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Abstract: Cervical cancer has high morbidity and mortality rates, affecting hundreds of thousands
of women worldwide and requiring more accurate screening for early intervention and follow-up
treatment. Cytology is the current dominant clinical screening approach, and though it has been used
for decades, it has unsatisfactory sensitivity and specificity. In this work, fluorescence lifetime imaging
microscopy (FLIM) was used for the imaging of exfoliated cervical cells in which an endogenous
coenzyme involved in metabolism, namely, reduced nicotinamide adenine dinucleotide (phosphate)
[NAD(P)H], was detected to evaluate the metabolic status of cells. FLIM images from 71 participants
were analyzed by the unsupervised machine learning method to build a prediction model for cervical
cancer risk. The FLIM method combined with unsupervised machine learning (FLIM-ML) had a
sensitivity and specificity of 90.9% and 100%, respectively, significantly higher than those of the
cytology approach. One cancer recurrence case was predicted as high-risk several months earlier
using this method as compared to using current clinical methods, implying that FLIM-ML may be
very helpful for follow-up cancer care. This study illustrates the clinical applicability of FLIM-ML as
a detection method for cervical cancer screening and a convenient tool for follow-up cancer care.

Keywords: cervical cancer; non-invasive screening; NAD(P)H; fluorescence lifetime imaging mi-
croscopy; unsupervised machine learning

1. Introduction

Cervical cancer is one of the top four cancers that affect women’s life and health, with
approximately 600,000 new cases each year worldwide [1]. Compared with developed
countries, developing countries have much higher morbidity and mortality rates [2,3].
Cervical cancer screening usually includes human papillomavirus (HPV) DNA testing,
cytology, or a combination of the two tests. Although cervical cancer screening can reduce
mortality to an extent, there are limitations. For example, HPV positive does not necessarily
mean that the patient needs intervention and treatment, and the sensitivity and specificity
of the cytology test are unsatisfactory. The relatively low sensitivity of liquid-based cytology
(LBC) screening has also been reported in different studies, ranging from 52% to 94% [4], and
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the specificity may be as low as 73% [5]. After cervical cytology, patients with low- or high-
grade squamous intraepithelial lesions (LSILs or HSILs) should undergo colposcopy and
histopathological biopsy. Patients with atypical squamous cells of uncertain significance
will be recommended a repeat cytology test in a close follow-up visit, or colposcopy and
histopathological biopsy. A biopsy is an invasive procedure that can lead to bleeding,
infection, and physical and psychological suffering. Therefore, a screening method with
high sensitivity and specificity is needed to assist cervical cancer screening and reduce false
positives (FPs).

Fluorescence lifetime imaging microscopy (FLIM) has received increasing attention in
the biomedical field as a label-free and highly sensitive optical detection technology [6–9]. It
is well known that during the development of cancer, the metabolism of cancer cells changes
substantially compared with normal cells and can be detected by an endogenous coenzyme
involved in biological metabolism, namely, reduced nicotinamide adenine dinucleotide
(phosphate) [NAD(P)H] [10]. Thus, we can use FLIM to detect the fluorescence lifetime of
intracellular NAD(P)H and evaluate the metabolic status of cells or tissues. Recently, there
have been a series of reports on the study of unstained cervical tissue sections by FLIM,
and it was found that FLIM has application potential in cervical cancer detection [11–13].
However, the samples in the abovementioned reports were all tissue sections and the
samples were invasively obtained from biopsies or surgeries, which is not practical for
widespread screening. As the method of obtaining exfoliated cervical cells is non-invasive,
the exfoliated cells can be used as FLIM samples instead of tissue samples.

In the past, FLIM image analysis mainly extracted the lifetime value manually [8,9,14],
which is inefficient when a large amount of sample data is involved. In addition, when there
is a large difference among different cells in the same case or when the cancer is in the early
stage, the fluorescence lifetime value distribution may be large. As a result, the difference
in the average value between the cancer group and the normal group may be small, and the
classification accuracy may thus be limited. Machine learning (ML) has helped further the
development of medical image classification and quantification. Considering the expensive
hardware of FLIM, Mannam et al. trained a neural network model to estimate FLIM images
from conventional fluorescence intensity images of a zebrafish labeled with enhanced green
fluorescence protein by a two-photon microscope [15]. However, this model has limitations,
as the authors stated that the model behaves differently for stained and unstained samples,
and the training dataset needs a large amount of lifetime and intensity image pairs for
each fluorescent molecule. ML was reported suitable for the analysis and interpretation
of FLIM raw data (either in time-domain or frequency-domain) [15]. Gang et al. used an
artificial neural network (ANN) method to estimate the lifetime from the FLIM raw data,
and found the method was more accurate and faster compared to curve fitting tools [16]. A
convolutional neural network (CNN) was also used to extract the lifetime from raw data
and reconstruct the FLIM images [17]. After the FLIM images are obtained, ML can be
used in applications such as segmentation [18] and classification [19–21]. The application
of classification in cells or tissues using FLIM combined with ML is attractive. The wide
applications include tumor biomarker analysis [22–24], embryo quality estimation for
in vitro fertilization [19], microglia recognition from other glia cell types in the brain [20],
and the hematoxylin and eosin-stained cervical tissue study for precancer detection [21].
Most of the reports, however, used supervised learning [19–21].

ML is mainly divided into two categories: supervised learning and unsupervised
learning [25,26]. Supervised learning requires that the input data have a clear category label
and that the algorithm can find a mapping relationship with the target category from a
large amount of training data. Unsupervised learning, unlike supervised learning, does not
have explicit class labels for the input data during the learning process. For example, in the
field of medical diagnosis, it is very time-consuming to have pathologists label hundreds
or thousands of images one by one. Therefore, unsupervised learning is of great practical
significance, and such algorithms may help discover relationships in unlabeled data. With
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the help of high-performance algorithms, multi-dimensional information can be integrated
for the automatic feature extraction and classification of image data.

Regarding cervical cytology, many researchers have carried out supervised learning
on microscopic images of stained cells to classify normal and abnormal cells. Most classifi-
cation results with high accuracy were obtained on single-cell images [27–29] because only
non-overlapping cells can help distinguish the nuclear area easily when stained cells are
involved. However, exfoliated cervical cells tend to overlap and aggregate, and the method
of observing cell morphology by stained cells will encounter difficulties in clinical appli-
cation. When observing overlapping cells or aggregated cells, FLIM images can provide
information on the metabolic status even if the determination of cell morphology is affected,
which is more suitable for practical applications. Therefore, the present work used FLIM
technology to observe unstained exfoliated cervical cells combined with unsupervised
machine learning to analyze the FLIM images of cervical cells. This FLIM-ML method
does not need to label cells, which greatly enhances and improves the efficiency, specificity,
and sensitivity of cervical cancer screening, and thus provides a new method for the early
screening of cervical cancer or follow-up examinations after cancer treatment.

2. Results and Discussion
2.1. NAD(P)H FLIM Images of Exfoliated Cervical Cells

The 71 participants in this study were divided into several groups depending on
their clinical diagnosis: cervical cancer (CC, n = 11), cervical intraepithelial neoplasia
grade 2/3 (CINII/III, both CINII and CINIII are considered HSILs, n = 7), benign (n = 18),
normal (n = 23), and follow-up (n = 12). It should be noted that LSILs are not involved in
this study because the recommendations for LSILs are to avoid treatment and continue
monitoring. Figure 1 shows the typical FLIM images of unstained exfoliated cervical cells
from two cervical cancer patients (Figure 1a–d) and two normal cases (Figure 1e–h) where
the autofluorescence is from the intracellular NAD(P)H; tm means the mean fluorescence
lifetime of NAD(P)H; and a2 means the contribution of protein-bound NAD(P)H. As can
be seen from the cell morphology, the cell nuclei in Figure 1a,b are abnormally enlarged
and have a relatively large nuclear-cytoplasmic (NC) ratio, which is typical of cancer cell
characteristics, compared to the other cell images. However, the cytological morphology
in Figure 1c,d seems normal. This suggests that not all cells from cancer patients display
cancer cell cytological characteristics, and such normal-like cells may cause misdiagnosis if
examined by the LBC test.

In addition to displaying cell morphology, FLIM can also provide information about
the fluorescence lifetime. As shown in the right bar of Figure 1, for tm, orange indicates
a short fluorescence lifetime and blue indicates a long lifetime; for a2, orange indicates
a low ratio of protein-bound NAD(P)H and blue indicates a high ratio of protein-bound
NAD(P)H. As presented in the typical FLIM images, cancer cells have a relatively short
average fluorescence lifetime (tm) and less protein-bound NAD(P)H ratio (a2). This im-
plies that, compared with normal cells, cancer cells favor glycolysis rather than oxidative
phosphorylation. This result is consistent with numerous previous reports regarding the
Warburg effect [30–32]. Although the cells in Figure 1c,d are morphologically normal, their
FLIM images are significantly different from those of normal cells, which show a yellow
color. This may be explained by the fact that the cytological morphology of some cells
has not changed, but their abnormal metabolic status can already be sensitively detected
by FLIM.

This work studied thousands of FLIM images taken from real clinical samples. Image
preprocessing was necessary and involved data filtering to ensure the validity of the
analyzed data. Qualified images demonstrating cervical cells (as shown in Figure S1a)
were chosen for further study, and some images in which the fluorescence of cervical
cells was not severely affected by surrounding objects were also qualified. Figure S1b,c
shows examples of unqualified images. In Figure S1b, the fluorescence intensity of the
non-cellular area is much stronger than the cellular area, which would lead to inaccurate
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data fitting. In Figure S1c, many neutrophils cover the exfoliated cervical cells, which
would result in the fluorescence information being biased and thus affecting the subsequent
analysis. In addition, excessive numbers of neutrophils, erythrocytes, or microorganisms
may affect the image quality, thus data filtering is required. Therefore, images such as
Figure S1b or Figure S1c should be filtered out, and qualified FLIM images can be selected
for subsequent analysis.
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Figure 1. Typical FLIM images of unstained exfoliated cervical cells from four participants (each
column is from one person); (a–d) are from two cervical cancer patients and (e–h) are from two
normal cases where the autofluorescence is from the intracellular NAD(P)H; tm means the mean
fluorescence lifetime of NAD(P)H; and a2 means the contribution of protein-bound NAD(P)H. Scale
bar: 20 µm.

If the noise of FLIM images is reduced, the accuracy of classification can be increased.
Mannam et al. performed fluorescence intensity denoising using ‘Noise2Noise’ CNN
for the mixture of Poisson–Gaussian noise [33] and the same Noise2Noise pre-trained
model to denoise FLIM images [15]. The reported method is of high accuracy [15,33] and
may improve the accuracy of classification, but a large number of raw images are needed
for neural network training. Acquiring 12,000 real fluorescence microscopy images and
60,000 noisy images with different noise levels [33] is time-consuming. To reduce the image
noise in the present work, data filtering for qualified images and smoothing images with
3 × 3 spatial filtering were performed, which is computationally efficient.

2.2. Statistical Analysis of FLIM Images and Dataset Selection

Each pixel in the FLIM image corresponds to a tm value and an a2 value; thus, each
256 × 256 pixel image has two distribution curves of tm and a2. The peaks of the distribution
curves were used for statistics as presented in Figure 2, in which the tm and a2 data were
from CC, CINII/III, benign, and normal groups. Each column represents one participant,
and each circle represents one FLIM image data. The average tm of the above four groups
was 647 ± 137 ps, 805 ± 187 ps, 878 ± 91 ps, and 928 ± 70 ps, respectively, and the average
a2 was 21.7 ± 28.1%, 57.8 ± 31.4%, 90.6 ± 13.8%, and 93.4 ± 8.2%, respectively. It can be
found that there is little difference in metabolism between the normal group and the benign
group, suggesting that the benign group has a similar metabolic state as the normal group.
The cancer group had the lowest tm and a2 values, and the CINII/III group was between
the normal and cancer groups. These statistical results show a similar trend in Figure 1,
indicating that metabolic state changes are prevalent in cancer and CINII/III cases.
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Although there was some difference in the average values of the four groups, the
individual difference in the same group was large, i.e., there were large differences in
different cells from the same patient for the CC, CINII/III, and benign groups especially.
Therefore, it is difficult to classify each patient by directly setting the threshold of the
tm and a2 values. Additionally, extraction of the tm and a2 values from the FLIM images
using exponential fitting software is time-consuming and labor-intensive. To solve these
problems, this study combined FLIM with an unsupervised algorithm to quantitatively
predict the cancer risk for each patient.

For a cervical cancer case, the exfoliated cervical cell sample may contain thousands
of cells. It is possible that not all cells are malignant, especially in patients with early-stage
cancer or HSIL. Therefore, it is difficult to label all cell images accurately. To obtain a
reliable training model, 151 images from 5 patients with cervical cancer and 4 patients with
CINII/III, and 217 images from 14 women of the normal group whose LBC test, HPV test,
and ultrasound report were all negative, were selected as the training dataset. The other 48
participants were designated as the validation dataset. The distribution of the participants
is listed in Table 1. The flow chart of the FLIM-ML model for the prediction of high risk of
cervical cancer is presented in Figure 3.

Table 1. Distribution of the 71 participants in the training dataset and the validation dataset based on
their clinical diagnosis.

Clinical Diagnosis Training Dataset Validation Dataset

Cervical cancer 5 6
CINII/III 4 3

Benign 0 18
Normal 14 9

Follow-up 0 12

Total number 23 48
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2.3. Result of Feature Extraction and PCA

To improve the efficiency of image analysis, cell region segmentation and cell mask
image acquisition were performed as shown in Figure S2 (the details are described in the
Materials and Methods section). Then, the AlexNet network, which was pre-trained on
the ImageNet database, was used to extract feature descriptors of each image. Finally,
9216 features were extracted. Next, principal component analysis (PCA) [34] was applied
to reduce the dimensionality of the data. The distribution of high-dimensional features can
be visualized by t-distributed stochastic neighbor embedding (t-SNE) [35].

There were three kinds of FLIM images as input: tm images, a2 images, and tm &
a2 images in the same field of view. tm or a2 images were RGB images containing three
channels. For the tm & a2 images, each image contained six channels. Figure 4 shows the
t-SNE projection of feature data extracted from three input images of the training dataset
using the pre-trained network. Each point represents one FLIM image. Blue points are
from 217 FLIM images of the normal group and red points are from 151 FLIM images of
cervical cancer or CINII/III groups. Of the total variance of the data, 15%, 20%, 30%, 50%,
70%, and 90% were preserved after PCA. It can be seen that when 15% was preserved,
the t-SNE projection of feature data extracted from the a2 images was questionable, which
might be due to the loss of original information. The distance of data between the two
clusters was far when 20% or 30% of the total variance of data was kept, indicating that the
visual differences between the images of the two groups were generally consistent with
the result shown in Figure 2. With the preserved variance increasing from 30% to 90%, the
distance between the two clusters became progressively closer. The extracted features were
more dispersed in the same group without PCA, indicating that the output features of the
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original data contained noise that drowned out the useful signal. When comparing 20%
and 30% of the total variance, the lower variance corresponding to lesser information may
lead to a lower classification performance. Therefore, components that preserved 30% of
the variance in the original data can benefit the cluster, thereby improving the classification
performance and reducing the computational cost.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 7 of 15 
 

 

the variance in the original data can benefit the cluster, thereby improving the classifica-
tion performance and reducing the computational cost. 

 
Figure 4. t-SNE projection of feature data extracted from three input images of the training dataset 
and the preserved different total variances of the data. Each point represents one FLIM image data. 
Blue points are from 217 FLIM images of the normal group and red points are from 151 FLIM images 
of cervical cancer or CINII/III groups. 

2.4. Results of Clustering and the FLIM-ML Model 
The k-means algorithm was used for clustering after feature extraction. Table 2 lists 

the clustering results of the 368 images in the training dataset. The images from the 
CC/CINII-III and normal groups were classified into two clusters, and the results obtained 
from the three different sets of input images were essentially consistent. According to the 
results, the majority of tm images from the normal group were classified in cluster 2 and 
all of the a2 images and tm & a2 images from the normal group were also classified in cluster 
2. Thus, cluster 2 should be defined as normal. For the images from CC/CINII-III, 75.5% 
of images were classified in cluster 1. It can be understood that not all cells from CC/CINII-
III are malignant, especially in early-stage patients, therefore, cluster 1 was defined as ab-
normal. Subsequently, the model built on the training dataset was applied to the valida-
tion dataset for diagnostic evaluation. 

Table 2. Results of clustering of cell images in the training dataset. 

Input Images Group Cluster 1 Cluster 2 

tm images CC/CINII-III 114/151 (75.5%) 37/151 (24.5%) 
Normal 5/217 (2.3%) 212/217 (97.7%) 

a2 images 
CC/CINII-III 114/151 (75.5%) 37/151 (24.5%) 

Normal 0/217 (0%) 217/217 (100%) 

tm & a2 images CC/CINII-III 114/151 (75.5%) 37/151 (24.5%) 
Normal 0/217 (0%) 217/217 (100%) 

The validation dataset consisting of 48 participants from five groups based on their 
medical history and clinical diagnosis, CC (n = 6), CINII/III (n = 3), benign (n = 18), normal 
(n = 9), and follow-up (n = 12), is listed in Table 3. The follow-up group consisted of follow-
up patients after the surgical treatment of cervical cancer, and two of them were found to 
have vulvar or vaginal intraepithelial neoplasia (VIN or VaIN). Table 3 lists the percentage 
of abnormal images from each participant in the validation dataset. Among the 6 CC pa-
tients, 5/6 of them were predicted to be abnormal and almost 100% of images were abnor-
mal. For the three CINII/III patients and the two cancer recurrence patients, the percentage 
of abnormal cell images was not 100%, which is consistent with the speculation that not 
all cells were malignant, especially in an early stage. A few benign, normal, and follow-

Figure 4. t-SNE projection of feature data extracted from three input images of the training dataset
and the preserved different total variances of the data. Each point represents one FLIM image data.
Blue points are from 217 FLIM images of the normal group and red points are from 151 FLIM images
of cervical cancer or CINII/III groups.

2.4. Results of Clustering and the FLIM-ML Model

The k-means algorithm was used for clustering after feature extraction. Table 2 lists the
clustering results of the 368 images in the training dataset. The images from the CC/CINII-
III and normal groups were classified into two clusters, and the results obtained from the
three different sets of input images were essentially consistent. According to the results,
the majority of tm images from the normal group were classified in cluster 2 and all of the
a2 images and tm & a2 images from the normal group were also classified in cluster 2. Thus,
cluster 2 should be defined as normal. For the images from CC/CINII-III, 75.5% of images
were classified in cluster 1. It can be understood that not all cells from CC/CINII-III are
malignant, especially in early-stage patients, therefore, cluster 1 was defined as abnormal.
Subsequently, the model built on the training dataset was applied to the validation dataset
for diagnostic evaluation.

Table 2. Results of clustering of cell images in the training dataset.

Input Images Group Cluster 1 Cluster 2

tm images CC/CINII-III 114/151 (75.5%) 37/151 (24.5%)
Normal 5/217 (2.3%) 212/217 (97.7%)

a2 images CC/CINII-III 114/151 (75.5%) 37/151 (24.5%)
Normal 0/217 (0%) 217/217 (100%)

tm & a2 images CC/CINII-III 114/151 (75.5%) 37/151 (24.5%)
Normal 0/217 (0%) 217/217 (100%)

The validation dataset consisting of 48 participants from five groups based on their
medical history and clinical diagnosis, CC (n = 6), CINII/III (n = 3), benign (n = 18), normal
(n = 9), and follow-up (n = 12), is listed in Table 3. The follow-up group consisted of
follow-up patients after the surgical treatment of cervical cancer, and two of them were
found to have vulvar or vaginal intraepithelial neoplasia (VIN or VaIN). Table 3 lists the
percentage of abnormal images from each participant in the validation dataset. Among
the 6 CC patients, 5/6 of them were predicted to be abnormal and almost 100% of images
were abnormal. For the three CINII/III patients and the two cancer recurrence patients, the
percentage of abnormal cell images was not 100%, which is consistent with the speculation
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that not all cells were malignant, especially in an early stage. A few benign, normal, and
follow-up patients had some abnormal cells. Therefore, the cutoff percentage that may
imply high risk needs to be calculated for the FLIM-ML model.

Table 3. Percentage of abnormal images in the validation group and the results of FLIM combined
with machine learning. For comparison, the results of the LBC test of the patients are also listed.

Patient No.
Percentage of Abnormal Images

FLIM-ML LBC Test
tm Images a2 Images tm & a2 Images

CC-2 (stage IB3) 100.0 100.0 100.0 + +
CC-4 (stage IB2) 100.0 100.0 95.6 + +
CC-6 (stage IIB) 100.0 100.0 100.0 + +
CC-8 (stage IA1) 2.5 0.0 0.0 −(FN) +

CC-10 (stage IIA1) 100.0 100.0 100.0 + +
CC-11 (stage IIB) 73.7 100.0 89.5 + +

CINII-2 83.3 83.3 58.3 + −(FN)
CINII-4 50.0 80.0 50.0 + +
CINII-6 78.3 91.3 78.3 + +

Benign-1 0.0 0.0 0.0 − −
Benign-2 0.0 0.0 0.0 − −
Benign-3 8.3 8.3 8.3 − −
Benign-4 4.5 0.0 0.0 − −
Benign-5 0.0 0.0 0.0 − −
Benign-6 0.0 0.0 0.0 − −
Benign-7 45.5 0.0 0.0 − −
Benign-8 73.3 40.0 40.0 − −
Benign-9 0.0 0.0 0.0 − −
Benign-10 0.0 0.0 0.0 − −
Benign-11 36.4 9.1 9.1 − −
Benign-12 0.0 0.0 0.0 − −
Benign-13 0.0 11.1 0.0 − −
Benign-14 20.0 20.0 20.0 − −
Benign-15 54.5 9.1 0.0 − −
Benign-16 0.0 0.0 0.0 − −
Benign-17 36.4 45.5 36.4 − −
Benign-18 58.3 0.0 0.0 − +(FP)
Normal-15 0.0 0.0 0.0 − −
Normal-16 0.0 0.0 0.0 − −
Normal-17 0.0 0.0 0.0 − −
Normal-18 0.0 0.0 0.0 − −
Normal-19 50.0 0.0 15.4 − +(FP)
Normal-20 0.0 23.1 0.0 − +(FP)
Normal-21 36.4 0.0 0.0 − +(FP)
Normal-22 0.0 0.0 0.0 − +(FP)
Normal-23 0.0 0.0 0.0 − −

Follow-up-1 10.0 0.0 0.0 − −
Follow-up-2 0.0 0.0 0.0 − −
Follow-up-3 10.0 0.0 0.0 − −
Follow-up-4 13.3 13.3 13.3 − −
Follow-up-5
(VINII-III) 85.0 100.0 70.0 + +

Follow-up-6 0.0 37.5 0.0 − −
Follow-up-7

(VAINIII) 100.0 88.0 76.0 + −(FN)

Follow-up-8 5.0 55.0 10.0 − −
Follow-up-9 0.0 45.0 10.0 − −

Follow-up-10 5.0 0.0 0.0 − −
Follow-up-11 15.0 40.0 15.0 − −
Follow-up-12 5.0 5.0 0.0 − −

FP: false positive; FN: false negative.
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To evaluate the model performance, receiver operating characteristic (ROC) curves
were plotted, and the area under the curve (AUC) was calculated. As shown in Figure 5,
the AUC with different input images were 0.95, 0.94, and 0.94, respectively. Based on the
ROC, the optimal cutoff value for the percentage of abnormal images was determined by
maximizing the Youden index (maximum sensitivity plus specificity minus 1). For different
input images, the cutoff values were 74%, 68%, and 45% for tm images, a2 images, and tm &
a2 images, respectively. In this study, if the percentage of abnormal images for one patient
exceeded the cutoff value, it was determined to be positive (malignant); it was deemed
negative (normal or benign) if it was less than the cutoff. It was found that the sensitivity
of FLIM-ML based on tm input images was lower than those based on a2 images and tm
& a2 images. Therefore, the FLIM-ML prediction results (+ or −) listed in Table 3 were
obtained by comparing the abnormal percentage with 68% for a2 images and 45% for tm &
a2 images. The best result was obtained with tm & a2 images as input, which implies that
the six-channel images composed of tm and a2 contain more useful information. This result
agrees well with several works of literature reporting that the classification results using
combined features were better than using one type of feature [36,37].

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 9 of 15 
 

 

Normal-18 0.0 0.0 0.0 − − 
Normal-19 50.0 0.0 15.4 − +(FP) 
Normal-20 0.0 23.1 0.0 − +(FP) 
Normal-21 36.4 0.0 0.0 − +(FP) 
Normal-22 0.0 0.0 0.0 − +(FP) 
Normal-23 0.0 0.0 0.0 − − 

Follow-up-1 10.0 0.0 0.0 − − 
Follow-up-2 0.0 0.0 0.0 − − 
Follow-up-3 10.0 0.0 0.0 − − 
Follow-up-4 13.3 13.3 13.3 − − 

Follow-up-5 (VINII-III) 85.0 100.0 70.0 + + 
Follow-up-6 0.0 37.5 0.0 − − 

Follow-up-7 (VAINIII) 100.0 88.0 76.0 + −(FN) 
Follow-up-8 5.0 55.0 10.0 − − 
Follow-up-9 0.0 45.0 10.0 − − 
Follow-up-10 5.0 0.0 0.0 − − 
Follow-up-11 15.0 40.0 15.0 − − 
Follow-up-12 5.0 5.0 0.0 − − 

FP: false positive; FN: false negative. 

 
Figure 5. ROC curve and AUC for the three different input images. 

2.5. Results of FLIM-ML and its Comparison with LBC 
Clinical diagnosis based on colposcopy examinations, clinical laboratory tests, ultra-

sound, and histopathology examinations was made by physicians and was considered the 
standard reference. According to the standard, the FPs and false negatives (FNs) of the 
FLIM-ML method and LBC test were evaluated and are marked in Table 3. For all patients 
with CC, CINII/III, VIN, and VaIN, the prediction of positive is true positive (TP). For all 
other participants, namely, benign, normal, and follow-up without detectable new lesions, 
the prediction of negative is true negative (TN). Confusion matrixes are presented in Fig-
ure 6 to visualize the performance of the LBC test and the FLIM-ML method for the vali-
dation dataset containing 48 participants. The LBC tests reported two FNs and five FPs. 
The FLIM-ML method reported one FN and no FPs. The sensitivity and specificity of the 
two methods were quantified and are listed in Table 4. The FLIM-ML method exhibits a 
good potential for reducing FPs, thereby potentially reducing unnecessary biopsies. Ad-
ditionally, the FLIM-ML method showed a higher sensitivity than the LBC method in this 
study. 

Figure 5. ROC curve and AUC for the three different input images.

2.5. Results of FLIM-ML and Its Comparison with LBC

Clinical diagnosis based on colposcopy examinations, clinical laboratory tests, ultra-
sound, and histopathology examinations was made by physicians and was considered
the standard reference. According to the standard, the FPs and false negatives (FNs) of
the FLIM-ML method and LBC test were evaluated and are marked in Table 3. For all
patients with CC, CINII/III, VIN, and VaIN, the prediction of positive is true positive (TP).
For all other participants, namely, benign, normal, and follow-up without detectable new
lesions, the prediction of negative is true negative (TN). Confusion matrixes are presented
in Figure 6 to visualize the performance of the LBC test and the FLIM-ML method for the
validation dataset containing 48 participants. The LBC tests reported two FNs and five
FPs. The FLIM-ML method reported one FN and no FPs. The sensitivity and specificity
of the two methods were quantified and are listed in Table 4. The FLIM-ML method ex-
hibits a good potential for reducing FPs, thereby potentially reducing unnecessary biopsies.
Additionally, the FLIM-ML method showed a higher sensitivity than the LBC method in
this study.
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Table 4. Sensitivity and specificity of the LBC test and FLIM-ML method.

Method Sensitivity (%) Specificity (%)

LBC 81.8 86.5
FLIM-ML 90.9 100

There were some important results found for the patients in the follow-up group.
Figure 7 shows the typical FLIM tm images from three patients. Follow-up-3 was a patient
without detectable cancer recurrence at her follow-up visit. Follow-up-5 was diagnosed
with VINII-III one year after cervical cancer surgery, with cell morphological features and
FLIM tm values significantly different from those of Follow-up-3. For the above two cases,
the results of LBC and FLIM-ML were consistent. However, FLIM-ML showed advantages
for Follow-up-7. At the first visit of this patient, the LBC test only reported inflammatory
cells (meaning negative); the HPV test reported 16+ and 53+ and the biopsy showed no
abnormality. However, after examining the spare LBC liquid by the FLIM-ML method,
the percentage of abnormal cells was found to be 76%, so Follow-up-7 was predicted high
risk. It can also be seen from Figure 7a that there was no obvious abnormality in the cell
morphology of Follow-up-7, which may explain the negative LBC result at the first visit.
The patient (Follow-up-7) was reexamined for the second time eight months later, and the
pathology report was VAINIII. This case suggests that the FLIM-ML method may predict
high risk before abnormal cytology, which may be very helpful for follow-up cancer care,
early detection, and treatment. Further study on follow-up cases is thus necessary.
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Figure 7. Results of three follow-up patients. (a) FLIM tm images of the three patients. LBC test;
(b) the results of the LBC test and FLIM-ML method and the clinical diagnosis. Follow-up-7 was
predicted as high risk by FLIM-ML at the first follow-up visit but was judged normal by the current
clinical methods. The cancer recurrence of Follow-up-7 was not clinically found until the second visit
eight months later.
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3. Materials and Methods
3.1. Participants and Exfoliated Cervical Cell Samples

The study was approved by the Institutional Ethics Committee of the Central Hospital
of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, China.
The work involved 71 women with an average age of 43 years who had a definite diagnosis.
The clinical diagnosis made by doctors based on colposcopy examinations, clinical labora-
tory tests, ultrasound, and histopathology examinations was set as the standard reference.
For the CC group (n = 11) and the CINII/III group (n = 7), no prior diagnosis of cervical
cancer or precancerous lesions was found before the present examination. For the benign
group (n = 18) and the normal group (n = 23), the LBC test, HPV test, and ultrasound
examination had been performed, and some of them with LBC and/or HPV positive results
underwent biopsies due to clinical recommendations while no malignant sign was detected.
For the follow-up group (n = 12), cervical cancer or CINII/III had been diagnosed, and
gynecological surgeries had been performed from ten months to four years prior. It should
be noted that CINI (LSILs) were not studied in this work because the recommendations for
LSILs are to avoid treatment and continue to monitor.

The exfoliated cervical cell samples were obtained from the spare LBC test liquid after
the routine cervical cytology test by the department of pathology. After the LBC tests,
the remaining LBC liquid containing exfoliated cells was centrifuged at 1000 rpm for 3–5
min. P of the supernatant was discarded, and the bottom sediment was mixed with the
remaining liquid. A few drops of liquid were dripped on a clean glass side and covered
with a coverslip for FLIM observation. It should be noted that the only difference between
the cell samples of this study and the LBC test was that the LBC test requires staining and
the FLIM method studies unstained cells.

3.2. Fluorescence Lifetime Imaging and Analysis

The fluorescence lifetime images were acquired by a time-correlated single-photon
counting system (SPC-150, Becker & Hickl, Berlin, Germany) on a laser scanning confo-
cal microscope (FV300/IX 71, Olympus, Tokyo, Japan) with a water-immersion objective
lens (60×, NA = 1.2, Olympus, Tokyo, Japan). The samples were excited by a 405 nm
picosecond laser (50 MHz, BDL-405-SMC, Becker & Hickl, Berlin, Germany) and col-
lected by a photomultiplier tube (PMC-100-1, Becker & Hickl, Berlin, Germany) with a
447 ± 30 nm bandpass. Each FLIM image of 256 × 256 pixels was acquired in 20–60 s,
and an area with the size of approximately 188 × 188 µm was imaged only once to avoid
photobleaching. At least ten different areas were imaged for each sample, and 15–50 cells
were observed for each patient.

FLIM images were fitted with double-exponential decay models using the commercial
SPCImage software (SPCImage v.8.0, Becker & Hickl, Berlin, Germany). The mean lifetime
of each pixel tm can be obtained by the following formula:

tm = a1 × t1 + a2 × t2, (1)

where a1 and a2 are the contributions of free and protein-bound NAD(P)H and t1 and t2 are
the fluorescence lifetimes of free and protein-bound NAD(P)H, respectively. In this study, t1
was fixed at 460 ps, according to the experimental result of free NADH solution measured
by the FLIM setup. Then, the t2, a2, or tm value of all pixels in each FLIM image could be
obtained using SPCImage software. In this study, tm, a1, a2, t1, and t2 are five parameters
that can be extracted from the FLIM raw data. Since a1 = 1 − a2 and t1 was fixed as the fast
decay component from free NADH, only three parameters (tm, a2, and t2) could be studied.
It should be noted that the assumption that the NAD(P)H has two decay components is a
simplification. There is evidence that the slow decay component (t2) consists of at least two
or three subcomponents [38,39]. In addition, tm and a2 (or the a1/a2 ratio) has been used to
study metabolism in numerous pieces of literature [6,11–13,20,21,29]. Therefore, tm and a2
were studied in this work.
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3.3. FLIM Images Preprocessing

After data filtering as mentioned in Section 2.1 and Figure S1, all qualified FLIM images
were further preprocessed by segmentation. An Otsu-based automatic segmentation
algorithm was applied. The implemented algorithm is schematically shown in Figure
S2. First, Otsu’s thresholding-based method was used to separate the pixels into the
background and foreground by finding the optimal threshold for segmenting an image.
Second, a morphological dilate operation was performed on the binary image with a
structuring element, in which a circle with a radius of 1 pixel worked the best. Next, to
remove the non-cellular regions, the connected components were then found in the binary
image, and we filtered the areas with small pixels. Finally, any holes in this region were
filled, and the image was smoothed to remove a small amount of noise using 3 × 3 spatial
filtering. The final cell mask images were used to extract the image features.

3.4. Unsupervised Machine Learning Method

The AlexNet network [40,41] developed by Krizhevsky achieved the top score in the
ImageNet Large Scale Visual Recognition Challenge 2012. It is a popular convolutional
neural network for computer vision tasks because of its high performance and relative
simplicity [42]. AlexNet, which was pre-trained on the ImageNet database, was used to
extract the feature descriptors of each image, and 9216 features were finally extracted.
These outputs included a significant amount of noise and zero elements resulting from
filters that have not been activated. To increase the classification performance and decrease
the computational cost simultaneously, PCA was applied to reduce the dimensionality of
the data. This method converted multiple variables into a few principal components that
reflected most of the information of the original variables. The principal components are not
mutually related, which ensures that the information contained in the principal component
does not overlap. A popular method, t-SNE, was used to project high-dimension data into
two dimensions so that it could be analyzed visually. The distance between the points is
likely to be representative of the actual distances in the original feature space.

Since every sample contains hundreds or thousands of cells and there are likely normal
cells in the samples for some cancer patients, it would be impossible to give a definite
label to every cell without doctors’ help. Even if doctors can accurately label each cell, the
workload is huge, and the doctors’ labeling may be affected by multiple factors, such as
sampling, experience, and image quality. Given this situation, clustering was used in this
study to assign labels to images and group nearby points in the feature space. K-means
is an unsupervised machine learning method and one of the most popular clustering
algorithms. In the algorithm, K is the number of clusters, which was set to two for the
training dataset based on the clinical diagnosis. When selecting the starting centroids in the
algorithm, a method called k-means++ [43] is used to help k-means achieve good clustering
performance and computational efficiency.

4. Conclusions

In this work, exfoliated cervical cell samples from 71 women were collected and the
autofluorescence of the cell samples was observed using FLIM. It was found that cancer cells
and normal cells had significant differences, suggesting that cancer cells favor glycolysis
rather than oxidative phosphorylation. FLIM images were studied by the unsupervised
machine learning method to predict the cancer risk for patients. The sensitivity and
specificity of the FLIM-ML method for cervical cancer prediction were 90.9% and 100%,
respectively. Compared with the LBC test currently used in clinical practice, the specificity
and sensitivity of the FLIM-ML method are significantly higher. In the follow-up cancer care
group, one recurrence case was predicted to be high risk by FLIM-ML eight months earlier
than the clinical methods. The FLIM-ML method is expected to have great application
potential as a noninvasive, sensitive, and rapid screening method for cervical cancer and a
convenient tool for follow-up cancer care.
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