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A B S T R A C T

Alternaria causes pathogenic disease on various economically important crops having saprophytic to endophytic
lifecycle. Pathogenic fungi of Alternaria species produce many primary and secondary metabolites (SMs).
Alternaria species produce more than 70 mycotoxins. Several species of Alternaria produce various phytotoxins
that are host-specific (HSTs) and non-host-specific (nHSTs). These toxins have various negative impacts on cell
organelles including chloroplast, mitochondria, plasma membrane, nucleus, Golgi bodies, etc. Non-host-specific
toxins such as tentoxin (TEN), Alternaric acid, alternariol (AOH), alternariol 9-monomethyl ether (AME), bre-
feldin A (dehydro-), Alternuene (ALT), Altertoxin-I, Altertoxin-II, Altertoxin-III, zinniol, tenuazonic acid (TeA),
curvularin and alterotoxin (ATX) I, II, III are known toxins produced by Alternaria species. In other hand,
Alternaria species produce numerous HSTs such as AK-, AF-, ACT-, AM-, AAL- and ACR-toxin, maculosin, des-
truxin A, B, etc. are host-specific and classified into different family groups. These mycotoxins are low molecular
weight secondary metabolites with various chemical structures. All the HSTs have different mode of actions,
biochemical reactions, and signaling mechanisms to causes diseases in the host plants. These HSTs have de-
vastating effects on host plant tissues by affecting biochemical and genetic modifications. Host-specific myco-
toxins such as AK-toxin, AF-toxin, and AC-toxin have the devastating effect on plants which causes DNA
breakage, cytotoxic, apoptotic cell death, interrupting plant physiology by mitochondrial oxidative phosphor-
ylation and affect membrane permeability. This article will elucidate an understanding of the disease mechanism
caused by several Alternaria HSTs on host plants and also the pathways of the toxins and how they caused disease
in plants.

1. Introduction

The genus Alternaria is ubiqutenious in nature, imperfecti fungi that
belong to the phylum Ascomycetes of the Hyphomycetes [1,2]. It
contains both saprophytic and endophytic in nature which is causal
agents of various crops, fruits, and vegetable diseases. Till date, nearly
300 species of Alternaria have been reported [3]. These include Alter-
naria alternata, Alternaria arborescens, Alternaria radicina, Alternaria
brassicola, Alternaria brassicae, and Alternaria infectoria [1,3–5]. A. al-
ternata causes disease in various economically important plants like
brochelli, tomato, chili, potato, citrus, apple, etc. [6]. In 1933, the first

black rot disease caused by Alternaria on Japanese pear was reported
[7,8]. Various secondary metabolites produced by Alternaria species
those maybe host-specific and non-host-specific toxins at the different
stage of pathogenesis [9,10,6,11,12].
More than 70 toxins have been reported to be produced by

Alternaria fungal pathogenicity species [13–18]. In Alternaria 20 HSTs
has been reported [1,19–25,4]). Host-specific toxins with low mole-
cular weight are common in seven Alternaria species and four Co-
chliobolus species [26]. A. alternata HST produces various pathotypes in
structure [26–28].
On the basis of chemical structure Alternaria mycotoxin is divided
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into five classes; (1) dibenzopyrone derivatives, which encompass al-
ternariol (AOH), alternariol monomethyl ether (AME), and altenuene
(ALT); (2) tetramic acid derivatives, comprise tenuazonic acid (TeA),
and iso-tenuazonic acid (iso-TeA); (3) perylene derived, altertoxins I, II,
and III (ATX-I, ATX-II, and ATX-III); (4) A. alternata f. sp. lycopersici
TA1, TA2, TB1, and TB2 toxin (AAL TA1, TA2, TB1, and TB2); (5) wide-
ranging structures, such as tentoxin (TEN), iso-tentoxin (iso-TEN), and
dihydrotentoxin (DHT), which are cyclic tetrapeptide [29–34].
There are many Alternaria toxins which have been described to

possess cytotoxic, genotoxic, mutagenic, fetotoxic and/or teratogenic
activity. In microbial and mammalian cell systems, these toxins cause
mutagenic, oestrogenic and clastogenic effects by inhibiting the cell
proliferation. In spite of the fact that Alternaria toxins can originate in
almost entirely food and feed products and that they have the potency
to exhibit harmful effects on human and animal health [35]. Despite the
fact that, Alternaria toxins can originate in almost entirely food and feed
products and that they have the potency to exhibit the harmful effects
on human and animal health [36–38]. Right now, there are no precise
international regulations or any national regulation in the world for any
of the Alternaria toxins in food and feed, with the exception of Bavarian
health and food safety authority. This authority decided the TeA con-
tent to limit (500 μg/kg) in sorghum/millet-based infant food [38,39].
Fig. 1 and Table 1 showed different HSTs related pathotypes, caused
diseases, genes, chemical characteristics and their target site in the host
plants, and the chemical structures of these different HSTs provided in
Fig. 2.
It is well-known that species in the Alternaria are versatile pathogens

contaminating various crop plants, post-harvest fruits, refrigerated food
products, as well as affecting different developmental stages of plants.
The toxicity of Alternaria toxins has not hitherto been elucidated in
detail for all substances and is still a matter of ongoing research.
Therefore, this article provides knowledge about the toxicity of
Alternaria toxins which will be helpful to the researchers and scientists
who will work in this specific field. In this article, we review the most
important Alternaria mycotoxins, their target sites in plant organelles,
and the harmful effects of these toxins cause diseases on plants.

2. Host-specific (HSTs) toxins of Alternaria species

2.1. ACR-toxin

Leaf spot on rough lemon is caused by ACR-toxin. ACR-toxin I
contain a dihydropyrone ring with C19 polyalcohol and toxicity of ACR
is depended on pyrone ring with different polyalcohol side chain length
and weaker toxicity [43,47,61,62]. Kohmoto et al. [63] have reported
that ACR-toxin first targets the mitochondria and then other cell or-
ganelles. Using electron microscopy they were able to show that ACR-
toxin enters the mitochondria through mitochondrial membrane pore
[63]. ACR-toxin interrupts oxidative phosphorylation of mitochondria.
The ACR-toxin has a similar mode of action to 2,4-dinitrophenol or
carbonyl cyanide m-chlorophenyl that uncouple oxidative phosphor-
ylation from ATP synthesis that disturbs membrane potential, which
leads to NAD+ leakage from tricarboxylic cycle from susceptible variety
lemon mitochondria [48]. A similar type of response to ACR-toxin as
Cochliobolus heterostrophus race produced Texas cytoplasm male-sterile
(T-cms) maize both will be affected the cell organelle mitochondria.
Structurally, the similarities of ACR and T-toxin have polyols moieties
and long-chain fatty acid polyketides [43,47,61]. Both toxins have host-
specific toxins such as ACR for rough lemon, while T-toxins for C.
heterostrophus. T-toxins have a protective effect on leaves, while ACR
has a toxic effect on leaves, but ACR-toxin has no effect on T-cms maize
[48]. A similar response to ACR-toxin and C. heterostrophus produced by
T races Texas cytoplasm male-sterile (T-cms) maize both will be af-
fected the cell organelle mitochondria by uncoupling of oxidative
phosphorylation, stimulate NADH respiration, inhibition of respiration
states, leakage of calcium, NAD+, and mitochondrial swelling.

ACRT gene responsible for the biosynthesis of ACR-toxins, ACRTS1,
and ACRTS2 genes encode a putative hydroxylase and PKS responsible
for rough lemon pathogenesis confirmed through artificial technology
of gene disruption and gene silencing methods [46]. ACRTS1 and
ACRTS2 genes encode a putative hydroxylase and PKS, responsible for
rough lemon pathogenesis. These genes have multiple copies on the
same chromosome with 1.2–1.5 Mb size [64]. ACR-toxin has been
isolated from the mitochondrial genome of rough lemon [48,65,66].
ACRS gene has responsible for ACR-toxin showed sensitivity to Es-
cherichia coli, which was located in the group II intron of the mi-
tochondrial tRNA-Ala due to alternative splicing of mitochondrial DNA

Fig. 1. Schematic presentation of target sites of HSTs produced by Alternaria species. Ch: chloroplast, ER: endoplasmic reticulum, GA: Golgi apparatus, Mt: mi-
tochondrion, Nu: nucleus, Pd: plasmodesma, Pm: plasma membrane, Vc: vacuole.
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sequence. This toxin is present in both toxin-sensitive and insensitive
ACRS genes of mitochondria. ACRS genes have a shorter transcript for
the mitochondrial sensitive plant. Due to the differential post-tran-
scriptional processing of mitochondrial genes specificity of toxins is
changed ACR-toxin specificity towards A. alternata on rough lemon
pathotype and Citrus jambhiri [65,66].
ACR toxin causes pores forming on mitochondrial membrane

proofed by several deletion experiments. ACRS transcripts having pro-
tein coding area responsible for the pore-forming transmembrane pro-
tein that is 171 bp for ACR-toxin, translated to 6683 kDa molecular
weight product [65,66]. Three proteins with a molecular weight of 14,
21 and 28 kDa from mitochondria of rough lemon, during SDS-PAGE,
proteins are not fully dissociated by immunoblotting maybe the dimer,
trimer, and tetramer were identified by using ACRS antibodies [65,66].

2.2. ACR-toxin target site

Mitochondria are the primary target site for the action of ACR-toxin.
When susceptible host treated with ACR toxins observed with swelled
mitochondria characterized by partial destruction of the cristae, the
disappearance of dense granules and mitochondrial membrane shows
bulge formation [63]. ACR toxins also lead to uncoupling of the oxi-
dative phosphorylation from the mitochondrial electron transport
chains, loss of membrane potential, and most remarkably, the leakage
of NAD+ from the Krebs cycle [48], resultant pores formation on the
mitochondrial membranes [22]. Not remarkably, the gene in rough
lemon (ACRS) which provides susceptibility to the ACR-toxin was ob-
served to be in the mitochondrial genome. Transformation of E. coli
with ACRS reduces them sensitive to ACR- toxin similarly. Although,
the ACR toxin in plants are not determined any affects in the presence
or absence of ACRS transcripts, but rather by a certain post-transcrip-
tion alterations [65,66].

2.3. AAL-toxin

AAL-toxin was first isolated by Bottini and Gilchrist [40] from a
tomato plant. They are chemically determined by propane 1,2,3-tri-
carboxylic acid (PTCA) which is the esterified form of 1-amino-11,15-
dimethylheptadeca-2,4,5,13,14-pentol. There are five types of AAL
toxins namely sphingosine (TA), phytosphingosine (TB), sphinganine
(TC), tetra-acetyl-phytosphingosine N-lignoceroyl-d-erythro-sphingo-
sine (TD), and L-sphinganine, each consisting of two isomers [4,67].
AAL toxins of TA and TB are structurally isoforms but differ at hydroxyl
group at C4 and C5. TB is the N-acetylated form of TD, while TC is the
N-acetylated form of TE [67]. TA and TB have considered as highly
toxic activities as compared to TC and TD, therefore these two toxins
are taken into consideration and referred to as AAL toxin. Among all
AAL-toxins, TA-toxin has high toxic activity is more produced with the
molecular weight of 522 KB [68].
AAL-toxin is structurally analogue of sphinganine, and competent to

prevent the enzyme sphingosine-N-acyltransferase (ceramide synthase,
EC 2.3.1.24) in the endoplasmic reticulum, and therefore disrupt the
breakdown of ceramide-containing lipids [69]. In the case of plants and
animals, ceramide act as bioactive compounds which participate in
numerous signaling processes as second messengers and thus regulate
cell fate [70,71]. AAL-toxin treated tomato plant causes a hypersensi-
tive response (HR) and involves ethylene, calcium, and MAP kinases
(EC 2.7.11.24) [72–74]. Other signaling molecules taking part in the
programmed cell death (PCD) cascade of reactions is nitric oxide (NO)
and reactive oxygen species (ROS; especially H2O2; [75]) (Fig. 3). DNA
laddering was observed on PCD and enhanced by Ca2+. Structure of
AAL-toxins resemblance to the structurally related fumonisins induces
an increase in the concentration of phytosphingonine and sphinganine
in resistant tomato genotypes as well, but in this case, the effect is much
less pronounced, indicate a higher in vivo inhibition of ceramide syn-
thase in the sensitive plants [42]. The mechanism of AAL-toxin activity

Fig. 2. Chemical structures of host-specific toxins produced by various species of Alternaria (Modified of [4]).
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was that supplementing susceptible tomato leaves with ceramide that
inhibit the AAL-toxin mediated PCD, the observation that ceramide
balance is important for the onset of PCD [76]. However, AAL-toxin
resistance tomato is conferred by the gene Alternaria stem canker re-
sistance gene 1 (Asc1), that is a homologue of the yeast longevity as-
surance gene 1 (Lag1), which encoding ceramide synthase (CerS) iso-
enzyme [76]. Lag1 homologues determine the response to AAL-toxin
and other SAMs also in other plant species, for example, the gene
lag1 homologue 2 (loh2) in Arabidopsis thaliana [75].
AAL-toxin shows more host-specificity which causes necrosis and

stem canker on tomato plant of the asc/asc genotype [77]. At the point
when imposed by AAL-toxin, vulnerable tomato tissues aggregate
phytosphingonine and sphinganine [42], although multifaceted sphin-
golipids compounds are depleted simultaneously [78]. Effect of AAL-
toxin stops ceramide synthesis by inhibiting key enzyme sphinganine N-
acyltransferase (acyl-CoA-dependent ceramide synthase) [79,80]. Pyr-
imidine metabolism is disrupted by AAL-toxin effects on enzyme ac-
tivity aspartate carbamoyltransferase (ACTase). Two amines ethanola-
mine (EA), phosphoethanolamine (PEA) are accumulated after
treatment with AAL-toxins with tomato susceptible plant. In the bio-
synthetic pathways, EA and PEA are the primary and secondary meta-
bolite intermediates.

2.4. AAL-toxin target site

AAL-toxin affects organelles like mitochondria and endoplasmic
reticulum; moreover, their accurate target site is still unknown. ALT1
gene is responsible for AAL-toxin biosynthesis that encodes a polyketide
synthase gene (PKS) and other related toxins such as ACT-toxin, ACTG-
toxin, ACR-toxin, AM-toxin, AS-toxin, tentoxin, AF-toxin, AM-toxin,
AK-toxin, brefeldin, maculosin, and destruxin B which accumulation
occur in leaves after treatment with AAL-toxin. It has been reported that
homozygous resistant and homozygous susceptible genotype that is
cell-free ACTase of host-specific and non-host-specific resource com-
municate inconsistency of AAL-toxin sensitivity. Usually, AAL-toxins
affect the mitochondria but their accurate target site is still doubtful.
The potential biosynthetic pathway of AAL-toxin is under exploration
as the primary and secondary intermediary metabolites of biosynthetic
pathways of EA and PEA [4].
The induced PCD was occupied by DNA laddering, chromatin

condensation, cell shrinkage, TUNEL-positive cells, and the develop-
ment of apoptotic-like bodies [26]. Due to AAL-toxin mediated PCD
includes cell cycle disruption and ceramide signaling [17]. AAL toxins
induce physiological and development effects of necrotic lesions on
fruits and leaves, inhibition of in vitro development of calli, pollen,
roots, and shoots, and also decreases the viability of protoplasts and
suspension cells [81]. AAL-toxin disrupting sphingolipid metabolism
which promotes programmed cell death in tomato leaves promoted by
ethylene and jasmonic acid and Asc gene is responsible for sphingolipid
biosynthesis [82].
According to Zhang et al. [82], jasmonic acid and ethylene-depen-

dent pathways triggered by programmed cell death by AAL-toxin via
sphingolipid metabolism disruption in the tomato plant, whereas ac-
cording to Akamatsu et al. [83] AAL-toxin lacking REMI mutants are
non-pathogenic in the tomato delicate plants. Insertion study of toxin-
deficient isolates proficient to the identification of the ALT1 gene en-
coding a group I polyketide synthase that is intricate in AAL- toxin
synthesis [83,84]. ALT1 function was affirmed by hereditary com-
plementation of Fusarium verticillioides and Gibberella moniliforme in
which FUM1 mutant damaged in fumonisin production [85]. Despite
the fact that AAL- toxin and fumonisins share fundamental features and
therefore show comparable physiological impacts, Fum1-inferred fu-
monisin delivered by F. verticillioides was appeared to be dispensable for
maize disease infection [86]. Remarkably, Gibberella moniliforme, the
causal specialist of maize seedling blight produces mycotoxin like fu-
monisin B1 belongs to the group of polyketide produces by Fusarium
species. Fumonisin B1 toxin triggered programmed cell death with
disruption of the vacuolar membrane by lesion formation [87]. Fumo-
nisin-unaffected maize plants are not resistant to infection of disease
albeit systemic colonization of seedlings by G. moniliforme is decreased
[88]. As ceramides are by all account not the only crucial constituents
of cellular membranes yet, in addition, intracellular signaling mole-
cules, signal transduction, and regulatory processes may likewise be
influenced.
AAL-toxin is effective as herbicide from a compound of A. alternata

(Fr.) at very small concentrations against a wide range of leaf plants
(e.g. jimsonweed, prickly sida, and black nightshade). However, in the
case of monocotyledonous crops, for example, maize, wheat, and some
varieties of tomato are tolerant to AAL-toxin [89]. The effect of AAL-
toxin on duckweed (Lemna pausicostata L.) illustrated cellular

Fig. 3. Schematic presentation of sphingolipids
metabolism pathways and consequences of S1P
lyase deficiency, and also presents the site of
AAL-toxin/fumonisin inhibition. S1P lyase
paucity leads to enhance of cellular S1P and
sphingosine (to a smaller extent). Thus, de novo
sphingolipid biosynthesis (blue arrows) is de-
creased may be up-regulation of Orm1/3 ex-
pression. At the same time, the recycling
pathway (gray arrows) is elevated. SMS:
sphingomyelin synthases, SMase: sphingomye-
linases, CS: ceramide synthases, CDase: cer-
amidases, SPP: S1P phosphatase, SK: sphingo-
sine kinases.
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electrolyte leakage and loss of chlorophyll content at the concentration
of 20–40 nM after 72 h treatment [90]. Similar types of results were
found on the susceptible variety of tomato. The first symptom causes at
the ultra-structural plane with the distraction of the plasma membrane,
fast cellular leakage of electrolytes and collapse at the cellular level.
Toxin effects are become visible and associated with plasma membrane
dysfunction, and these effects are not dependent on the light. Fumo-
nisins and sphingolipid bases like phytosphingosine are less potent but
cause similar effects (about 10-fold of fumonisins bases, and about 100-
fold of sphingolipid bases) [90]. AAL-toxin and fumonisin B induced
interruption of sphingolipid metabolism cause phytotoxic injury and
cell death on the susceptible varieties tomatoes and duckweeds.

2.5. AM-toxin

AM-toxin is also a host-specific phytotoxin causing leaf spot on
Apple is known as Alternaria mali. There are three host-specific AM-
toxins; AM-toxin I, AM-toxin II, and AM-toxin III. AM-toxin I having
cyclic tetradepsipeptide containing an L-2-hydroxy-3-methylbutanoic
acid (L-Hmb) residue, along with two unusual amino acids [α, β-de-
hydroalanine (ΔAla) and L-2-amino-5-(p-methoxyphenyl)pentanoic acid
(L-Amp)] [91,92]. AM-toxin I is comprised of four structural chemical
compounds, such as α-amino acrylic acid, L-alanine, L-α-hydroxy-iso-
valeric acid, and L-α-amino-δ-(p-methoxyphenyl)-valeric acid. AM-
toxin II and III, L-Amp of AM-toxin I is replaced by L-2-amino-5-phe-
nylpentanoic acid (L-App) and L-2-amino-5-(p-hydroxyphenyl) penta-
noic acid (L-Ahp), respectively. The target site of AM-toxins on apple
susceptible cell on chloroplast by reduces chlorophyll content by af-
fecting grana lamella and chloroplast disorganization and inhibiting
photosynthesis and another organelle is the plasma membrane [93,94].
Cyclic peptides of AM-toxin are produced by non-ribosomal pathways
by vast multifunctional enzymes called cyclic peptide synthetases
(CPSs) pathway having a conserved area [95]. AMT1 gene responsible
for AM toxin synthesis that encodes 479 kDa nonribosomal peptide
synthetase (NRPS) consists of four catalytic domains responsible for
activation of each residue in AM-toxin. Genes responsible for AM toxin
synthesis are AMT2, AMT3, and AMT4 [96]. Strain IFO8984 chromo-
some contains 1.3 Mb with multiple sets of AMT clusters [97], more
than 10 putative clusters present on the same chromosome, AMT region
is enriched in transposons fossils resembling the strawberry pathotype
[97].

2.6. AM-toxin target site

The hitherto described Alternaria EDA-derivative HSTs, the depsi-
peptide AM-toxin has two target locations: the chloroplasts and the
plasma membrane. The properties on the plasma layer are reminiscent
of those influenced by the EDA HSTs. Moreover, AM-toxins are cate-
gorized by their extremely detrimental subtype; the AM-toxin has a
place with the classification of a considerably-destructive subtype [98].
At the lower content of AM-toxins causes the polysaccharide exudates
and membrane fragments. AM-toxins triggered decrease polysaccharide
inclusion due to decreased activity of the Golgi complex, despite the
similar mechanism of modifying the membrane. The AM-toxin induces
disorganization of the chloroplast and ultra-structural changes due to
the interference of the grana lamellae, which leads to the emergence of
membrane fragments and vesicles in the stroma. AM toxin causes
chloroplast disorder is well-matched with a decrease in the chlorophyll
substance and restraint of photosynthetic CO2 absorption action on
toxin treated susceptible leaves [99].

2.7. AT-toxin

AT-toxin is produced by tobacco pathotype, the causal fungus of
brown spot disease in the tobacco plants. AT-toxin is host-specific and
the target to mitochondria on susceptible cultivar Burley 21, causing

mitochondrial bulge formation, and mitochondrial membrane at-
tenuation [98,100]. AT-toxins influence the physiology of plant causing
necrotic, chlorotic halo zone formation on leaves of the susceptible
plant. Experimental work was done on the tobacco leaves that affect the
plant physiology by increasing stress metabolites such as hydrogen
peroxide (H2O2), proline content, and ROS level. One of the applica-
tions of AT-toxin is that it suppresses the programmed cell death when
applied to leaves having some inhibiting compounds like caspase spe-
cific peptide inhibitors, serine protease, nuclear lamina, poly (ADP ri-
bose) polymerase, and topoisomerase I [101].

2.8. AT-toxin target site

The HST of Alternaria longipes effects the mitochondrial ultra-
structural modification has a similar effect as ACR toxins [98,100,101].
AT-toxin application leads to increases H2O2 accumulation as well as an
increase in the quantities of stress-related compounds like mal-
ondialdehyde and free proline, and also protease activity was proved by
molecular level [102]. In addition, the appearance of lesions and stress
markers generation can be inhibited by pre-infiltration of the suscep-
tible tobacco tissues with caspase-specific peptide inhibitors. These
observations show that ROS-homeostasis and caspase-like proteases
have a crucial role in the PCD process mediated by the AT-toxin [102].

2.9. AF-toxin

AF-toxin cause’s black spot on strawberry is host-specific toxin
produced by A. alternata and encoded by AFT gene. AF-toxin showed
highly susceptible to strawberry roots than leaves of the susceptible
plant [103]. Three molecular species of AF-toxins has been reported as
AF-toxin I, II, and III. AF-toxin I also showed more toxicity towards pear
and strawberry [26,104]. AF toxin III is highly toxic towards strawberry
and less toxic to pear while AF-toxin II is toxic to pears [105]. Deri-
vatives of AF-toxin I and III are 2,3-dihydroxy-isovaleric acid and 2-
hydroxy isovaleric acid both are valine derivatives while AF-toxin II has
2-hydroxy valeric acid which is a derivative of isoleucine [26]. Hatta
et al. [106] determined the structure of AF-toxin which depends on the
basis of 1.0 Mb chromosomal strain of NAF8 and establish 2–7 copies of
20 AFT areas. AF-toxin biosynthesis gene AFT1, AFT2 isolated from the
NAF8 strain, there are 11 copies of AFT genes and 5 transposons like
sequence, TLS1-TLS5.

2.10. AF-toxin target site

AF-toxin primary target organelle is plasma membrane causing
membrane invaginations, vesiculation, fragmentation, and depolariza-
tion that leads to decreases in membrane potential gradients, and AFT
gene is responsible for AF-toxin biosynthesis. Conditionally dispensable
chromosome (CDCs) is encoding AFT genes. A few minutes of toxin
treatment with AF-toxin increases of K+ efflux on the plasma mem-
brane of susceptible cell compartments [41,98,105,107]. This toxins
effect polarization of the plasma membrane is a respiration-reliant
component of membrane potential. Only plasma membrane of a cell is
affected by AF-toxin but no further intracellular organelles affected. It
indirectly affects the plasma membrane H+-ATPase of the susceptible
plant [20,22]. After 1–3 h toxins treatment, the fusion of Golgi vesicles
causes the damage of membrane [98].

2.11. AK-toxin

Toxicity of AK-toxin formed through Japanese pear pathotype of A.
alternata causes the black spot on pear [8]. The Japanese pear patho-
type secretes two associated molecular classes, AK-toxins I and II, amid
toxin I being more abundant and biologically active species [47]. Both
toxins reveal toxicity only on susceptible pear cultivars [108]. AK-
toxins are the esters of 9,10-epoxy-8-hydroxy-9-methyl-decatrienoic
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acid (EDA) which are derivative of phenylalanine and hydroxyl dec-
artienoic acid. Based on restriction enzyme-mediated integration
(REMI), a transformation was benefited to isolate AK-toxin-minus mu-
tants (Liu et al., 2014). Genes responsible for AK toxins biosynthesis
(AKT1, AKT2, AKT3, AKT4, AKTR, and AKTS1) are essential for struc-
tural and functional analysis by cloning strategy [109].

AKTR transforms a putative transcription regulator having a zinc
binuclear cluster DNA-binding domain distinctive of the fungal Zn(II)
2Cys6 family of proteins [4,110]. The transcriptional factors with this
domain control various primary, secondary metabolism, and drug re-
sistance in fungi [58]. Imazaki et al. [111] described that the enzyme
responsible for AK-toxin biosynthesis consists of signal type 1 (PS1)-like
tripeptides, SKI, SKL, and PKL at the C-terminal ends that is responsible
for peroxisomal localization. Mutation of AaPEX6, which encodes a
peroxin protein responsible for peroxisomes biogenesis, in the Japanese
pear pathotype resulted in lack of functional peroxisomes and fully loss
of AK-toxin production and pathogenicity [111]. AK-toxin effects the
plant physiology by causing abscission of immature fruit and dis-
coloration on mature fruits leads to extensive fruit losses, affect young
leaves, brown spot develop on infected leaves. AK-toxin I and AK-toxin
II cause leave necrosis and rapid efflux of K+ from the plasma mem-
brane of the susceptible host [17,112].

2.12. Maculosin toxin

Maculosin [the diketopiperazine, cyclo (L-Pro-L-Tyr)] is a host-spe-
cific phytotoxin produced by A. alternata on spotted knapweed
(Centaurea maculosa) [52]. Its distinctive selectivity, apparent safety,
and simple structure make maculosin a perfect chemical principal for
developing an innocuous, safe and environmentally approachable anti-
knapweed herbicide [113]. After three-five days of treatment with A.
alternata, causes chlorotic spots emerging into black necrotic lesions on
the leaves of knapweed with the production of frequent, non-toxic di-
ketopiperazines, maculosin [cyclo (L-Pro-L-Tyr)] [52,98,114]. Several
cultivars of spotted knapweed significantly differ in their response to
maculosin which recommend the amendment of the toxin possibly oc-
curring to yield bio-inactive metabolites [115].
In the examining of diketopiperazines, it is clear that the mycotoxins

activity needed certain functional groups [52]. Maculosin is the most
vigorous mycotoxin containing a phenolic moiety [115]. Studies on
diketopiperazines including proline designated that L,L compounds re-
cognize an extended confirmation while the L,D diastereomers would
have a more folded conformation [53]. Stierle et al. [52] have isolated
several diketopiperazines from liquid cultures of A. alternata, the causal
agent of black leaf blight of spotted knapweed, Centaurea maculosa Lam.
The compounds were first applied to knapweed leaves and hypocotyls
that induced lesions at 10−3, l0-4, and 10-5 M. The compounds cyclo (-L-
Pro-L-Phe-) and cyclo (-L-Pro-D-Phe-), differed in phytotoxicity: the L,L
diastereomer influenced necrotic lesions on knapweed leaves at 10−3

M, but the L,D isomer was not vigorous, even at 10−3 M. Maculosin
(cyclo-Pro-Tyr) is an ideal prototype for creating a safe and environ-
mental friendly anti knapweed herbicide. To evaluate this possibility,
Bobylev et al. [113] synthesized and tested a series of 18 maculosin
analogs by the use of spray or brush application in the greenhouse
conditions on the entire knapweed plants. Interestingly, there were
many of the maculosin analogs which have substantial potential as
natural herbicides against spotted knapweed. One of the simplest
analog (cyclo-Pro-Phe) eradicated two-thirds of the spotted knapweed
at the concentration of 6× 10-2 mol/L within 15 days.

2.13. Destruxin-B

Destruxin was first isolated from Metarrhizium anisopliae [116].
Destruxin-B is a host-specific toxin produced by Alternaria brassicae
which causes gray leaf spot on brassica plants. Destruxin-B isolated by
spore germination fluids methods. Destruxins are hexadepsipeptides

hydroxyl acid composed of five amino acid residues with a molecular
weight of 593 kDa. Destruxin B is the vital phytotoxin formed by the
pathogen in liquid media, and the three additional phytotoxins,
homodestruxin B, destruxin B2, and desmethyldestruxin are formed in
much smaller amounts [51,117–119]. On the basis of different hydroxyl
acid, N-methylation, R-group of amino acid residue are S, R with hy-
droxyl acids. Destruxin A–E with same amino acid sequence but differ R
group of the hydroxyl acid residue. Destruxins, where the proline (Pro)
residue (n=3) is substituted with a pipecolic acid (Pip) residue (n=4)
was selected by the identical letters with the subscript 1, i.e. A1–E1,
although destruxins amid a valine (Val) residue (R0=CHMe2) as a
substitute of the isoleucine (Ile) residue (R0=CHMeCH2Me) were se-
lected with subscript 2, i.e. A2–E2 [120].
Dextruxin-toxin causes necrosis and chlorosis on the non-host-spe-

cific plant. Electron microscopy of healthy, chlorotic and necrotic
portions of Brassica campestris leaves naturally infected with A. brassicae
revealed considerable differences at ultrastructure level. The necrotic
lesions showed plasmolysis with total disruption of cell organelles. The
chlorotic lesions had normal plasma membrane but swollen mi-
tochondria with a reduced number of cristae and vesiculation of the
envelope. Chloroplasts showed degeneration of granal fretwork with an
increase in the number of plastoglobuli. Chlorotic lesions due to foliar
application of destruxin-B induced identical changes in leaves.

2.14. ABR-toxin

ABR-toxin is a host-specific toxin that is caused by A. brassicae with
a water soaked disease symptoms followed by chlorosis in Brassica
leaves [121]. The toxin in spore germination fluid (SGFs) collected after
inoculation of A. brassicae on host leaves was retained by ultrafiltration
with a 10 kDa cut off membrane and the activity was abolished by
temperature and proteinase K treatments, showing that dissimilar to
different toxins responded to be formed by A. brassicae [118,122]. For
purification of the toxin, ammonium sulfate fractionation and IEC were
effective stages for eliminating the yellow pigmentation and several
contaminating proteins deprived of any toxicity. ABR-toxin moderately
purified by HIC demonstrated a consistent band of 27.5 kDa molecular
weight recognized through SDS-PAGE electrophoresis and this band
was related to the toxicity on host plants. Ultimately, GFC and HPLC
affirmed that the 27.5 kDa protein was related to the toxicity. ABR-
toxin at concentrations of 0.5–1.0 μg/ml prompted water-soaked
symptoms subsequently chlorosis on Brassica leaves, although non-host
leaves were not affected uniform at 50 μg/ml indicating host-specific
toxicity. Consequently, ABR-toxin does not only induce the preliminary
colonization in host plants, but also appears to be involved in disease
enlargement [123].
Till date, the complete amino acid sequence of ABR-toxin was not

determined so far; therefore the N-terminal 21 amino acid residues
show vast similarity with trypsin precursor of F. oxysporum in the se-
quence database search. Thus, ABR-toxin encoded gene cloning is
currently being endeavored [21,110,118,123,124].

2.15. AB-toxin

AB-toxin is host-specific toxin responsible for black spot disease on
Brassica plants known as Alternaria brassicicola [4,124]. The molecular
weight of AB toxin is estimated to be 35 kDa by SDS-polyacrlamide gel
electrophoresis and most of the AB-toxin is produced by SGFs [21].
Toxin purified by ion exchange chromatography and gel filtration
HPLC. Oka et al. [125] described that production of AB-toxin by pro-
pagating spores of A. brassicicola is prompted by recognition of host-
derivative oligosaccharide of 1.3 kDa. The similar oligosaccharide re-
sulting from host leaves may be convoluted in the production of ABR-
toxin by germinating spores of A. brassicae. AB-toxin activity was heat
labile and was also lost after treatment with proteinase K [124].
In Brassica plants, both the pathogens (A. brassicae and A.
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brassicicola) have pathogenic with the similar type of host range, and
ABR-toxin and AB-toxin have equivalent host-specific activity, but vary
in molecular weight. The mode of action of ABR-toxin and AB-toxin on
plants is not known yet. Therefore, in future research, it will be sig-
nificant to study the mode of action of AB-toxin and ABR-toxin on host
plants.

2.16. AS-toxin

Two phytotoxins are isolated from A. alternata culture filtrates
which pathogenic to sunflower. One was recognized by chemical and
physicochemical strategies as the tetrapeptide Ser-Val-Gly-Glu
[4,55,56]. This peptide name is AS-I toxin. This toxin causes chlorosis
or necrosis on leaves and inhibits seed germination. Currently, there is
very less information available for this toxin. So, in future research,
there will be scope for researchers to study this particular toxin and
their mode of action.

2.17. AP-toxin

AP-toxin is also host-specific toxin which is produced by Alternaria
panax, the causal agent of Alternaria blight of American ginseng [21].
The molecular weight of AP-toxin is also 35 kDa, which is similar to the
molecular weight of AB-toxin. AP-toxin does not persuade any kind of
symptoms on the hosts of A. brassicicola. AP-toxin produced by A. panax
is dissimilar from the AB-toxin produced by A. brassicicola [21].

3. Mode of action of host-specific toxins (HSTs)

Albeit, the site of action of different Alternaria toxins differs, but the
ultimate end of the toxins is to trigger the host cell death.AK-, AF-, and
ACT-toxins perform to have an initial effect on the plasma membranes
of susceptible cells and cause permeabilization [20,126,127]. An ex-
pansion in electrolyte damage from tissues and invagination of plasma
membranes is a typical trademark of toxin action. These progressions
are apparent within 1 h after exposure to the toxin. AM-toxin exposed

the harmful effects not only the plasma membrane but also on chlor-
oplasts, whereas ACT-and AT-toxin were found to affect mitochondria
[20]. Besides, AK- and AF-toxins stimulate a depolarization of mem-
brane electropotential in 5–10min [128,129].
ACR-toxin initiates swelling and other morphological alterations of

mitochondria and expands NADH oxidation, which is monitored by
plasma membrane ailments prompting electrolyte leakage/discharge
and necrosis [48]. For most of these toxins, still, their action mechanism
is known only for barely. On the other hand, Park et al. [130] predicted
the ultrastructural destinations for electrolyte leakage in susceptible
cells treated with AK- and AF-toxins by analytical electron microscopy
and ion-precipitation approach. Precipitation of magnesium and so-
dium ions discharged from plasma membranes performs in cell walls
adjacent plasmodesmata within 5min, and soon after, the plasma
membranes move toward becoming invaginated at both ends of the
plasmodesmata, showing that the destinations of action for these toxins
might be situated on the plasma membrane close to plasmodesmata.
The association between AK-toxin action and stimulation of fungal

dissemination/penetration and colonization has been incompletely
characterized by considering at balancing impacts of different treat-
ments of toxin and fungal infection. SH-alkylating reagents had a
stamped defensive impact on AK-toxin influenced electrolyte damage
and veinal necrosis only when the leaves were treated hitherto exposure
to the toxin. AK-toxin activated electrolyte damage also was suppressed
by previous and concurrent treatments with nitrogen (N2) gas. Pear
leaves pretreated with inhibitors of mRNA synthesis or protein synth-
eses were shielded from toxin-induced decay/necrosis but not from
electrolyte damage. The defensive impact of the inhibitors on necrosis
was distinguishable even when they were controlled 5 h after toxin
exposure. Treatment with copper- and iron-chelating mediators had the
same defensive impact as that of mRNA synthesis and protein synthesis
inhibitors, however, the effect was distinguishable even 10 h after toxin
introduction. The chemically treated leaves were immunized with the
pathogen and fungal actions on the leaves were examined. SH-reagents
vitally decreased the fungal infection and necrotic lesions, however
inhibitors of mRNA synthesis and protein synthesis and copper- and

Fig. 4. Summary through the diagrammatic presentation of the mode of actions of AK-, ACR- and AM-toxins in susceptible plants.
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iron-chelating operators did not ensure against fungal infection.
Based on data information, a hypothetical scheme for the me-

chanism of AK-poison action in susceptible pear is revealed in Fig. 4. In
this way, AK-toxin has pleiotropic effects on susceptible cells after a
specific response at the site on the plasma membrane, and dysfunction
of plasma membrane is a vital event for induction of accessibility.
Moreover, a deprived knowledge of the mechanism of action of various
host-specific toxins, the principle of host-specificity is understood for
some of them. For destruxin B, a host-specific phytotoxin formed by
Alternaria brassicae [131–133] the mechanism of action for host-speci-
ficity was recently discovered. The specific phytotoxicity gives off an
impression of being because of quick and effective detoxification, by
successive hydroxylation and glycosylation responses, in tissues of re-
sistant species. These responses were additionally found to occur in
susceptible species, however, at a deliberate rate, providing clarifica-
tion to specific toxicity [134]. Likewise, toxin detoxification has been
revealed to regulate resistance against the host-specific toxin-producing
fungus Cochliobolus carbonum [135].
For ACR-toxin, specificity appears to be controlled by differential

post-transcriptional processing of a mitochondrial gene. This gene is
available in the mitochondrial DNA of toxin-sensitive along with re-
sistance species, however, the transcript of the gene is shorter in re-
sistant than in sensitive mitochondria. Finally, an oligomeric protein is
delivered in toxin-sensitive mitochondria, while the transcript is not
transformed in resistant mitochondria. Despite the fact that the gene is
apparent to encode a mitochondrial membrane protein, no function has
been assigned so far [65,66].

4. Toxicity of Alternaria HSTs on animals

Toxicological data are inadequate to the above-mentioned major
Alternaria toxins, and even these data are insufficient with virtuous
bioavailability and long-term clinical studies [136]. Even though, there
is little knowledge hitherto about their chemical, physical properties,
and toxicological mechanisms, bioavailability, and stability in the di-
gestive tract. These toxins expose detrimental effects in animals, com-
prising fetotoxicity, cytotoxicity, and teratogenicity [137,138]. These
effects have been related to a range of pathologies from hematological
diseases to esophageal cancer. Moreover, these effects may be muta-
genic, estrogenic and clastogenic, in microbial and mammalian cell
organisms and tumorigenic in rats [29,36,37,139,140].
The benzopyrone (AOH, AME, ALT, and AS toxins) is the most

studied group amid all the Alternaria toxins. Although, this group
toxicity is not completely understood and differs from one cell organelle
to another, but AOH and AME toxicity have been recognized in several
in vitro and in vivo systems [141,142]. AOH has estrogenic potential and
inhibits cell proliferation [143], also AOH induces phenotypic changes
in mice macrophages, which could not be directly related to early AOH-
induced ROS production, cell cycle arrest or autophagy as seen as a
consequence of AOH-induced double-stranded DNA breaks [144]. AME
and AOH were not very extremely toxic, but they do exert genotoxic,
mutagenic, carcinogenic, and cytotoxic in mammalian and microbial
cell culture. Furthermore, AOH and AME were competent to induce
gene mutations and DNA strand disruption in cultured human and
animal cells [145,146]. These toxins also inhibited the activity of
human topoisomerases by disrupting the stability of topoisomerase II-
DNA-intermediates and DNA integrity by variation of the redox balance
in human colon carcinoma cells [147].
The perylenquinone derivatives [ATX I, ATX II, ATX III,

Alterperylenol (ALTCH; synonym Alteichin), and stemphyltoxins (STE)]
are measured to be very dangerous because of their mutagenic prop-
erties [148]. Because of the absence of existing position complexes, in
specific for ATXs, analytical studies persist less common [149]. Re-
cently, ATXs have been reported to be extremely active mutagens and
more severely toxic to mice and cause DNA strand disruption. In recent
times, more genotoxic effectiveness of ATX II in both mammalian and

human cells was confirmed, and it was pronounced as the furthermost
effective substance within the ATX group, accomplished of different
mechanisms of action [148]. Furthermore, data regarding the funda-
mental modes of action are still inadequate [147].

Alternaria alternata f. sp. lycopersici toxins (AALs) expose commonly
phytotoxic effects but have been shown to interrupt the sphingolipid
metabolism in an equivalent way to fumonisins, which have been as-
sociated with esophageal cancer and other animal diseases [42,150].
Altenusin (ALT) is a biphenyl derivative having antioxidative properties
and capability to prevent several enzymes, for instance, sphingomye-
linase, HIV-1 integrase, myosin light chain kinase, acetylcholinesterase,
and cFMS kinase, trypanothione reductase, and pp60c-SRc kinase in the
small micromole concentration range, and it can support as a che-
motherapeutic agent to treat leishmaniasis and trypanosomiasis
[151,152]. The biphenyl elementary skeleton of ALT comprising a
salicylic moiety and a catechol moiety may possibly be the important
part because of its interesting azole-synergistic activity.
The cyclic tetrapeptide tentoxin (TEN) is one of the most important

Alternaria toxins formed, accompanied by dihydrotentoxin (DH-TEN)
and isotentoxin (iso-TEN). Their structures fluctuate at the unsaturated
bond of the N-methyldehydrophenylalanine moiety, which is hydro-
genated into a single bond in DH-TEN and E configured in iso-TEN.
Tentoxin (TEN) and their derivatives compound are considered to be
phytotoxins, but TEN existences are the most effective, preventing
photophosphorylation and persuading chlorosis. Nevertheless, no tox-
icological data are existing for mammals, and the data on the occur-
rence of this toxin in food and feed are limited also [149]. In vitro
studies have revealed that AOH and AME were eagerly changed to
glucuronides upon development with hepatic and intestinal micro-
somes from humans, rats, or pigs in the occurrence of UDP-glucur-
onosyltransferases (UGT).

5. Role of reactive oxygen species (ROS) during plant-pathogen
interaction

In plant, under normal physiological process, ROS are produced
through the process of molecular oxygen assimilation and under stress
condition, rigorous ROS production is done. ROS molecules have a chief
role in plant physiological activity like plant growth development and
oxidative burst have a direct effect on pathogens or defensive activity
[153].
ROS could directly kill the pathogen, in the form more reactive

species like hydroxyl radicals, MDA and H2O2 in cell apoplast produced
in response to pathogens. Various enzymes take part in apoplastic ROS
production such as plasma membrane NADPH oxidase and cell wall
peroxidase are main biochemical sources [154]. ROS produced under
biotic stress condition have a very deleterious effect on plant cell
components inside them such as protein, lipids, DNA which ultimately
leads to plant cell death. While pathogen recognition occurs at apoplast,
leads to primary oxidative burst, simultaneously ROS production also
takes place in other cell organelles like chloroplast and mitochondria.
Through activation of SIPK/Ntf4/WIPK cascade by pathogens, chlor-
oplast ROS production unregulated, which plays a significant role in
signaling or HR-mediated cell death in plants [155]. In plant cell,
chloroplast oxidative burst, NADPH oxidase burst and mitochondrial
ROS generation promote cellular apoptosis process.
For normal cell functioning, a balance between ROS production and

elimination is needed. Plants have the ability to detoxify these ROS, by
producing differential antioxidative enzymes mediated by SA
[156–158]. Developed effective mechanisms have two components (i)
enzymatic such as superoxide dismutase (SOD), guaiacol peroxidase
(GPX), Catalase (CAT), glutathione reductase (GR), ascorbate perox-
idase (APX), monodehydroascorbate reductase (MDHAR), and dehy-
droascorbate reductase (DHAR); (ii) non-enzymatic antioxidants like
reduced glutathione (GSH), ascorbic acid (AA), α-tocopherol, car-
otenoids, flavonoids, and the osmolyte proline for scavenging pathogen
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attack [133,159–162].
In regular metabolism, plant cells produce detrimental ROS mole-

cules such as H2O2, singlet oxygen (1O2), the superoxide anion (O2˙ˉ)
and the hydroxyl radical (˙OH) as by-products. ROS can be performed as
upstream and/or downstream of many signaling cascades and the de-
gree of accumulation determinates their function into the cell because
they might take action as essential signal transduction molecules (at
low levels) or as toxic molecules (at high levels) with strong oxidant
power [108,163]. Fungal pathogens are exposed to the oxidative stress
generated by ROS and evolved numerous traditions to scavenge ROS
using small molecules (ascorbic acid, glutathione, flavonoids, alkaloids,
and carotenoids) that will be oxidized by ROS, in addition to detox-
ifying enzymes (catalase, peroxidase, superoxide dismutase, and per-
oxiredoxins). To evaluate the importance of ROS for plant defenses is to
impede with the mechanisms deployed by pathogens that defend them
against ROS, but it can also be sensed by fungal pathogens and function
as developmental signals for the differentiation of infection structures
[164–167].
The ROS accumulation during avirulent pathogenesis precedes the

HR and cell death that frequently come with successful pathogen re-
cognition leading to incompatible interaction [168]. During plant-pa-
thogen interaction, ROS accumulation has been anticipated as initial
procedures influenced the growth of the pathogen. ROS have been
proposed several significant roles such as antimicrobial molecules,
plant cell wall cross-linkers blocks pathogen entry that acts as a local
and systemic secondary messengers to activate additional immune re-
sponses, like stomatal closure or gene expression [169–175]. Besides of
ROS accumulation, Ca+2 also play a vital role as a secondary messenger
during several biotic and abiotic stress conditions. While, ROS and
Ca+2 are co-produced and co-regulate each other, the analysis of the
regulation of these pathways is complex [176–179]. It is critical to stain
that the ROS accumulation into the cell as detrimental, defensive/
protective or signaling aspects depends on the sophisticated stability
between ROS generator/scavenger systems at the appropriate position
(Fig. 5).

6. Conclusion

Alternaria toxins are well recognized as a vital determinant of pa-
thogenicity in plants. Host-specific toxins of various Alternaria species
contribute a crucial role in pathogenesis and possibly will be applied as
a discriminating agent in in vitro selection at the cellular stage for dis-
ease resistance. The function of a toxin as a disease establishment is
confirmed by the degree of the toxin in infected plants and the com-
petency of the toxin alone to elicit at least part of the symptoms of the
disease. In this article, we have been studied various host-specific my-
cotoxins produced by Alternaria, chemical structure of HSTs their che-
mical property, host plant, HSTs biosynthetic genes, target sites orga-
nelle in plant and mode of action of HSTs. With widespread occurrence
of Alternariamycotoxins on crop plants and their consumptions through
various animals and human being due to its highly toxic effects on
plants and economic loss, more toxicological studies are needed. This
review article will provide an idea to understand the process of disease
development during exposure of pathogen or their toxins.

Future prospects

Alternaria alternata is basically a cosmopolitan, saprophytic fungus
which directly invades epidermal cell due to its pathogenicity.
Therefore, the evolution of their pathogenicity in host plant pathogenic
fungi is an important case for studying. A. alternata isolates infect host
plants via directly penetrating fungal hyphae that form small infection
peg grows that enters the host sensitive plant. Alternaria toxins are
chemically similar to compounds that have biochemical effects as var-
ious cell organelles like, membrane leakage, inhibit protein synthesis,
disrupt photo-phosphorylation, inhibit cell divisions, hormonal im-
balance, and interferes plant metabolites activity. Definitely, in the
future, the Alternaria toxins will be needed to explore for comprehen-
sive analysis of their results, and it will expect, the significant analysis
of the role of Alternaria toxins and their mode of action during patho-
genesis against the plants. The key questions which will need to be
answered in the near future are whether these toxins may be used as
probes for rapid screening of plant clones or the progeny from crosses

Fig. 5. Role of ROS when pathogen attack situation (↑ represents
up-regulation of ROS production, whereas represents down-reg-
ulation of ROS scavenging mechanisms). ROS play multifaceted
action. The most important ROS-induced mechanisms during
plant-pathogen interaction are peroxidase- and ROS-induced
cross-linking of cell wall components which play an important
role in the defense mechanisms against the pathogens.
Furthermore, a defence-induced PCD, known as HR is stimulated
and organized by the intricate crosstalk between ROS and RNS. In
conclusion, ROS can be transform several other multiple signaling
pathways and cell to cell reactions persuaded by various biotic
and abiotic stimuli, by the oxidation-dependent regulation of
transcription factors and by the co-induction and co-regulation of
the secondary messenger Ca2+. PCD: programmed cell death,
ROS: reactive oxygen species, RNS: reactive nitrogen species,
H2O2: hydrogen peroxide, O2‾: superoxide radicals, HR: hy-
persensitive response.
*Note: For more information about the role ROS see review, Apel
and Hirt [180].
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for the development of disease resistant varieties of plants. These toxins
may act as antibiotic and could be involved in bio-control of noxious
pathogens. It will be possible in the near future that these toxins may be
used to develop disease free plants for future generations.
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