears.68 Yao et al
demonstrated that DL can be used for the automated detection and
classification of supraspinatus tears on T2-weighted coronal obli-
que MRI images.83 Such applications of AI have the potential to
improve outcomes for patients with rotator cuff tears by assisting
surgeons with the analysis of decisive preoperative factors.

A recentmeta-analysis found comparable performance between
clinicians and AI in their ability to detect fractures, thereby
demonstrating a promising technology that may be utilized in
future applications.38 In 2022, Grauhan et al generated amodel that
can recognize common causes of shoulder pain on radiographs,
such as proximal humeral fractures, joint dislocation, periarticular
calcification, osteoarthritis, osteosynthesis, and joint
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endoprosthesis.22 In 2021, Rouzrokh et al71 developed a CNN-based
system to automatically measure the acetabular component incli-
nation after total hip arthroplasty using postoperative X-rays.
Similarly, Thomas et al79 developed a CNN-based classifier to
automatically classify knee osteoarthritis severity in radiographs.
Rudisill et al73 developed an AI model to predict early-onset adja-
cent segment degeneration following anterior cervical discectomy
and fusion using demographic, clinical, and radiographic variables.
AI models like these have the potential to serve as assistive devices
by offering clinicians a way to prioritize worklists or providing
additional safety in cases of increased demand.

AI models have been generated to assist surgeonswith relatively
routine tasks during preoperative evaluation and planning
including those that have been developed to measure the critical
shoulder angle (CSA).54,76 The CSA is described as a manual mea-
surement, which requires an appropriate anteroposterior Grashey
radiograph.56While surgeons can easily perform themeasurement,
there remains an opportunity for an integrated AI tool to help
standardize this evaluation. Shariatnia et al demonstrated that the
CSA could precisely and accurately be automatically measured on
shoulder anteroposterior radiographs, and that such a tool could
not only make large-scale research projects feasible, but also prove
valuable as a clinical application if integrated with existing clinical
workflows.76

Within orthopedic surgery, patient registries have provided
structured and organized pools of data that has led to significant
improvements in clinical research.12 Although, image analyses are
often included within orthopedic registry studies, these account for
limited aspects of the overall outcomes and often rely on tedious
manual review. Rouzrokh et al expanded on this limitation within
the orthopedic literature and sought to generate a hip and pelvic
radiography registry of total hip arthroplasty patients utilizing
deep-learning algorithms.70 Specifically, authors developed an ac-
curate series of DL algorithms that could rapidly curate and anno-
tate total hip arthroplasty radiographs with 99.9% accuracy, 99.6%
precision, and 99.5% recall.70 This efficiency was the first step to
generating a true linkage of clinical and radiographic outcomes.

Other surgical applications

Shoulder surgery may see substantial changes in the future with
AI powered surgical tools. Promising developments have been re-
ported for preoperative planning, intraoperative assistance (eg,
navigation and augmented reality) and surgical
education.11,20,23,26,40 Three-dimensional (3D) preoperative plan-
ning for arthroplasty is gaining popularity as software availability
grows each year.26,45 AI may leverage efficiency through the sur-
gical process from patient-specific and surgeon-specific planning to
automated surgical feedback and intraoperative real-time assis-
tance.11,23,40 One study used 1.2 million CT images from 3000 pa-
tients to develop an AI preoperative planning system for hip
replacement.11 Preoperative planning DL algorithms achieved an
excellent performance compared to standard manual workflow,
lowering the average planning time from 185.4 ± 21.76 min to 1.86
± 0.12 min.11 Available preoperative planning software usually give
the surgeon a default plan (manufacturer’s plan). In 2017, Okada
et al analyzed 45 TKA plans and found that 91.1% required manual
changes by the surgeon from the original manufacturer’s version.58

Within the shoulder literature, Erickson et al warned on the limited
agreement between surgeon and commercial software measure-
ments for version, inclination, and subluxation.16 AI strategies may
help close this gap. A recent study used a dataset from 5409 TKA
preoperative plans, including the manufacturer’s default plan and
corrected plans by 39 surgeons, to train a supervised ML model to
automatically predict surgeon’s corrections from the
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manufacturer’s plan. Using this approach, the authors found a
39.7% reduction in surgeons’ corrections. In the future, large high-
quality databases may allow for a more accurate and customized
planning.

The ability to accurately transfer the preoperative plan to the
patient is crucial. Though patient-specific instrumentation guides
can effectively reduce the variability from planning to patient,29 the
associated costs and delay in manufacturing prevent its use in
every case. Augmented and mixed reality technology allows virtual
objects to be blended and interact with the real world.23 This
technology can incorporate AI to make accurate predictions of
relevant surgical landmarks on the real surgical field.23 Sieminow
et al recently assessed the feasibility of an augmented reality and
artificial intelligencedassisted surgical navigation system in ca-
davers.77 After acquiring a preoperative CT of each specimen, the
augmented reality and artificial intelligence system accurately
overlayed a 3D render of the specimen’s anatomy over the surgical
field to allow percutaneous instrumentation of the lumbar pedicles
with a metallic probe.77 The average time of percutaneous instru-
mentation of each pedicle was 38.2 seconds with excellent position
of all 24 evaluated probes.77 Such technologies may revolutionize
the way we transfer our surgical plan to patients, lowering surgical
times and eventually resulting in a better care for patients.

Surgical education is another area with an enormous potential
for AI-driven strategies. Several AI-driven developments have
been reported with the potential to provide customized perfor-
mance assessment and feedback to surgical trainees with minimal
or no supervision from surgical educators.23 Virtual reality (VR)
training has shown to improve efficiency, reduce error rate and
improve tissue handling in surgical trainees.61 One study per-
formed in sawbones that compared VR based training with stan-
dard surgical education for tibial intramedullary nailing, found
significantly higher knowledge of instruments, steps completed,
and overall performance in the VR trained group.7 Surgical men-
toring may also be AI assisted in the near future. ML powered tools
can accurately distinguish the surgical expertise of an individual
or grade a basic surgical skills test without the direct assessment
of an expert.4,82 Recently a Delphi consensus that included sur-
geons (42.5%), engineers/technical AI experts (27.5%), and other
professionals (30%), reported the foreseen deliverables for surgi-
cal education in the next 10 years which are summarized in
Table I.81 While encouraging these future advances are still in
their early stages. External validation and good quality studies (eg,
randomized controlled trials) are mandatory to allow a successful
and responsible transfer of these technologies to clinical practice
and surgical education.

Evaluation of clinical outcomes

Standard outcome evaluation is performed in an episodic
fashion inwhich the surgeon picks certain follow-up dates to take a
“snapshot” of the patient’s status. In order to obtain data for clinical
and/or research purposes from this process, prospective data
collection is required. Prospective clinical data collection is time
consuming and requires relatively qualified personnel to obtain
and record data properly. Institutional and national registries
represent a partial solution to avoid the loss of valuable clinical
information for selected conditions (ie, arthroplasty).12 Unfortu-
nately, the maintenance of institutional and national registries re-
quires substantial resources.12,72 Moreover, registry-based studies
have their own limitations, usually including variable quality of the
collected data, limited clinical information, and a lack of active
follow-up, among others.72 Future technologies in combination
with AI powered strategies may enable resource optimization and
continuous monitoring of patients.18,49,66



Table I
Future applications of artificial intelligence methods and artificial intelligence-enabled metrics for surgical education defined by a Delphi Consensus Panel.

Deliverable Time frame (y)

Recognize anatomy in images from videos of the surgical field 2
Provide performance feedback to surgeon immediately after the operation 2
Identify parts of the operation on which the surgeon needs feedback 5
Overlay images to display surrounding anatomy 5
Guide surgeons on optimal use of instruments/devices 5
Enable intraoperative navigability using video, kinematics, and other imaging data for multiple procedures 10
Detect intraoperative error 10
Provide guidance on the next best step to address an intraoperative error or complication 10

The table shows possible future deliverables using AI for surgical education obtained by a Delphi Consensus Panel. All shown deliverables had at least 82.5% of consensus
among experts. Adapted from Vedula et al.81

AI, artificial intelligence.
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Digital health initiatives, and specifically Mobile Health
(mHealth) technology allow real-time feedback from patients on a
larger scale and will eventually change the way we follow-up pa-
tients andmeasure outcomes.15,27,65,66 Current mobile devices have
built-in sensors (ie, accelerometer, gyroscope, and magnetometer)
that can passively store tremendous amount of data for further
processing to obtain relevant clinical information.15,64 Despite over
350,000 health/fitness/medical apps currently available,1 most of
them work in isolation making it impossible to integrate and
analyze data across different systems which has prevented the
ability to scale their potential in research and clinical practice.18,66

Ramkumar et al described the valuable opportunity for orthope-
dic surgery behind open architecture software mHealth technol-
ogy.66 Open architecture allows data interconnection and use in
ways other than originally implemented or intended.18 Though
privacy is a reasonable and foreseeable concern, there are already
experiences implementing such software in compliance with the
Health Insurance Portability and Accountability Act.28,65 Apart from
smart devices, braces and sleeves have technology that allows
continuous patient monitoring in their daily living and/or sports
activity.32,44 One example is the motusBASEBALL sleeve (Motus
Global Inc., Massapequa, NY, USA) that houses a small inertial
measurement unit that allows measuring throw counts, peak
elbow varus torque, arm speed, arm slot, maximum shoulder
rotation, and workload.19,41 AI algorithms may analyze wearable
sensor data to monitor postoperative recovery, stablish personal-
ized workloads, report injuries, and prevent complications among
other functions.

Within shoulder surgery, Ramkumar et al described an open
architecture software capable of passively measuring shoulder
range of motion using a wearable smart device (watch or phone)
with only 5 degrees of variability compared to a standard goni-
ometer measurement.64 The authors trained a DL model to decode
the signal from the mobile device and transform it in a range of
motion measurement of either abduction, forward flexion, external
rotation, or internal rotation.64 Furthermore, supervised ML has
been found to successfully monitor and assess adherence of phys-
iotherapy protocols post shoulder surgery using a commercially
available smart watch.9 Applying a similar strategy in a cohort of
postoperative TKA patients another study showed that functional
results (Patient Reported Outcomes) at 6 weeks can be predicted as
early as at 11 days by analyzing wearable sensors data through ML
algorithms.5 The construction of Patient Reported Outcomes
themselves may also see significant changes in the future. Recently
published, the Smart Shoulder Score is the first orthopedic clinical
outcome measure constructed using ML.69 The Smart Shoulder
Score was developed using a ML based strategy to identify the most
predictive preoperative inputs that influence postoperative TSA
451
outcomes, and was found to have equal or better validity, respon-
siveness, and clinical interpretability than other historical assess-
ment tools.69

Large-scale language models

Large-Scale Language Models (LLMs) systems are able to pro-
duce language based on algorithms that incorporate the frequency
by which words are associated with each other.8 They have been in
the spotlight recently in relation with a chatbot launched in
November 2022 called Chat Generative Pre-Trained Transformer
(ChatGPT; OpenAI, San Francisco, CA, USA).59 This AI chatbot can
provide detailed responses and answers acrossmultiple domains of
knowledge. On one hand, these types of AI applications have the
potential to correctly answer many scientific questions80; eg,
ChatGPT 4 was reported to pass the United StatesMedical Licensing
Exam.3 On the other hand, the information produced by LLM sys-
tems is not always the truth. LLM could potentially be used to
automate letters to patients or notes in the EMR. There is a lot of
controversy about its use in the creation of scientific publications,
and recently the Journal of Shoulder and Elbow Surgery (amongst
other Journals) published a policy in that regard.74 Some countries
have banned the use of certain chatbots until they are validated, but
standards for validation of LLM for each area of knowledge will be
challenging to develop.51,80

Conclusions

AI is an expanding field with the potential for broad clinical and
research applications in orthopedic surgery. Decision-making, im-
age evaluation, surgical planning and patient follow-up are some of
the current areas of development with enormous opportunities for
clinical practice and future research. Many challenges still need to
be addressed to fully leverage the potential of AI to clinical practice
and research such as privacy issues, data ownership, and external
validation of the proposed models. AI tools are as good as the data
that they are trained on which highlights the importance of
maintaining high quality clinical and image registries to allow
meaningful AI-derived insights from big data analysis. Currently,
most of the shoulder literature related to AI focuses on shoulder
arthroplasty withmuch to be explored for shoulder instability, RCR,
and other shoulder conditions.
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