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The nomenclature "embryonic lymphoid tissue inducer (LTi) 
cell" reflects the fundamental role of the cell in secondary 
lymphoid tissue organization. In addition, it is equally important 
in primary lymphoid tissue development as it regulates central 
tolerance to self-antigens in the thymus. An adult LTi cell 
constitutively expresses two sets of tumor necrosis factor 
(TNF) family members, whereas its embryonic counterpart 
expresses only one. The first set is lymphotoxin (LT)α, LTβ, 
and TNFα, which are essential for the secondary lymphoid 
organogenesis during embryogenesis and for maintaining an 
organized secondary lymphoid structure during adulthood. The 
second set is OX40- and CD30-ligands, which are critical for 
memory T cell generation. Adult LTi cells regulate adaptive 
immune responses by providing LTβR signals to stromal cells 
to maintain secondary lymphoid tissue structure, and determine 
adaptive immune responses by providing OX40 and CD30 
survival signals to activated T cells in memory T cell generation. 
Along with the consideration of the roles of embryonic LTi 
cells in primary and secondary lymphoid tissues, this review 
highlights the roles of adult LTi cells in secondary lymphoid 
tissue function.
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ROLE OF LTi CELLS IN THE DEVELOPMENT 
OF SECONDARY LYMPHOID TISSUES

One of the earliest colonizing cells in lymphoid 
tissues is the lymphoid tissue inducer (LTi) cell, 
expressing CD4 and CD45 but not lineage markers 

including CD3 (T cell marker), CD11c (dendritic 
cell marker), B220 (B and plasmacytoid dendritic 
cell marker) or macrophage cell marker.1 LTi cells 
are a unique subset of the liver derived haemat-
opoietic cells found to colonize fetal secondary 
lymphoid organs early in embryonic day 13 (E13) 
in mice.1,2 Since they are found in recombinase 
activating gene (RAG)-deficient or T cell deficient 
mice, they do not require receptor rearrange-
ment.3,4

LTi cells express a set of TNF family members; 
lymphotoxin (LT)α, LTβ, and TNFα, and the first 
two molecules are upregulated via IL-7 signaling. 
LTα1β2-expressing LTi cells interact with vascular 
cell adhesion molecule (VCAM)-1+ stromal cells 
that express LTβR, which is pivotal for the 
development of the secondary lymphoid tissues.5-8 
In addition to LTα1β2 expression, LTi cells 
express many of the molecules that are implicated 
in lymphoid-tissue formation, including TNF- 
related activation-induced cytokine (TRANCE), 
receptor activator of nuclear factor kappa B 
(RANK), IL-7Rα, CD132, CXCR5, and retinoid- 
related orphan receptor gamma (RORγ).3,9-14 
Involvement of these genes in lymphoid tissue 
development has been demonstrated by studies 
using gene-knockout mice: mice deficient for LTα, 
LTβR, or RORγ lack lymph nodes and Peyer’s 
patches,9,15-20 mice deficient for IL-7Rα, CD132, or 
CXCR5 show impaired development of lymph 
nodes and Peyer’s patches,3,12,14,21 and TRANCE- 
deficient mice have no lymph nodes and a 
significant reduction in LTi cells. These results 
indicate that LTi cells are crucial for the develop-
ment of lymph nodes and Peyer’s patches.11

Further studies directly support the idea that 
LTi cells can give the inductive signal for secondary 
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lymphoid development. An adoptive transfer 
experiment of fetal splenic LTi cells into neonatal 
CXCR5-deficient mice, which lack Peyer’s patches, 
has shown restoration of Peyer’s patch formation.7 
Intradermal injection of the neonatal embryonic 
LTi cells induced an ectopic lymphoid-like 
structure,22 and IL-7 transgenic mice have a 
significantly increased number of LTi cells, which 
are sufficient to form more Peyer’s patches, ectopic 
lymph nodes and cecal patches.23 

Taken together, the published evidence supports 
the idea that LTi cells are pivotal for the develop-
ment of secondary and tertiary lymphoid tissues.

ROLE OF LTi CELLS IN THYMUS

We have recently reported an another role of 
LTi cells: thymic regulation of central tolerance to 
self.24 LTi cells in the thymus are detected from 
E14 onwards and throughout adulthood, and show 
the same phenotype as those found in secondary 
lymphoid tissues. Thymic LTi cells interact with 
RANK+ medullary epithelial cells through TRANCE, 
which is critical for secondary lymphoid tissue 
development.11 TRANCE signals by LTi cells to 
RANK, the receptor for TRANCE on medullary 
epithelial cells, promote the expression of Aire, 
which regulates the expression of self-tissue- 
restricted antigens on thymic medullary epithelial 
cells. Thymic medulla is the place for negative 
selection of immature thymocytes and expresses 
self-tissue-restricted antigens to eliminate reactive 
thymocytes to self-antigens.24,25 Aire-deficient mice 
lose the expression of self-tissue-restricted antigens 
and develop multi-organ autoimmunity.26 Aire 
expression on medullary epithelial cells in thymus 
is, therefore, critical for central tolerance to 
self-antigens, and is regulated by LTi cells.

ROLE OF LTi CELLS AFTER BIRTH

Compared with the intensive studies of em-
bryonic LTi cells in lymphoid tissue organo-
genesis, a few studies of adult LTi cells have been 
reported.27-31 Embryonic LTi cells are found from 
E13 in mouse spleen, and induce lymphoid tissue 
formation during embryogenesis as mentioned 

earlier. We have found the adult equivalent cells 
which share the same phenotype as embryonic 
LTi cells; positive for CD4, CD45, IL-7Rα, and 
TRANCE, and negative for lineage markers.29,31 
Adult LTi cells are mainly found in B cell area 
and the interface between B and T cell areas, and 
some of them are found in T cell area in spleen.29 
Here, we discuss the genetic relationship between 
embryonic and adult LTi cells, and the role of 
adult LTi cells in secondary lymphoid tissues and 
memory T cell generation. 

Genetic relationship between embryonic and adult 
LTi cells

Immunity related gene array assays have shown 
that adult LTi cells have strong correlation with 
embryonic LTi cells (correlation coefficient (CC) = 
0.86) compared with the correlation with T cells 
(CC = 0.63), B cells (CC = 0.65), dendritic cells (CC 
= 0.68), or natural killer cells (CC = 0.66).27 Not 
only embryonic but also adult LTi cells express 
the genes, such as LTα, LTβ, TNFα, TRANCE, 
RANK, IL-7Rα, CD132, and CXCR5, which are 
important for lymphoid tissue development. The 
remarkable difference between embryonic and 
adult LTi cells is the expression of TNF family 
members, OX40- ligand (CD252, TNFRSF4) and 
CD30-ligand (CD153, TNFRSF8), which are 
important for memory T cell generation.29,32 LTi 
cells develop the expression of OX40-ligand and 
CD30-ligand a week after birth and show gradual 
upregulation of these molecules to the adult levels 
by weaning time.30 The absence of T cell survival 
molecules on LTi cells in the neonatal period may 
explain the phenomenon that exposure to antigens, 
usually self-antigens in the first week of life, 
induces peripheral tolerance rather than immunity. 

Studies dissecting the molecules which regulate 
the gene expression showed that OX40-ligand 
expression is regulated by TL1A (TNFSF15) via its 
receptor, DR3 (TNFRSF25) on LTi cells,27 and CD30- 
ligand expression is by IL-7 via IL-7R.30 Compared 
with DR3 signaling, which rapidly upregulates 
OX40-ligand expression in 24-hour culture with 
TL1A, IL-7R signaling induced slow upregulation 
of CD30-ligand after 5-day culture with IL-7.30 In 
support of the idea that embryonic LTi cells can 
upregulate these ligands, we have shown that an 
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adoptive transfer of embryonic LTi cells into an 
adult mouse expressed the levels of these ligands 
comparable to the adult host.27 These data, taken 
in conjunction with previous studies strongly 
suggest that embryonic LTi cells can be differ-
entiated into an adult type of LTi cells.

Maintaining secondary lymphoid structure 

The expression of LTα1β2 on embryonic LTi 
cells provides LTβR signals to VCAM-1+ stromal 
cells to promote homeostatic chemokine expression 
for segregated T cell and B cell area formation in 
secondary lymphoid tissues.17,19,33,34 The high 
levels of expression of LTα1β2 on adult LTi cells 
have recently been used to explain the extended 
function of embryonic LTi cells in secondary 
lymphoid tissue organization.28 Lymphoid structure 
organized during embryogenesis requires con-
tinuous signals to maintain its organization via 
the expression of homeostatic chemokines, which 
recruit T and B lymphocytes to their appropriate 
location in the lymphoid tissues. Just as embryonic 
LTi cells do, adult LTi cells provide LTβR signals 
to stromal cells, leading to the secretion of the 
chemokines. This is evidenced by an adoptive 
transfer experiment in which adult LTi cells 
transferred into a LTα-deficient mouse, which 
lacked both separation of B and T cell areas and 
homeostatic chemokine expression, were able to 
partially reconstitute the splenic structure.28 Fur-
thermore, the reconstituted LTα-deficient spleen 
showed upregulation of the homeostatic T zone 
chemokine expression, supporting the proposal 
that LTα signals from adult LTi cells are sufficient 
for maintaining the segregation of T and B cell 
areas by their interaction with the VCAM-1+ 
stromal cells that secret homeostatic chemokines.

Providing survival signals to generate memory T 
cells

The key difference between embryonic and 
adult LTi cells is the expression of T cell survival 
molecules, OX40-ligand and CD30-ligand29,32 as 
mentioned above. By the time when mice are 
weaned, OX40-ligand and CD30-ligand expression 
has reached their adult levels.30 It has been reported 
that activated T cells receive survival signals 

through OX40 and consequently upregulate 
antiapoptotic molecules like Bcl-2 and Bcl-XL.35 
Genetic studies with OX40 and CD30 double 
knockout mice have shown that these molecules 
are critical for memory T cell generation.29,32 The 
double knockout mice were not able to generate 
memory T cells and failed to make secondary 
antibody responses when they were exposed to 
the same antigen for the second time. The analysis 
of OX40 or CD30 single knockout mice, which 
showed impaired levels of secondary antibody 
production compared to wild type mice, but 
higher levels than the double knockout mice, 
demonstrated that both OX40 and CD30 con-
tribute to T cell survival and memory responses.36

CONCLUSION

By providing LTβR signals to stromal cells, 
embryonic and adult LTi cells contribute to 
secondary lymphoid tissue organization and 
provide an efficient microenvironment for adaptive 
immune responses. The highly structured archi-
tecture of secondary lymphoid tissues provides 
better opportunities for efficient cognitive interac-
tion between activated T and B cells and allows 
the formation of germinal centers, which produce 
high affinity antibodies. In germinal centers, adult 
LTi cells provide OX40 and CD30 survival signals 
to T cells when antigen is scarce. 

In addition to their roles in secondary lymphoid 
tissues, LTi cells are also involved in the primary 
lymphoid tissue development by regulating thymic 
medullary epithelial cells to express self-tissue- 
restricted antigens. The expression of self-antigens 
is vital for negative selection, leading to central 
tolerance to self. In addition, the lack of OX40- 
ligand and CD30-ligand expression on LTi cells 
during neonatal life may eliminate T cells, which 
are activated on peripheral self-antigens, by failing 
to provide the survival signals to the self-activated 
T cells in secondary lymphoid tissues. This may 
lead to tolerance rather than immunity.

In summary, LTi cells contribute to primary and 
secondary lymphoid tissue organization by 
providing signals to medullary epithelial cells in 
thymus and to stromal cells in lymph nodes and 
spleen, respectively.
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