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A B S T R A C T   

Choosing the proper hierarchical clustering algorithm and number of clusters is always a key question in con-
sumer sensory projects. In many cases, researchers do not publish any reason why it was chosen a given distance 
measure and linkage rule along with cluster numbers. The reason behind this could be that different cluster 
validation and comparison techniques give contradictory results in most cases. A complex evaluation to define 
the proper clustering might be time-consuming and tedious. The paper introduces the clustering of three sensory 
data sets using different distance metrics and linkage rules for different numbers of clusters. The results of the 
validation methods deviate, suggesting that clustering depends heavily on the data set in question. Although 
Euclidean distance, Ward’s method seems a safe choice, testing, and validation of different clustering combi-
nations is strongly suggested.   

1. Introduction 

Cluster analysis is a widely used unsupervised pattern recognition 
technique, which is able to uncover underlying patterns of data sets. In 
food sensory analysis, cluster analysis usually used to group sensory 
assessors (usually consumers) based on their sensory evaluations of 
different food products (e.g.: wholegrain buckwheat enriched pasta 
(Škrobot et al., 2022), cracker-type (Araújo et al., 2021) or gluten-free 
biscuits (Di Cairano et al., 2022), fried sweet potato (Dery et al., 
2021), etc.) as well as to group food products based on their sensory 
attributes (see e.g. (Sridhar and Charles, 2021):), however, the earlier is 
used more widely. As cluster analysis gives an important information for 
sensory scientists, it is widely used. A Scopus search with the terms 
“sensory AND cluster” within Agricultural and Biological Sciences 
(limited to journals related to food sciences) gives more than 1100 hits 
for the time range 2000–2023, from which more than 100 comes from 
2022 to 2023. The literature shows that, apart from a few examples, 
authors usually use agglomerative hierarchical clustering, even though 
there is a vast number of clustering methods available. Within 
agglomerative hierarchical clustering, there are also plenty options to 
choose from, namely the distance measures and linkage rules that make 
the life of a sensory scientist even more complicated when it comes to 
clustering. In the literature, there have been some attempts to highlight 
the importance of clustering in sensometrics (Yenket and Chambers, 

2017), the experience shows that the majority of the papers dealing with 
clustering of consumer sensory data uses Euclidean distance and Ward’s 
method, usually without the presentation of any cluster validation. 
Therefore, the presented paper aims to give recommendations and an R 
script to commonly used methods that are able to provide essential in-
formation about the clustering used in order to support food scientists in 
the validation process. 

The paper is structured as follows. Section 1 provides a brief over-
view of sensory analysis and introduces different cluster analysis ap-
proaches with a special focus on agglomerative hierarchical clustering. 
Section 2 outlines multiple approaches employed to compare and vali-
date clustering solutions. Section 3 introduces the case studies and the R 
packages used during the data analysis. Section 4 presents the obtained 
results by validation approaches. Section 5 provides conclusions from 
the study and recommendations for future research. 

1.1. Agglomerative hierarchical clustering 

Cluster analysis, however, can be completed with a set of different 
statistical techniques ranging from connectivity-based (e.g., hierarchical 
clustering (Hastie et al., 2022)) through centroid-based (e.g., k-means 
clustering (Palczak et al., 2020)) to density-based (e.g., DBSCAN (Lu 
et al., 2020)) methods (Lee and Yang, 2009; Saxena et al., 2017). 
Although these methods rely on significantly different algorithms, their 
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aim is the same: finding characteristic patterns in the data set that were 
previously unknown. Due to the popularity of connectivity- and 
centroid-based methods, they are available in nearly all commonly used 
statistical software (e.g., XL-Stat, SPSS, StatSoft Statistica, R-project, 
etc.). Although the different approaches have their pros and cons, the 
current paper does not aim to compare these, rather, the focus will be 
taken on the most popular one, agglomerative hierarchical clustering 
(AHC). Although there is no available literature on the driving forces 
behind the choices, an undoubtable advantage of AHC is its simplicity 
and transparency. One of the most frequently used output of AHC, the 
dendrogram, gives an easy-to-understand visual representation of the 
clustering, that significantly enhances its understandability. Other, more 
sophisticated clustering methods usually require a deeper background in 
statistics that might discourage researchers. 

Agglomerative hierarchical clustering requires three important 
points to be addressed during the data analysis process (James et al., 
2021).  

1. Choosing the distance metric  
2. Choosing the linkage measure  
3. Defining the number of clusters 

The most popular answers to these questions might be Euclidean 
distance, Ward’s method, and visual observation of the dendrograms, 
however, there are multiple tools that can support or even oppose these 
choices. The use of cluster validation tools becomes even more impor-
tant when the number of distance metrics, linkage measures and tools 
used to define the optimal number of clusters is considered. 

1.2. Distance metrics 

Distance metrics define the pairwise distances between the objects 
(Gareth et al., 2013). However, the list of distance metrics for calcu-
lating of the distances between the objects is rather long. For example, 
XL-Stat lists more than 20 distance metrics, SPSS lists 8 of them, while 
the dist function from R-project stats package (R Core Team, 2022) lists 
6 of them, just to list the three possibly most used software by average 
users. Although the number of options differs, some distance metrics are 
usually listed by any software, e.g., Euclidean, Chebyshev (or Maximum) 
and Manhattan (or city-block) distance. Let us define two points in the 
two-dimensional space as A (x1, x2) and B (y1, y2), the Euclidean dis-
tance of two points of the length of a line segment between them (using 
the Pythagorean theorem): 

d =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[
(x2 − x1)

2
+ (y2 − xy1)

2]
√

while the Chebyshev distance between two vectors is the greatest of 
their differences: 

d =max(|x1 − x2|, |y1 − y2|)

while the absolute distance between two vectors is given by Manhattan 
distance (sum of two legs in a right triangle): 

d = |x1 − x2| + |y1 − y2|

Although Euclidean distance is one of the most common distance 
metrics, it must be highlighted that it is sensitive to differently scaled 
variables. Usually, consumer sensory data uses one scale (hedonic or 
preference scales). However, when other variables or scales are 
involved, normalization is needed before using this distance measure. 
Additionally, Euclidean distance works well in low-dimensional data, 
which is more common in consumer sensory data sets. As Chebyshev 
distance can also be defined as the maximum distance between the 
objects, it is also called as chessboard distance as Chebyshev distance 
equals to the minimum number of moves a king needs to go from one 
square to the other. Although the distance is widely available in many 

statistical software, it is more popular in signal processing (e.g. for neuro 
imaging (Omidvarnia et al., 2021)) or with spatial data (e.g. logistics 
(Baykasoğlu and Subulan, 2016)). Manhattan distance works well with 
binary and/or discrete variables or in situations where no straight lines 
between objects exist. Since the distance is defined as the path along 
gridlines, Manhattan distances are usually greater than that of obtained 
using Euclidean distance (Fig. 1). When choosing distance metrics for 
cluster analysis, one should consider the sensitivity of the given metric 
to outliers, as e.g., Euclidean and Chebyshev distances are more sensitive 
for outliers than Manhattan distance. For further information and list of 
possible distances used in different scientific fields, see ref. (Deza and 
Deza, 2013), while Table 1 of Shirkhorshidi et al. (2015) introduces the 
advantages and disadvantages of the different distance measures. 

1.3. Linkage methods 

The second important issue is the definition of the linkage method, e. 
g., how to link the objects. However, this decision needs several ques-
tions to be answered as it is with the distance metrics, namely, there are 
vast number of options for linking the objects. In order to follow the 
previous examples, XL-Stat lists 6 linkage methods, SPSS lists 8 of them, 
while the hclust function from R-project stats package lists 7 of them. 
Out of a few exceptions, the distance metrics and linkage methods can be 
combined, creating a high number of possible clustering combinations. 
Focusing only on the most widely used linkage methods (e.g., Ward’s 
method, single and complete linkage etc.) the number of combinations 
decreases significantly but it might be still high. 

During the process, the algorithm takes all objects as a separate 
cluster and, using a linkage method, links them until all clusters are 
grouped into one single cluster (Fig. 2). Calculation of linkages (L) be-
tween two clusters (C1 and C2) for points j and k is done differently by 
the linkage methods (Kassambara, 2017). For example, single linkage 
links two clusters with the closest minimum distance as: 

L(C1,C2)=min(D(j, k)), j∈C1, k ∈ C2  

while complete linkage links two clusters with the closest maximum 
distance: 

L(C1,C2)=max(D(j, k)), j∈C1, k ∈ C2  

while average linkage links to clusters based on their lowest average 
distances: 

L(C1,C2)=
1

nC1 + nC2

∑nC1

j=1

∑nC1

k=1
D(j, k), j∈C1, k∈C2  

where nC1 and nC2 are the number of data points in C1 and C2, 
respectively, 

While centroid linkage links two clusters with the lowest centroid 
distances: 

L(C1,C2)= ‖cC1 − cC2‖,

where cC1 and cC2 are the centroids of clusters C1 and C2, respectively, 
While Ward’s method links two clusters having the lowest sum of 

squares values (for further details on the formula, see (Zaki and Meira, 
2020)): 

L(C1,C2)=
nC1nC2

nC1 + nC2
‖cC1 − cC2‖

2  

2. Comparison of clustering combinations 

2.1. Visual assessment of dendrograms 

Dendrograms generally follow a tree-like structure. The most sub-
stantial parts are the leaves, representing the objects to be clustered. 
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First, the leaves fuse into branches, represented by horizontal lines, 
then, the smaller branches fuse into larger ones up until all the branches 
are fused. Naturally, leaves fused an early step are more similar to each 
other than the ones fused later (higher on the tree). The height of the 
fusion expresses the similarity of the branches (James et al., 2021). As 
visual information is processed quickly, interpretation and comparison 
of dendrograms are quick and patterns are seen immediately. Definition 
of the number of clusters can be done by looking for the highest fusion 
steps between branches, where we cut the dendrograms. In some cases, 
finding this cut is easy, but sometimes it becomes tricky when the 
heights of the fusions are similar. In such cases other methods are 
required. 

2.2. Cophenetic correlation coefficient 

Cophenetic correlation coefficients are used to assess clustering so-
lutions as it determines, how a given dendrogram preserves the pairwise 
distances of the original distance matrix (Saraçli et al., 2013). Cophe-
netic correlation coefficients are calculated between the original dis-
tance matrix and the cophenetic distance matrix, where in the original 
distances of the objects are replaced by the computed distances between 
their clusters at the time of these clusters’ fuse. Cophenetic correlation 
coefficients are computed for the clustering solutions individually, and 
higher values mean a better clustering. Using the cophenetic correlation 
coefficients, the different clustering solutions can be compared easily 
and quickly, however, the method is sensitive to outliers (Sokal and 
Rohlf, 1962). 

Let us suppose that the original data {Xi} have been clustered to 
generate a dendrogram {Ti} and define the following distance measures 
x(i, j) as the Euclidean distance between the ith and jth points and t(i, j)
as the dendrogramatic distance between Ti and Tj model points, while x 
and t the averages of points x(i, j) and t(i, j). The cophenetic correlation 

Fig. 1. Visual representation of the Euclidean, Manhattan and Chebyshev distances.  

Table 1 
Cophenetic correlation coefficients of the 15 dendrograms. Highest values 
within distance metrics are highlighted with bold.  

Data 
set 

Linkage 
method 

Euclidean 
distance 

Chebyshev 
distance 

Manhattan 
distance 

#1 Ward’s 
method 

0.496 0.414 0.397 

Single linkage 0.582 0.541 0.583 
Complete 
linkage 

0.516 0.513 0.459 

Average 
linkage 

0.687 0.625 0.673 

Centroid 
linkage 

0.591 0.561 0.576 

#2 Ward’s 
method 

0.509 0.543 0.510 

Single linkage 0.684 0.593 0.626 
Complete 
linkage 

0.588 0.607 0.559 

Average 
linkage 

0.736 0.714 0.691 

Centroid 
linkage 

0.667 0.644 0.594 

#3 Ward’s 
method 

0.426 0.351 0.406 

Single linkage 0.513 0.477 0.409 
Complete 
linkage 

0.468 0.406 0.516 

Average 
linkage 

0.625 0.589 0.644 

Centroid 
linkage 

0.502 0.494 0.543  

Fig. 2. Visual representation of single, complete, average, centroid linkages and Ward’s method.  
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coefficient CPH is given by (Saraçli et al., 2013; Sokal and Rohlf, 1962): 

CPH =

∑

i<j
[x(i, j) − x][t(i, j) − t]

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

i<j
x(i, j) − x2∑

i<j
t(i, j) − t2

√

2.3. Cluster validity indices 

When it comes to the definition of the number of clusters present in 
the data set, cophenetic correlation coefficient cannot be of any help as it 
evaluates the dendrogram. The number of clusters, therefore, is defined 
by the visual inspection of the dendrogram. Mathematical evidence to 
validate the clustering could be the use of cluster validity indices. 
Interestingly, researchers have limited power to choose cluster validity 
indices to compare the different cluster numbers. In spite of the high 
number of different cluster validity indices, statistical software packages 
do not make them widely available for the researchers. 

Two of the most widely used cluster validity indices are the Silhou-
ette index and Rand index. Silhouette index measures how similar an 
object is to its cluster compared to other clusters (Rousseeuw, 1987), 
while Rand index determines the similarity of two clusterings (Rand, 
1971). While Silhouette index can take up a value between − 1 and 1 
(where 1 means that the object is well clustered), Rand index goes from 
0 to 1, where 1 means that two clustering group the object similarly. 
There are numerous other options to calculate cluster validity measures. 
One of the most versatile packages in R-project is called NbClust, which 
provides 30 cluster validity indices to compare their results on the same 
clustering but different cluster numbers. The package then uses a voting 
system to define the optimal number of clusters (e.g., offers the number 
of clusters that proved to be best by the highest number of indices). For 
further information on the comparison of different cluster validity 
indices, see refs (Hämäläinen et al., 2017) and (Arbelaitz et al., 2013). 

Based on (Charrad et al., 2014), Silhouette index is defined as 
follows: 

Silhouette=
∑n

i=1S(i)
n

, Silhouette ∈ [− 1, 1]

where. 

S(i) =
b(i)− a(i)

max{a(i);b(i)}, 

a(i) =

∑

j∈{Cr\i}
di,j

nr − 1 is the average dissimilarity of the ith object to all other 
objects within cluster Cr 
b(i) = maxs∕=r{diCs}, . 

diCs =

∑

j∈Cs

dij

ns 
is the average dissimilarity of the ith object to all other 

objects withing cluster Cs 

2.4. Profile plots 

A profile plot is usually a line plot presenting the average values of 
each variable for the different clusters. The profile plot, therefore, gives 
a graphical representation of the created groups, highlighting those 
variables that play a key role in clustering. Further evaluation should use 
t-test or analysis of variance (depending on the number of clusters) to 
look for significant differences between the created clusters variable- 
wise. Clustering solutions showing the highest number of significant 
variables should be considered as better. 

2.5. Stability analysis 

Stability analysis helps to determine the number of clusters to be 
used. It supposes that a clustering is good if the results are similar when 
the same clustering is run on several subsamples of the original data set. 

Therefore, stability analysis involves the generation of subsamples of the 
original data set and the subsamples are clustered with the same clus-
tering into k number of clusters (Leisch, 2016). By calculating the 
pairwise distances between these clusterings, the instability of the 
clustering can be quantified. Instability is essentially the mean distances 
between the clusterings. As the instability is calculated to all k number of 
clusters, the cluster number showing the lowest instability (or highest 
stability) should be chosen (Ullmann et al., 2022; von Luxburg, 2010). 
There are multiple R packages available to test the stabilities of clus-
terings. The package clValid, for example, computes four different 
measures. The clValid function of the package clusters the full data set 
into k number of clusters, then it does a next clustering on a data set after 
removing one variable (each variable is removed once). The average 
proportion of non-overlap (APN) gives the average proportion of cases 
not placed in the same cluster (full data set vs. cropped data set), while 
the average distance (AD) computes the average distance between cases 
placed in the same cluster. The average distance between means (ADM) 
measure gives the average distance between cluster centroids for cases 
placed in the same cluster. The figure of merit (FOM) measures the 
average intra-cluster variance of the cases in the deleted column, where 
the clustering is based on the remaining (undeleted) samples. FOM es-
timates the mean error using predictions based on the cluster averages 
(Brock et al., 2008). 

2.6. Correlation analysis 

An interesting approach is to calculate the Pearson correlation co-
efficient between the objects and the cluster mean scores. The approach 
looks for individuals who have a predefined, e.g.: less than 0.6, corre-
lation coefficient and regroups them into other clusters. If there are no 
clusters, in which their correlation coefficient reaches the predefined 
limit, the object is labelled as “unclassified” (Ramsey et al., 2021; Yang 
et al., 2019). This approach enables the researchers to create homoge-
neous clusters, where members are closely related to each other. How-
ever, if the clustering was less efficient, the number of objects in the 
unclassified group goes up. Additionally, the limit of correlation coef-
ficient should be chosen according to the number of objects within the 
clusters as with small number of objects higher correlation coefficients 
might not be significant. 

2.7. Validation datasets 

Although less relevant to consumer sensory science, an important 
validation strategy is the application of validation data sets. Validation 
data set refers to an independently collected data set that is similar to the 
data set we are working with. For example, a validation data set can be 
the consumer sensory evaluation of the same samples recorded at a 
different time or with a different consumer panel. If there is no such data 
is available and the collected data enables, splitting the data into 50/50 
split ratio is suggested (Ullmann et al., 2022). Running the same clus-
tering on the validation data set is expected to provide similar results 
compared to the original data set determined by a partition similarity 
index, for example adjusted Rand or Jaccard index (Meila, 2016). 

3. Materials and methods 

3.1. Case studies 

Three case studies were used, and the following criteria were set: i) 
the data set should be published, ii) the data sets should contain 
different number of consumers (rows) and products (variables), iii) the 
data set should contain preference data registered on a 9 or 10-point 
hedonic scale. Case study #1 contains sensory preference data of six 
flavored kefir products that were rated by 59 consumer assessors on a 9- 
point hedonic scale. Further information of their formulations and an-
alyses other than cluster analysis can be found in the original publication 
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(Gere et al., 2014). Case study #2 was introduced by (Rothman and 
Parker, 2009) and includes the preference scores of 102 consumers on 5 
snack products. For further information on the data set see: (Gere et al., 
2017; Rothman and Parker, 2009). Case study #3 is the strawberry 
preference sensory data set published by (Ares and Jaeger, 2013). 
Preference data of 107 participants were recorded on six products. 

All three cases, the input matrix lists the consumers in rows and the 
products in columns. Only the preference scores were used during the 
clustering. Standardization of the input data matrix is usually not 
required in consumer sensory clustering as the consumers use the same 
hedonic scale to express their preferences. In cases, when other variables 
are included in the clustering, standardization of the variables is needed. 

As the presented case studies use only preference scores, no standardi-
zation was done. Further information on standardization of variables in 
cluster analysis is provided by (Milligan and Cooper, 1988). 

All three data sets were screened for missing data and for cases with 
0 standard deviation (e.g. for consumers who rated all the products the 
same). Where missing data or 0 standard deviation was found, the case 
has been eliminated from further analysis. 

In case study #1, two participants (coded as 12 and 60) rated all six 
products as 10 (maximum value on the hedonic scale). Their ratings are 
unique in a way that all other participants rated the product differently, 
e.g., stated different levels of preference towards the products. The 
reason(s) behind these ratings are not discussed here as these might be 

Fig. 3. Dendrograms of the flavored kefir data set (data set #1) created by the combinations of the three distances (Euclidean, Chebyshev and Manhattan distances) 
and the five linkage rules (Ward’s method, single, complete, and centroid linkages). 
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caused by problems during data recording or data transformation, etc. 
Therefore, participants 12 and 60 have been excluded from the further 
data analysis. In case study #2, participant p91 rated all products as 
maximum, therefore, has been eliminated. There was also one partici-
pant in case study #3 who was eliminated because of providing the 
maximum value for all products (p66). 

3.2. Data analysis 

Distance metrics were calculated using dist, while linkage measures 
and clustering was calculated using the hclust function of stats package 
(ver. 4.0.2), that is part of R-project (version 4.0.2) (R Core Team, 2022). 
Cophenetic correlation coefficient was calculated using dendextend 
R-package (Galili, 2015), Silhouette indices were calculated using 
cluster package (ver. 2.1.0) (Maechler et al., 2019), comparison of 
multiple cluster validation indices was done using NbClust package 
(Charrad et al., 2014), while analysis of variance was run using the aov 
function of stats package. Cluster validation was computed using clValid 
package (Brock et al., 2008). The used R code is provided in the sup-
plementary material. 

4. Results 

4.1. Visual assessment of dendrograms 

One of the first and most widely used methods to compare and 
evaluate agglomerative hierarchical clustering is to visualize them using 
dendrograms. Dendrograms present the cases and their relationships, 
therefore, the distances of the cases are shown. Vertical lines express 
distances, while horizontal lines represent agglomerations, e.g., when 
two cases are clustered. 

Three distance metrics and five linkage methods, altogether 15 
dendrograms, were created. In order to make it easier to compare the 
different dendrograms, the ones using the same distances are presented 
in columns, while linkages are ordered in rows. This arrangement of 
dendrograms enables us to compare the distances linkage-wise as well to 
compare the linkages distance-wise. 

Fig. 3 presents 15 dendrograms of case study #1. It becomes 
immediately obvious that linkages have a significantly higher impact on 
the structures of the dendrograms than distance metrics, as each linkage 
shows a characteristic structure regardless of the distance metric used. 
Dendrograms using Ward’s method and complete linkage seems to be 
the most appealing as these dendrograms are symmetric and seem to 
have evenly distributed clusters. Single and centroid linkages provide a 
less useful solution, as it would be difficult to find reasonable clusters. 

Dendrograms of case studies #2 and #3 are found in the supple-
mentary material as figures S1 and S2, respectively. 

Although the two other data sets contain different number of con-
sumers, the structures of the obtained dendrograms are similar. In both 
cases, the linkage rules determine the structure of the data set. Again, 
Ward’s method and complete linkage were the two that provided the 
most promising dendrograms, e.g., the ones that could be used for 
further characterization of consumer groups. Based on the dendrograms, 
a reasonable choice could be a clustering having Ward’s method or 
complete linkage. 

4.2. Cophenetic correlation coefficient 

Cophenetic correlation coefficient measures how faithfully a 
dendrogram preserves the pairwise distances between the original 
unmodeled data points (Rohlf and Fisher, 1968). The cophenetic cor-
relation coefficient, therefore, helps us to determine, how much did the 
dendrogram preserve the structure of the original data set. A higher 
cophenetic correlation coefficient means higher similarity between the 
two. 

Table 1 presents the cophenetic correlation coefficients of the 

dendrograms of all three data sets introduced by Fig. 1, Figs. S1 and S2. 
The highest values have been highlighted distance-wise. All cases, 
average linkage received the closest value to 1, therefore, cophenetic 
correlation coefficient suggests using the average linkage. Linkage-wise 
comparison suggests that Euclidean and Manhattan distances should be 
used, depending on the data set. 

Based on the results of cophenetic correlation coefficients, the sug-
gested clustering should be a clustering having average linkage and 
preferably Euclidean distance for data sets #1 and #2, while Manhattan 
distance and average linkage for data set #3. 

4.3. Clustering indices 

Until this point, the analysis focused merely on the dendrograms and 
the different agglomerative hierarchical clusterings using different dis-
tance measures and linkage rules. However, one of the main aim of such 
analyses is to define distinct clusters, whose members have significantly 
different preferences. With other words, we are looking for clusters 
whose members prefer the same products similarly and this preference is 
different among clusters. 

Definition of clusters is relatively easy: to draw a horizontal line on 
the dendrogram and count the vertical lines matching it. Participants 
connecting to the matching vertical lines will now belong to the same 
cluster. However, definition of where to draw the horizontal line might 
be surprisingly complicated to find. 

A rule of thumb would be to cut the dendrogram where the heights of 
the vertical lines are the longest. In our case, this would be obvious with 
clustering using Ward’s method, but it becomes more challenging at 
dendrograms created with average linkages (see Fig. 2, S1 and S2). 

Cluster validity indices have been invented to help us determining 
the best number of clusters. In the followings, results of the three dis-
tance metrics with Ward’s method, complete and average linkages will 
be compared, as these solutions seem to be the most promising based on 
the visual inspection of the dendrograms and the cophenetic correlation 
coefficients. 

Table 2 presents the average Silhouette indices obtained for the nine 
clustering and their 2, 3, 4 and 5 cluster numbers for all three data sets. 
Silhouette index is widely used to determine the optimal cluster number 
for the same clustering; however, when the same data set is used (e.g., 
the number of variables is the same), the obtained indices can be used to 
compare different clustering algorithms, as well. For all data sets, clus-
tering with Manhattan distance and average linkage gave the highest 
index value for two clusters. It can be seen, however, that in the most 
cases, two clusters for all three data sets. 

The absolute highest index value was obtained again for average 
linkages. Interestingly, not only the first but the first three highest row- 
wise index values were obtained with average linkage. The only 
exception is case study #3, where the Silhouette index of Manhattan 
distance and complete linkage is within the first three highest. 

Multiple questions might arise, as we see the results introduced by 
Table 2. One of the most important one would be the arbitrary selection 
of Silhouette index. Working with one clustering index, might provide 
biased results. For example, the Silhouette index might have indicated 
the average linkage the best due to the similarity in their concepts. There 
are numerous other indices available, from which researchers can chose 
from, each having their pros and cons, making the analysis ambiguous. 

A good compromise would be computing multiple clustering indices 
and use their consensus. One such approach is the NbClust R-package. 
Details on how the optimal number of clusters is determined by the 
indices in NbClust is presented in Table 2 of Charrad et al. (2014). Re-
sults of the NbClust comparison is shown on the leftmost column of 
Table 2. Comparisons were done based on the results of 23 indices and 
the cluster number found to be the best the most times is chosen as 
suggested. Accepting the default settings of the function, clusters be-
tween 2 and 15 were compared. The results are in correlation with those 
obtained using only the Silhouette index, namely two clusters were 
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found to be optimal by the most. In case of case study #1, Manhattan 
distance and average linkage suggests 8 clusters, however, keeping eight 
clusters with a data set of 59 participants produces fragmented clusters. 
Another interesting observation that linkages have again higher influ-
ence on the results as three clusters were only suggested in the case of 
complete linkage only. 

4.4. Cluster sizes 

An important characteristic of clustering is the size of the created 

clusters, e.g., the cases within a cluster. Table 3 contains the size of 
clusters for all nine clustering with two and three clusters for case study 
#1. Table 3 shows that average linkage results unevenly distributed 
clusters, when the dendrogram is cut at two or three clusters. Clusterings 
done using Ward’ method or complete linkage (except with Chebyshev 
distance), however, provides balanced clusters. 

Cluster sizes cannot tell anything about the members of the clusters, 
e.g., how similar (or different) are the clusters based on the variables we 
want to separate them. With other words, it would be beneficial to create 
clusters whose members show significantly different preferences to-
wards the products. Knowing such information is key for food product 
development, when the aim is to target different sensory clusters present 
on the market. 

Comparing the clusters by variables was done using analysis of 
variance. Results of data set #1 are presented in the last six columns of 
Table 3, where bold indicates significant differences between cluster 
preferences. Naturally, we expect clusters that have significant differ-
ences (or clusters that have the most significant differences along the 
variables). The most significant differences between clusters were 
identified by Ward’s method for the two cluster solution (5–6 significant 
variables out of 6), while complete linkage found the most significant 
differences in the case of three clusters (4 significant variables out of 6). 

One-way ANOVAs for case studies #2 and #3 are presented by 
Tables S1 and S2. Regarding cluster sizes, the pattern is similar to the 
ones observed in Table 3: Clusterings done using Ward’ method or 
complete linkage (except with Chebyshev distance), provides balanced 
clusters. For two clusters, there are more significant differences, while 
three clusters show slightly less significantly different variables. 

In order to test the effect of distances, linkages and cluster numbers 
on F-values, four-way factorial ANOVA was run with distance metrics 
(Euclidean, Chebyshev and Manhattan), linkage rules (Ward’s, average 
and complete linkages), cluster numbers (between 2 and 6) and products 
as factors (Tables S3–S5). Product factor was significant in all cases, 
while other factors proved to be dataset dependent. For case study #1, 
factor linkage was significant with complete linkage providing signifi-
cantly higher F-values compared to the other two. For case study #2, 
distance was the second significant factor. The highest F-values were 
registered when Euclidean distance was used, however, Tukey post hoc 
test indicated that no significant difference between Euclidean and 
Manhattan distances (and between Manhattan and Chebyshev) exists, 
while a significant difference was found between Euclidean and Che-
byshev distances. The most significant factors were found with case 
study #3, where linkage and cluster number were also significant, not 
just the product factor. The use of Ward’s method provided significantly 
higher F-values compared to the other two. Although the factor cluster 
number was significant, Tukey post hoc test indicated significant dif-
ferences between two clusters and 6 clusters, all the in between clusters 
showed no significant differences. 

4.5. Stability analysis 

Stability measures run on eight clustering combinations between 
cluster numbers 2 and 6 provided extreme results, namely most of the 
times either the lowest or the largest cluster number was identified as 
best in the case of Euclidean distance (Table 4). Manhattan distance, 
especially with single and complete linkage, suggested 3 clusters for 
APM and ADM. AD and FOM values suggested consistently 6 clusters. 
Interestingly, AD suggested 6 clusters for all the combinations. After 
raising the range of cluster numbers, the pattern showed no differences. 
The reason behind the results could be the size of the data set, as data set 
#1 and #3 contains six variables, while data set #2 has only five. These 
stability measures compare the results from clustering based on the 
complete data set to clustering based on removing each column, one at a 
time. As sensory preference studies usually don’t involve a high number 
of samples, therefore the number of variables is rather low. 

Table 2 
Average Silhouette widths of the nine clustering with 2, 3, 4 and 5 cluster 
numbers for the three data sets. Higher average Silhouette widths mean better 
clustering. Highest values are highlighted with bold row-wise. The last column 
gives the result of NBClust r-package, that uses the consensus of multiple cluster 
validity indices.  

Data 
set  

Number of clusters NBClust 

2 3 4 5 

#1 Euclidean distance 
Ward’s method 

0.227 0.163 0.199 0.186 2 

Chebyshev distance 
Ward’s method 

0.178 0.129 0.162 0.187 2 

Manhattan distance 
Ward’s method 

0.194 0.13 0.14 0.159 2 

Euclidean distance 
average linkage 

0.254 0.214 0.207 0.131 2 

Chebyshev distance 
average linkage 

0.232 0.201 0.212 0.208 2 

Manhattan distance 
average linkage 

0.270 0.248 0.206 0.159 8 

Euclidean distance 
complete linkage 

0.186 0.210 0.217 0.193 3 

Chebyshev distance 
complete linkage 

0.203 0.153 0.158 0.147 3 

Manhattan distance 
complete linkage 

0.151 0.179 0.148 0.164 3 

#2 Euclidean distance 
Ward’s method 

0.252 0.252 0.268 0.23 2 

Chebyshev distance 
Ward’s method 

0.272 0.178 0.195 0.208 2 

Manhattan distance 
Ward’s method 

0.293 0.257 0.208 0.207 2 

Euclidean distance 
average linkage 

0.309 0.276 0.244 0.148 2 

Chebyshev distance 
average linkage 

0.300 0.205 0.261 0.262 4 

Manhattan distance 
average linkage 

0.332 0.27 0.253 0.26 2 

Euclidean distance 
complete linkage 

0.252 0.256 0.255 0.276 2 

Chebyshev distance 
complete linkage 

0.212 0.265 0.268 0.128 3 

Manhattan distance 
complete linkage 

0.281 0.27 0.206 0.209 2 

#3 Euclidean distance 
Ward’s method 

0.180 0.132 0.145 0.16 2 

Chebyshev distance 
Ward’s method 

0.120 0.138 0.140 0.161 2 

Manhattan distance 
Ward’s method 

0.189 0.141 0.170 0.185 2 

Euclidean distance 
average linkage 

0.254 0.150 0.162 0.143 2 

Chebyshev distance 
average linkage 

0.214 0.171 0.108 0.109 2 

Manhattan distance 
average linkage 

0.281 0.241 0.186 0.163 2 

Euclidean distance 
complete linkage 

0.175 0.146 0.117 0.122 2 

Chebyshev distance 
complete linkage 

0.093 0.088 0.064 0.026 2 

Manhattan distance 
complete linkage 

0.236 0.160 0.142 0.152 3  
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4.6. Correlation analysis 

The correlation-based method assumes that the number of clusters 
have already been defined. Once the number of clusters have been 
identified, however, this approach is a useful tool for rearranging cluster 
members to create more homogenous clusters. 

Pearson correlation coefficients were calculated between the indi-
vidual evaluations and cluster centroids. For presentation purposes, the 
results of Euclidean distance and Ward’s method with three clusters will 
be presented on case study #1. The original clusters consisted of 14, 27 
and 18 members, respectively (Table 3). Rearrangement should be done 
as if the correlation coefficient of the individual’s liking and the cluster 
centroids is higher than 0.6, then it should be placed in that given 

cluster. If there is no cluster where the individual can be placed (e.g., 
there are no clusters that have an r > 0.6 with the individual), then the 
individual should be clustered as “other”. Ten individuals have been 
clustered into the “other” cluster, while the new clusters consisted of 10, 
22 and 17 members, respectively. Three participants were reclustered 
from cluster 2 to cluster 1, while other two participants were placed 
from cluster 2 to cluster 1. The other 5 participants had a correlation 
coefficient lower than 0.6 with any of the clusters, however, their 
highest correlation coefficient belonged to their original cluster. For 
example, participant #1 had the following correlation coefficients with 
the three clusters: 0.27, − 0.35, − 0.68, while the original cluster was 
cluster 1. 

5. Conclusions 

It has been shown that there are no golden standards for cluster 
analysis and the validation of cluster analysis as its results depend 
heavily on the data set. There are multiple validation methods available, 
that might provide different results. The presented paper is the first that 
compares different clusterings and validation tools on three consumer 
sensory data sets. Visual comparison of dendrograms suggest that 
Ward’s method and complete linkage should be used regardless of the 
distance metric. The provided dendrograms are appealing to the eye and 
suggest well distributed clusters. Cophenetic correlation coefficients, 
however, suggest average linkage, again, regardless of the distance 
metric used. The highest Silhouette indices were obtained again for 
average linkages, suggesting that two clusters should be formed (e.g., to 
cut the dendrogram at two clusters). As NbClust compares possible 
cluster numbers, it suggests, again, the use of two clusters. The most 
balanced distributions of two and three clusters were obtained with 
Ward’s method, regardless of the distance used. Additionally, clusters 
that showed the most significantly different likings between products 
were obtained with Ward’s method and two clusters. To support these, 
factorial analysis of variance showed, that the clustering results depend 
on the data set. Stability analysis showed extreme results, the measures 
suggested either the lowest or the highest number of clusters chosen. 

The presented work is far from complete, as there are multiple other 
tools that can be used for cluster validations. Such tools include e.g. 
cluster cohesion measured by the sum of squares (WSS) within cluster 
and about cluster separation measured by the sum of squares between 
clusters (BSS) or similarity matrices as visual tools. Further research 
should focus on the combination of these tools to help researchers 
validating their clusterings. Additionally, other data sets should also be 

Table 3 
Cluster sizes denoted by C1, C2 and C3 for the nine clustering combinations cut at two and three clusters. The last six columns show the results of analysis of variance. 
Boldface means significant difference between clusters based on the variables.   

C1 C2 C3 AppleA AppleB CurrantA CurrantB GrapeA GrapeB 

Two clusters 
Euclidean distance Ward’s method 35 24 – <0.001 <0.001 0.004 0.162 <0.001 <0.001 
Euclidean distance average linkage 52 7 – <0.001 <0.001 0.561 0.657 0.394 0.381 
Euclidean distance complete linkage 24 35 – <0.001 <0.001 0.024 0.097 0.019 0.53 
Chebyshev distance Ward’s method 30 29 – <0.001 <0.001 <0.001 0.008 <0.001 <0.001 
Chebyshev distance average linkage 56 3 – 0.013 0.006 0.004 0.049 0.311 0.282 
Chebyshev distance complete linkage 49 10 – <0.001 <0.001 0.513 0.819 0.508 0.835 
Manhattan distance Ward’s method 27 32 – <0.001 <0.001 0.001 0.03 <0.001 <0.001 
Manhattan distance average linkage 52 7 – <0.001 <0.001 0.561 0.657 0.394 0.381 
Manhattan distance complete linkage 22 37 – 0.752 0.161 0.293 0.211 <0.001 <0.001 
Three clusters 
Euclidean distance Ward’s method 19 24 16 0.816 0.405 <0.001 <0.001 0.028 0.063 
Euclidean distance average linkage 52 1 6 <0.001 <0.001 0.334 0.425 0.232 0.25 
Euclidean distance complete linkage 24 14 21 <0.001 <0.001 0.156 0.252 <0.001 0.005 
Chebyshev distance Ward’s method 20 29 10 0.753 0.374 <0.001 <0.001 0.054 0.034 
Chebyshev distance average linkage 56 2 1 0.015 0.009 0.01 0.055 0.176 0.75 
Chebyshev distance complete linkage 26 10 23 0.029 <0.001 0.096 0.713 <0.001 <0.001 
Manhattan distance Ward’s method 18 32 9 0.856 0.09 <0.001 <0.001 0.162 0.049 
Manhattan distance average linkage 49 7 3 0.358 <0.001 0.047 0.054 0.166 0.147 
Manhattan distance complete linkage 22 15 22 0.039 0.002 0.676 0.275 <0.001 <0.001  

Table 4 
Cluster stability values of eight clustering combinations run between cluster 
numbers 2 and 6. The best cluster identified by the stability measures are 
presented.  

Data set Clustering APN AD ADM FOM 

#1 Euclidean distance Ward’s method 2 6 6 6 
Euclidean distance single linkage 2 6 2 6 
Euclidean distance complete linkage 2 6 2 6 
Euclidean distance average linkage 2 6 2 6 
Manhattan distance Ward’s method 2 6 2 5 
Manhattan distance single linkage 3 6 3 6 
Manhattan distance complete linkage 3 6 3 6 
Manhattan distance average linkage 2 6 2 6 

#2 Euclidean distance Ward’s method 2 6 2 5 
Euclidean distance single linkage 4 6 2 6 
Euclidean distance complete linkage 2 6 5 6 
Euclidean distance average linkage 2 6 2 5 
Manhattan distance Ward’s method 2 6 2 6 
Manhattan distance single linkage 2 6 3 6 
Manhattan distance complete linkage 3 6 3 6 
Manhattan distance average linkage 2 6 2 6 

#3 Euclidean distance Ward’s method 2 6 5 6 
Euclidean distance single linkage 2 6 2 6 
Euclidean distance complete linkage 2 6 2 6 
Euclidean distance average linkage 2 6 2 6 
Manhattan distance Ward’s method 2 6 2 6 
Manhattan distance single linkage 2 6 2 6 
Manhattan distance complete linkage 2 6 2 6 
Manhattan distance average linkage 2 6 3 6 

APN: average proportion of non-overlap, AD: average distance, ADM: average 
distance between means, FOM: figure of merit. 
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involved to extend the validity of the results. Involving more data sets 
and more validation tools will enable us to compare the validation 
methods and give a workflow on which validation techniques are the 
most robust. 

Although the validation techniques provide unambiguous results, it 
would be advantageous to use at least one validation method, at least the 
visual inspection of dendrograms, if no other tools are available. Among 
the listed techniques, NbClust would be a reasonable choice as it uses 
multiple clustering indices that measure different aspects of the clus-
terings and the final cluster number is suggested based on a voting 
scheme. Additionally, it is easy to run and interpret the results. Although 
Euclidean distance, Ward’s method seems a safe and reasonable choice, 
testing, and validation of different clustering combinations is strongly 
suggested. 
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comparative study of cluster validity indices. Pattern Recogn. 46 (1), 243–256. 
https://doi.org/10.1016/j.patcog.2012.07.021. 

Ares, G., Jaeger, S.R., 2013. Check-all-that-apply questions: influence of attribute order 
on sensory product characterization. Food Qual. Prefer. 28 (1), 141–153. https:// 
doi.org/10.1016/j.foodqual.2012.08.016. 
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