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Abstract

Methylation of specific lysine residues in core histone proteins is essential for embryonic development and can impart active
and inactive epigenetic marks on chromatin domains. The ubiquitous nuclear protein PTIP is encoded by the Paxip1 gene
and is an essential component of a histone H3 lysine 4 (H3K4) methyltransferase complex conserved in metazoans. In order
to determine if PTIP and its associated complexes are necessary for maintaining stable gene expression patterns in a
terminally differentiated, non-dividing cell, we conditionally deleted PTIP in glomerular podocytes in mice. Renal
development and function were not impaired in young mice. However, older animals progressively exhibited proteinuria
and podocyte ultra structural defects similar to chronic glomerular disease. Loss of PTIP resulted in subtle changes in gene
expression patterns prior to the onset of a renal disease phenotype. Chromatin immunoprecipitation showed a loss of PTIP
binding and lower H3K4 methylation at the Ntrk3 (neurotrophic tyrosine kinase receptor, type 3) locus, whose expression
was significantly reduced and whose function may be essential for podocyte foot process patterning. These data
demonstrate that alterations or mutations in an epigenetic regulatory pathway can alter the phenotypes of differentiated
cells and lead to a chronic disease state.
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Introduction

The process of embryonic development determines the

differentiated state of all cells by establishing unique gene

expression patterns, or signatures, for individual cell types that

define their phenotypes. Once a differentiated state is established,

it is difficult to erase that epigenetic imprint and reprogram the cell

towards a different cell lineage or phenotype. Although repro-

gramming can be forced by nuclear transplantation [1] or by the

expression of Oct4 and accessory factors [2,3], the low efficiency of

these processes speaks to the inherent stability of a differentiated

cell. Gene expression patterns must be established and maintained

by compartmentalizing the genome into active and inactive

regions, which is thought to occur through the covalent modifi-

cations of DNA and its associated nucleosomes. Such modifica-

tions include DNA methylation of CpG islands and methylation,

acetylation, and ubiquitination of histone tails, all of which are

thought to determine chromatin structure and accessibility [4,5].

This epigenetic code is thus imprinted upon the primary genetic

code during embryonic development to help establish cell lineages

and restrict fate.

The genetics and biochemistry of histone modifications have

been well studied in a variety of model organisms and

developmental contexts. Genes of the Polycomb and Trithorax

families encode proteins that are required for methylation of

different histone lysine residues and often correlate with gene

silencing or activation, respectively [6–9]. Many Trithorax group

proteins, such as Drosophila TRX and human KMT2A (MLL), are

histone H3 lysine 4 (H3K4) methyltransferases (KMTs) and are

essential for maintaining gene expression patterns in diverse

organisms. Recently, we discovered a novel co-factor, PTIP (Pax

Transactivation-domain Interacting Protein), which is encoded

by the Paxip1 gene. The PTIP protein co-purifies with the

mammalian lysine methyltransferases KMT2B and KMT2C

(formerly ALR and MLL3), is broadly expressed, and is essential

for embryonic development [10–12]. At least in one case, PTIP is

able to recruit the KMT2B complex to a developmental DNA

binding protein in a locus specific manner [13]. Loss of PTIP

function in the mouse results in gross developmental effects at

gastrulation, with reduced levels of global H3K4 di- (me2)

and trimethylation (me3) observed [13,14]. In cultured mouse

embryonic stem cells, PTIP is needed to maintain pluripotency,

Oct4 expression, and normal levels of H3K4 trimethylation [15].

Similarly, in neuronal stem cells, differentiation is abrogated and

levels of H3K4 methylation are reduced in tissue specific PTIP

knockouts [13]. In mouse embryo fibroblasts, loss of PTIP blocks
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differentiation by inhibiting PPARc and C/EPBa activation and

H3K4 methylation at their respective promoters [16]. Similarly,

the Drosophila homologue of PTIP is also essential for development,

epigenetic control of gene expression, and global histone H3K4

methylation [17].

During cell division, patterns of histone methylation must be

inherited by daughter cells such that the cellular phenotype is

maintained. For repressive histone methylation marks, such as

histone H3 lysine 27, the EED (Embryonic Ectodermal Develop-

ment) protein is thought to bind and recruit the Polycomb

Repressor Complex 2 to replicate and maintain gene silencing

after mitotic cell division [18,19]. For highly expressed genes, the

KMT2A (MLL1) protein associates with promoter regions on

condensed mitotic chromatin and is required to rapidly reactivate

such genes after cell division [20]. These data suggest a model

whereby histone methylation patterns are replicated during

mitosis, but do not address the necessity for maintaining epigenetic

modifications in terminally differentiated, non-dividing cells.

Furthermore, changes in the expression of epigenetic regulatory

genes have been reported in a variety of cancers [21] and disease

states [22], but whether these are the cause or the result of disease

remains to be determined.

To address the necessity of H3K4me3 in a stable non-dividing

cell type, we utilized a Podocin-Cre transgenic driver to delete

PTIP in the glomerular podocyte, a highly specialized and

architecturally distinct cell that establishes the kidney filtration

barrier. Podocytes are clinically relevant cells whose properties and

expression profiles change in glomerular diseases and in older

animals [23]. While the ubiquitous expression of PTIP, its role in

H3K4 methylation, and its necessity in development and

differentiation are all well established, whether PTIP deletion in

terminally differentiated cells can induce changes in the pattern of

H3K4me3 and gene expression has not been demonstrated. We

show that loss of PTIP results in changes in the transcriptional

profile of terminally differentiated podocyte cells, which ultimately

leads to a chronic glomerular disease phenotype. Among the most

affected is the neurotrophin receptor encoding gene Ntrk3, whose

function had not been previously studied in podocytes. Our results

demonstrate a maintenance function for PTIP-mediated H3K4

methylation and identify a novel role for Ntrk3 in podocyte foot

process patterning.

Results

Generation of a Podocyte-Specific Paxip1 Deletion
To specifically knockout PTIP protein in fully differentiated

mouse podocytes, we utilized both floxed (fl) and conventional null

(-) alleles of Paxip1 and a Cre driver strain specific for glomerular

podocytes. The Paxip1fl/2:CreNPHS2 mice were crossed to Paxip1fl/fl

animals to generate Paxip1fl/fl or Paxip1fl/2 with or without

CreNPHS2. The CreNPHS2 mice utilize the NPHS2 promoter to

express Cre recombinase only in late developing and mature

podocytes [24,25]. The resulting progenies were born in the

expected Mendelian ratios and did not show any gross kidney

defects during the first 4 weeks of life (data not shown). For simplicity,

we will refer to the mice as either PTIP2 (Paxip1fl/2:CreNPHS2;

Paxip1fl/fl:CreNPHS2) or PTIP+ (Paxip12/fl, or Paxip1fl/fl). PCR analysis

indicated that recombination occurred at the Paxip1 locus in DNAs

isolated from kidneys but not in DNAs from tails (Figure 1A).

Previous work established that the Paxip1fl allele produces normal

levels of protein, but Cre-mediated excision of exon 1 and the

promoter region results in complete absence of PTIP protein,

essentially creating a null allele [13,15]. The specificity of the Cre

driver strain was confirmed by crossing CreNPHS2 mice to the

Rosa26-LacZ reporter mice (Figure 1B). In 1 month old kidneys,

lacZ expression was restricted to the glomerulus only, indicating

efficient Cre mediated excision at this time. Immunostaining for

PTIP and the podocyte marker WT1 also confirmed that PTIP

protein levels were reduced only in the podocyte cells and not the

mesangial or endothelial components of the glomerular tuft

(Figure 1C). Previous work showed that a loss of PTIP function

results in reduced levels of total H3K4me3 levels in embryos and

cultured cells [13–17]. To test whether podocytes showed reduced

H3K4me3, we stained kidney sections with antibodies specific for

this modification (Figure 1D). Many podocytes were observed with

reduced signal intensities. To quantitate this effect, images were

analyzed for signal intensity by integrating a fixed area over the

nuclei of both podocytes and other cell types (Figure 1E). Podocytes

were co-stained with WT1 antibodies. The ratio of podocyte signal

(WT1+) to other cell types (WT12) was calculated by counting at

least 6 cells of each type per glomerulus. The ratios from at least 8

glomeruli were averaged for each genotype and shown to decrease

by more than 20% in PTIP2 kidneys compared to PTIP+ controls

(p,0.01). These data confirmed that the specific deletion of PTIP in

the podocytes correlates with a reduction in H3K4me3 in this cell

type.

Development of a Chronic Glomerular Disease
Phenotype

Podocytes play a critical role in the establishment and

maintenance of the glomerular filtration barrier. Interdigitated

podocyte foot processes cover the glomerular basement membrane

and form specialized junctions, called slit diaphragms, which

create a highly selective barrier that filters small and negatively

charged proteins and solutes from the blood to the urinary space.

Damage to or loss of podocytes impairs the filtration barrier and

results in increased rates of excretion of high molecular weight

proteins, such as albumin, into the urine. Thus, we checked mice

for proteinuria beginning at 1 month of age (Figure 2A). At 1

month, low levels of albumin were detected in the urine but

these were not significantly different between PTIP+ and

Author Summary

While all cells contain essentially the same genome, adult
differentiated cells have specific patterns of gene expres-
sion for unique physiological functions. Gene expression
depends on specific proteins that activate some genes and
repress others so that a stable pattern of expression is
maintained. During embryonic development, epigenetic
modifications of the genome may compartmentalize the
genome into actively expressed or repressed domains
through the methylation of specific histone residues on
chromatin. We studied a specific pathway of histone H3
lysine 4 methylation by deleting the co-factor PTIP in a
differentiated cell type. We then asked whether this
epigenetic pathway is still important for maintaining the
correct pattern of gene expression. Using the podocyte
cells of the glomerulus as a model system, mice that carry
deletions of the PTIP protein only in these podocytes show
changes in gene expression patterns over time and exhibit
a slowly progressing chronic disease phenotype. Chroma-
tin immunoprecipitation showed a loss of PTIP binding
and lower H3K4 methylation at the Ntrk3 locus, whose
expression was significantly reduced. These data demon-
strate the need for maintaining the correct epigenetic
pattern in an aging, differentiated cell type and point to
modifications in epigenetics as potential disease causing
factors.

H3K4 Methylation and Chronic Glomerular Disease
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Figure 1. Generation of a Podocyte-Specific Paxip1 Deletion. A) PCR genotyping with primer pairs specific for the excised, null allele indicates
Paxip1 excision only in the kidney DNA and only in mice carrying the CreNPHS2 transgene. B) Enzymatic staining for b-galactosidase activity (blue) in
kidney sections from 1 month old mice with the indicated genotypes. C) Immunostaining for WT1 (green) and PTIP (red) in glomeruli at 3 months of
age show reduced PTIP signals in the WT1 positive cells (arrows) of PTIP2 kidneys compared to PTIP+ control littermates. The overlays were
counterstained with DAPI to mark all nuclei. Thus double positives (WT1 and PTIP) are light purple whereas single positives (WT1 only) are green. D)
Immunostaining for H3K4me3 and WT1 in kidneys of 3 months old PTIP+ and PTIP2 mice. Note reduced intensity of podocyte cells (arrows) in PTIP2

H3K4 Methylation and Chronic Glomerular Disease
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PTIP2 animals. However, by 3 months of age the PTIP2 mice

showed significantly higher levels of albumin in the urine and these

levels increased further at 6 and 12 months. The urine albumin to

creatinine ratio (ACR) provides a quantitative assay that correlates

with filtration barrier integrity. No significant differences were

observed at 1 month (Figure 2B). However, by 3 and 12 months,

ACR were 10 and 30 fold higher respectively in urines of PTIP2

animals compared to PTIP+ mice. Mice that carried the CreNPHS2

transgene in a Paxip1+/+ or a Paxip1fl/+ genetic background did not

show any renal abnormalities at 12 months (data not shown),

consistent with many published reports that have used this

particular Cre driver strain [25–28].

Renal pathology was characterized by light microscopy at 1, 3,

and 12 months of age. Standard Masson’s Trichrome and

Periodic-Acid-Shiff stainings revealed significant sclerosis and

matrix deposition in 12 month old glomeruli from PTIP2 animals

(Figure 2C). However, 3 month old kidneys did not show

significant differences for most glomerular sections, at the light

microscopy level, although evidence of limited matrix expansion

could be observed in a small number of glomeruli of PTIP2

kidneys. In 12 month old kidneys, significant interstitial fibrosis

and protein filled cysts were also observed (Figure 2D). These are

likely to be secondary effects due to the glomerular pathology.

Glomerular pathology and increased albuminuria can be the

direct result of podocyte death [29]. Thus, we used a variety of

markers to characterize the glomerular architecture and the

numbers of podocyte cells at various ages to insure that the

phenotype of the PTIP2 mice was not just the result of early

podocyte cell death. Immunostaining with WT1, Nephrin, and

Podocin antibodies enabled us to determine the podocyte

numbers, as average per mid-cross section, and to indirectly assess

the integrity of the slit diaphragm (Figure 3). The number of WT1

positive podocytes was not significantly different between PTIP+
and PTIP2 glomeruli at 1 or 3 months of age. At 6 months,

PTIP2 glomeruli had slightly fewer podocytes and by 12 months,

the number of podocytes was half that of the PTIP+ littermates.

Immunostainings for podocyte markers such as WT1, Nephrin,

and Podocin did not reveal dramatic differences at 1 or 3 months,

despite the increase in proteinuria, although some discontinuous

staining could be seen with Podocin antibodies in PTIP2

glomeruli (Figure 3B). Consistent with this data, TUNEL staining

for apoptosis did not reveal differences between PTIP+ and

PTIP2 kidneys at 1 or 3 months of age (data not shown). Thus,

the breakdown of the filtration barrier was not due to simple

podocyte depletion at these early times. However by 12 months of

age, the extensive network of Nephrin staining was partially

depleted in PTIP2 glomeruli (Figure 3B).

At the light microscopy level, the effects of PTIP loss on

glomerular architecture seemed minimal at 3 months of age, yet

the levels of albumin in the urine suggested significant functional

defects. Thus, we utilized scanning and transmission electron

microscopy to characterize the podocytes at the ultra structural

level (Figure 4). Scanning electron micrographs revealed disorga-

nized foot processes at 3 months. While PTIP+ podocytes had

regularly arrayed tertiary foot-processes that were almost parallel

(Figure 4A), the PTIP2 podocyte foot processes were much more

irregular and flattened. The parallel pattern of interdigitation was

clearly different and resembled a jigsaw puzzle with random

patterning (Figure 4B, 4C). Transmission electron micrographs at

3 months also revealed that the slit-diaphragms were not evenly

spaced and fusion of foot processes was frequent (Figure 4D–4F).

By 12 months, the remaining podocytes in the PTIP2 kidneys

were broader, flatter and displayed significant fusion or effacement

(Figure 4G, 4H), consistent with the high levels of albumin

detected in the urine. These data demonstrate that the initial

glomerular phenotype in PTIP2 kidneys is due primarily to

differences in podocyte foot process morphology, which occurs

prior to the loss of cell bodies.

Alteration of the Gene Expression Program Precedes the
Disease Phenotype

Alterations in cellular phenotypes could be the result of changes

in the transcriptional program of PTIP2 podocytes. Thus, we

prepared RNA from glomeruli enriched fractions at 1 month of

age, prior to the onset of any significant phenotype, and assayed

for gene expression changes by Affymetrix microarrays. We

compared glomerular RNA preps from 10 independent PTIP2

animals and 8 PTIP+ littermates at 1 month of age. The data were

highly consistent and indicated both gain and loss of gene

expression in the PTIP2 kidneys (Table 1 and Table 2). The

entire dataset can be accessed at the Gene expression Omnibus

(GSE17709). Expression changes were confirmed by quantitative

RT-PCR for selected genes (Figure 5). Among the genes increased

was Protamine1 (Prm1), which is not normally expressed in

podocytes or other somatic cells but is found only in spermatids

where it is essential for chromatin condensation and fertility

[30,31]. The changes in RNA expression observed were surprising

and did not correspond to any common pathways. In fact, the

podocyte-specific genes that are known to function in cell viability

and slit diaphragm integrity were largely unchanged (Table S1

and Figure 5C). The data suggest that loss of PTIP in podocytes

alters the transcriptional program to affect a limited number of

genes whose functions in the podocytes have not been previously

characterized.

PTIP Deletion Affects Ntrk3 Expression and Histone
Methylation

Among the most interesting genes whose expression was down

regulated in PTIP2 kidneys was the neurotrophic tyrosine kinase

receptor type 3 (Ntrk3, formerly called TrkC), whose expression in

podocytes had not been previously described. The Ntrk3 gene

encodes two proteins that recognize neurotrophin 3 (NT-3) and

functions in axon guidance and innervation and in cardiac

development [32–34]. Ntrk3 promotes axon outgrowth and

guidance, presumably through actin based extension and retrac-

tion of cellular processes [35]. Given that podocyte foot processes

are also actin based and may require some type of guidance, we

examined the role of Ntrk3 further. Quantitative RT-PCR

confirmed that Ntrk3 expression was down approximately 10 fold

in glomerular preps from PTIP2 compared to PTIP+ animals

(Figure 5A). We also examined Ntrk3 levels in kidneys by co-

immunostaining kidney sections with Ntrk3, WT1 and Nephrin

antibodies (Figure 6). At 3 months of age, Ntrk3 could be seen in

glomeruli of PTIP+ kidneys, however the staining intensity in

PTIP2 kidneys was severely reduced in almost every glomerulus

examined (Figure 6D, 6J). Some slight filamentous staining

mice, when compared to other cells on the sections. E) Image analysis of immunostaining for H3K4me3 from 3 month old PTIP+ and PTIP2 mice. The
total signal strength was calculated by integrating over a fixed area and the data are expressed as the ratio of podocytes to mesangial and
endothelial cell signals. Mean ratios from 6 podocytes and 6 other cell types were calculated from 8 independent samples for each genotype. Error
bars are one standard deviation from the mean. The p value was calculated by the students t-test for 2 independent variables.
doi:10.1371/journal.pgen.1001142.g001
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remained in the PTIP2 glomeruli, but the overall intensity was

markedly different. In PTIP+ glomeruli, Ntrk3 staining was

remarkably similar to Nephrin (Figure 6G–6I). However, Nephrin

staining intensity was unaffected in PTIP2 glomeruli even though

Ntrk3 was much lower (Figure 6J–6L). The Ntrk3 expression in

glomerular preps and its decrease in the PTIP2 kidneys suggested a

function in foot process growth, guidance, and/or pattern formation.

In order to more directly link PTIP to the Ntrk3 locus, we

designed chromatin immunoprecipitation experiments to examine

the presence of PTIP and the changes in histone methylation

patterns around the transcription initiation site (+1) of Ntrk3

(Figure 7). Chromatin was prepared from whole glomerular preps

from PTIP+ and PTIP2 kidneys, which also included mesangial

and endothelial cells. Despite the presence of other cell types in the

glomerular chromatin, we were able to detect a 5–6 fold decrease

in PTIP localization to sequences around the start site of Ntrk3

transcription when comparing PTIP+ to PTIP2 chromatin

(Figure 7B). No significant amount of PTIP was detected further

upstream (21200), nor did we see a significant difference, between

PTIP+ and PTIP2 chromatin, in PTIP localization within the 59

UTR of exon 1 (Figure 7B, P4 site). Clear differences in H3K4me2

were also measured, with an approximately 50–60% decrease in

PTIP2 chromatin with primer pairs P2–P4, but not with P1 at

21200 (Figure 7C). Similarly, H3K4me3 levels were also

decreased in PTIP2 chromatin at P2–P4 but not at P1

(Figure 7D). We also examined changes in Polycomb mediated

epigenetic silencing marks using an antibody against H3K27me3

(Figure 7E), which appeared unchanged at all sites examined.

These data demonstrate recruitment of PTIP to the promoter

region of Ntrk3 in normal glomeruli.

Ntrk3 Mutants Have Podocyte Foot Process Defects
In order to determine if the loss of Ntrk3 alone would impact

normal glomerular patterning, we examined homozygous Ntrk3

mutant mice. The Ntrk3 mutants die shortly after birth due to

cardiac and neuromuscular defects; however their kidneys had not

been studied previously. Therefore, we collected urine and kidney

tissue for light and electron microscopy from 3–4 day old Ntrk3

mutants and littermates. At three days post partum, Ntrk3 mutants

were small and sickly. Higher levels of albumin could be observed

in the urines of Ntrk32/2 pups (Figure 8A), compared to control

littermates, although this could be due to delayed or arrested

kidney development. Glomerular development was examined in

kidney sections of 4 day old newborns (Figure 8B). At this time,

nephrons are still undergoing development and glomeruli at the

periphery are just beginning to form whereas cortical glomeruli

closer to the medulla are already fully functional. The tight

junction protein Magi2 specifically localizes to podocyte cell

junctions and exhibited altered patterning in Ntrk3 mutant kidneys,

with discontinuous staining and excessive looping of the

developing tuft. In mature glomeruli, Nephrin staining was

reduced and patchy in the Ntrk3 mutants. The number of

podocytes did not seem affected in the Ntrk32/2 mice at this time.

Ultra structural analysis of Ntrk3 mutant kidneys revealed

podocyte patterning defects both by scanning and transmission

EM (Figure 9). At 4 days post-partum, we examined the most

mature glomeruli, those located closest to the medullary zone.

Podocyte foot processes from Ntrk32/2 mice exhibited disorga-

nized secondary and tertiary processes that crisscrossed randomly

over capillary vessels and were poorly interdigitated (Figure 9A9,

9B9). Few sections showed the characteristic spacing indicative of

the slit diaphragms at the glomerular basement membranes

(Figure 9D9). These data suggest a critical role for Ntrk3 in the fine

patterning events of secondary and tertiary foot process formation

and interdigitation.

Discussion

In this report, we utilized a conditional deletion to ask whether

the PTIP dependent H3K4 methylation function is required in a

terminally differentiated cell type, to maintain its differentiated

state and its cell-type specific transcriptional program. Using the

glomerular podocyte cell as a model, we show that deletion of

PTIP results in subtle changes in gene expression patterns that

ultimately lead to a slowly progressing disease state. These data

support a model in which the gross stability of the differentiated

state or podocyte cell survival, at least in the short term, does not

depend on the PTIP/KMT complex, as many of the podocyte

specific genes examined were unchanged in the absence of PTIP.

Rather, the loss of PTIP was more subtle and revealed unexpected

changes in a small number of genes and ultimately led to a chronic

disease phenotype resembling glomerular sclerosis. Typical

characteristics of chronic glomerular disease were present,

including microalbuminuria, podocyte foot process fusion or

effacement, remodeling of the filtration barrier, and increased

extracellular matrix deposition.

Methylation of histone H3 at lysine 4 correlates with gene

expression and is thought to regulate cellular identity by

establishing and maintaining a stable epigenetic state. The PTIP

protein is part of an H3K4 methyltransferase complex that

includes the mammalian Trithorax homologues KMT2B and/or

KMT2C [10,11,13,16]. Previous studies in flies and mice

demonstrated reduced H3K4 methylation in Paxip1 mutants and

severe early lethal phenotypes. In the mouse, complete loss of

PTIP protein results in developmental arrest just after gastrulation

[14], a phenotype more severe than any individual mouse KMT2

family gene mutation [12,36,37], whereas a hypomorphic Paxip1

allele is lethal later in development [38]. In flies, maternal and

zygotic ptip null embryos are embryonic lethal and fail to express

many segmentation genes [17]. In mouse embryonic stem cells,

PTIP protein is required for normal levels of H3K4 methylation

and for maintaining pluripotency in cell culture [15], whereas in

embryonic fibroblasts PTIP is required for adipocyte differentia-

tion [16]. All of these findings suggest that a PTIP H3K4

methyltransferase complex is needed for differentiation of stem

cells and progenitor cells in development. However in terminally

differentiated cells, the requirement for active H3K4 methylation

may be different and the lack of cell division may abrogate the

need for de novo methylation. Our results suggest that PTIP must

still function in some non-dividing cells, perhaps as part of a

maintenance complex, as overall levels of H3K4 methylation were

reduced and activation and suppression of a small number of genes

was affected.

Figure 2. Chronic Glomerular Disease in PTIP2 Kidneys. A) Coomassie blue staining of SDS/PAGE gels of urine samples from PTIP+ and PTIP2
mice at 1 month and 3 months. Mouse albumin (al) is shown as a control. B) Urine albumin to creatinine ratios (ACR) as measured at 1, 3, and 12
months of age in PTIP+ and PTIP2 animals. C) Histological sections from kidneys at 3 and 12 months. Representative glomerular sections were
stained with Masson’s Trichrome (3 and 12 months) or Periodic Acid-Shiff (12 months). Significant matrix deposition was observed in 12 months old
PTIP2 glomeruli. D) Low power view of a kidney section at 12 months of age shows tubulointerstitial fibrosis, protein filled cysts, and glomerular
sclerosis in PTIP2 animals.
doi:10.1371/journal.pgen.1001142.g002

H3K4 Methylation and Chronic Glomerular Disease
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Figure 3. Podocyte Viability and Glomerular Morphology. A) After immunostaining with WT1 and Nephrin antibodies, podocyte nuclei were
counted in mid-cross sections through glomeruli whose vascular and proximal tubular poles were visible. Glomerular surface area for mid-cross
sections was measured by morphometry and is expressed in relative units. B) Immunostaining for WT1 (pink) and Nephrin (green) at 3 months of age
shows little significant difference between PTIP+ and PTIP2 glomeruli. However, Podocin staining (green, lower panels) appears less and
discontinuous in PTIP2 glomeruli. Nuclei were counterstained with DAPI. By 12 months, large regions cleared of Nephrin positive staining were
evident within the glomerular tufts of PTIP2 animals.
doi:10.1371/journal.pgen.1001142.g003

H3K4 Methylation and Chronic Glomerular Disease
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The mature podocyte is generally believed to be a non-dividing

cell type, as classic cell BrdU labeling experiments do not mark this

population over time [39]. However, more recent genetic lineage

tracing experiments suggest that there is a population of parietal

epithelial cells at the vascular pole of the Bowman’s capsule that

can replenish podocytes over time [40,41]. This replacement of

podocytes appears slow under normal conditions, but may be

especially critical in cases of glomerular injury. In our animal

model, we would expect any podocyte replacement to also delete

the Paxip1 gene once expression of the Cre driver is activated.

Given that we do not see significant loss of podocytes until at least

6 months of age, it may be that alterations in the transcriptional

profile are not lethal. Rather, loss of podocytes may be the result of

the damaged filtration barrier, the increase in the mesangium, and

the general environment of the glomerulus in older mice.

Alternatively, if podocyte replacement is accelerated in our model,

it may be that by 6 months the ability of parietal cells to replenish

the podocyte population is exhausted. In either case, the effects of

manipulating the H3K4 methylation pathway is more apparent in

older mice, suggesting a critical role for such epigenetic pathways

in aging cells and tissues.

The changes in gene expression observed in response to PTIP

deletion are surprising in that most of the well-characterized

podocyte-specific genes appear unaffected. However, changes

include both activation and suppression of previously unchar-

acterized genes in the podocytes. Activation of the Prm1 gene in

PTIP2 kidneys is unusual as this gene has only been associated

with sperm maturation and is thought to encode a unique

chromatin binding protein [31,42]. Activation of the Padi4 gene

could impact gene expression by deimination of arginines in the

histone H3 tail, which prevents methylation [43]. The impact of

increased Padi4 is likely to be complex as arginine methylation can

correlate with gene activation or repression, depending on the

context and specific residues.

The most compelling gene affected in PTIP2 podocytes was

Ntrk3, whose expression in the glomerulus had not been previously

characterized. The reduction of Ntrk3 expression in PTIP2

kidneys and the phenotype of Ntrk32/2 newborn kidneys suggest

that this receptor is critical for tertiary foot process pattern

formation. The podocyte is a highly specialized cell with a

complex network of processes that cover the glomerular basement

membrane. The large primary processes are microtubule contain-

ing structures, whereas the tertiary, interdigitated foot processes

contain actin microfilaments [44]. Adjacent foot processes are

connected through a specialized junctional complex, called the slit

diaphragm, which is essential for maintaining a functional

filtration pore. Some of the essential proteins in the slit-diaphragm,

such as Nephrin, Podocin, and Neph1 are well characterized and

Figure 4. Ultrastructural Analysis of PTIP2 Kidneys. Podocytes of PTIP2 mice showed progressive foot process disorganization and
effacement, as observed by scanning (A–C, G, H) and transmission (D–F, I, J) electron microscopy. Podocyte foot processes of 3-month-old PTIP+ mice
were regularly interdigitated (A, D, G), whereas those of age-matched PTIP2 podocytes (B, C, E, F, H) displayed varying degrees of disorganization (B,
E) and effacement (C, F). Note that slit diaphragms could still be observed between foot processes during the early stages of disorganization (E,
arrows). G–J) In addition to the foot process alterations, capillary loop deformation/enlargement (H, J) and mesangium expansion (J, asterisks) were
observed in glomeruli of 12-month-old (G, H) and 3-month-old (I, J) mice analyzed by EM. Scale bars: (A–C) 1 mm; (D–F) 100 nm; (G–J) 2 mm.
doi:10.1371/journal.pgen.1001142.g004
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Table 1. Genes Up-Regulated in PTIP2 Podocyte.

Probe Symbol Description UniGene p-value Fold Change*

1439379 Prm1 protamine 1 Mm.42733 0 6.38

1418398 Tspan32 tetraspanin 32 Mm.28172 0 2.92

1422760 Padi4 peptidyl arginine deiminase, type IV Mm.250358 0.001 1.9

1433744 Lrtm2 leucine-rich repeats and transmembrane domains 2 Mm.121498 0 1.89

1433529 E430002G05Rik RIKEN cDNA E430002G05 gene Mm.28649 0 1.77

1436329 Egr3 early growth response 3 Mm.103737, 0 1.74

1449071 Myl7 myosin, light polypeptide 7, regulatory Mm.46514 0.001 1.68

1419527 Comp cartilage oligomeric matrix protein Mm.45071 0 1.58

1419487 Mybph myosin binding protein H Mm.379067 0.001 1.3

1431991 2410004P03Rik RIKEN cDNA 2410004P03 gene Mm.159048 0 1.26

1430062 Hhipl1 hedgehog interacting protein-like 1 Mm.36423 0.004 1.19

1453228 Stx11 syntaxin 11 Mm.248648 0.003 1.16

1416077 Adm adrenomedullin Mm.1408 0 1.14

1457780 Stx11 syntaxin 11 Mm.248648 0.001 1.1

1434984 6330514A18Rik RIKEN cDNA 6330514A18 gene Mm.17613 0.004 1.08

1453152 Mamdc2 MAM domain containing 2 Mm.50841 0.012 1.05

1435830 5430435G22Rik RIKEN cDNA 5430435G22 gene Mm.44508 0.002 1.01

1439761 D830026I12Rik RIKEN cDNA D830026I12 gene Mm.136046 0.008 1

*log2 scale.
doi:10.1371/journal.pgen.1001142.t001

Table 2. Genes Down-Regulated in PTIP2 Podocytes.

Probe Symbol Description UniGene p-value Fold Change*

1425425 Wif1 Wnt inhibitory factor 1 Mm.32831 0 24.37

1441491 A330068G13Rik RIKEN cDNA A330068G13 gene Mm.227543 0 23.68

1433825 Ntrk3 neurotrophic tyrosine kinase, receptor, type 3 Mm.33496 0 23.09

1446622 A330068G13Rik RIKEN cDNA A330068G13 gene Mm.227543 0 22.14

1452779 3110006E14Rik RIKEN cDNA 3110006E14 gene Mm.23960 0 21.57

1452416 Il6ra interleukin 6 receptor, alpha Mm.2856 0 21.55

1420903 St6galnac3 Mm.440929 0 21.53

1450309 Astn2 astrotactin 2 Mm.445312 0 21.53

1433939 Aff3 AF4/FMR2 family, member 3 Mm.336679 0 21.53

1437403 Samd5 sterile alpha motif domain containing 5 Mm.101115 0.001 21.48

1429896 5830408B19Rik RIKEN cDNA 5830408B19 gene Mm.291322 0 21.35

1455296 Adcy5 adenylate cyclase 5 Mm.41137 0 21.3

1431946 Necab3 N-terminal EF-hand calcium binding protein 3 Mm.143748 0 21.29

1434777 Mycl1 v-myc myelocytomatosis viral oncogene homolog 1 Mm.1055 0 21.26

1419139 Gdf5 growth differentiation factor 5 Mm.4744 0.001 21.25

1441559 LOC627626 similar to CG11212-PA Mm.390999 0.003 21.25

1441667 Smyd1 SET and MYND domain containing 1 Mm.234274 0 21.23

1423561 Nell2 NEL-like 2 (chicken) Mm.3959 0.016 21.18

1450501 Itga2 integrin alpha 2 Mm.5007 0 21.17

1435832 Lrrc4 leucine rich repeat containing 4 Mm.443660 0 21.11

1455188 Ephb1 Eph receptor B1 Mm.22897 0.046 21.11

1455888 Lingo2 leucine rich repeat and Ig domain containing 2 Mm.132507 0.007 21.05

1426960 Fa2h fatty acid 2-hydroxylase Mm.41083 0 21.04

1453841 2310050P20Rik RIKEN cDNA 2310050P20 gene 0.033 21.01

1421207 Lif leukemia inhibitory factor Mm.4964 0 21

*log2 scale.
doi:10.1371/journal.pgen.1001142.t002
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mutations are associated with severe nephrotic syndromes [45].

Yet, how foot process outgrowth is regulated and maintained is not

clear. Our data suggests that Ntrk3, and by inference its ligand

NT–3, may be important for foot process growth and patterning.

NT-3 is known to promote neuronal axon guidance by stimulating

actin polymerization and lamellipodia formation [46,47]. In

cultured neuronal cells, NT-3 promotes localization of b-actin

mRNA to the growth cones to stimulate motility and chemotaxis

[48,49]. Podocytes express many proteins known to function in

neurite outgrowth, such as semaphorins, neuropilins, and ephrins.

A recent report even describes the release and up-take of

glutamate containing synaptic-like vesicles by podocytes [50].

Furthermore, foot processes are dynamic and can retract quickly

in response to polyamines like protamine sulfate [51,52]. This

raises the possibility that sensing mechanisms are required for

rapid actin dynamics; such mechanisms may be common to both

podocytes and neurons. Still, reduction of Ntrk3 alone is unlikely

to cause the phenotypic changes in PTIP2 podocytes over time, as

other genes whose functions are not well understood are also

impacted.

Histone methylation by Trithorax or Polycomb complexes can

imprint positive and negative epigenetic marks on chromatin

during development. More recently, histone methyltransferases

have been associated with cancer and other disease states.

However, in many cases it is not clear whether changes in the

expression of epigenetic modifiers are the cause or the result of

disease progression. The results presented here suggest that

mutations in an epigenetic pathway, which result in alterations

of H3K4 methylation patterns, can lead to a chronic disease

through subtle changes in gene expression patterns. This implies a

direct function for HMTs in maintaining gene expression and the

differentiated state in healthy organisms.

Methods

Animals
Mice carrying the Paxip1 null (Paxip12) and floxed (Paxip1fl)

alleles were previously described and genotyped as indicated

[14,53]. To obtain the specific deletion of the Paxip1fl allele in

glomerular podocytes, these mice were crossed with the previously

characterized 2.5P-Cre mice [24,25], which express the Cre

recombinase under the control of the human NPHS2 promoter

(CreNPHS2). Among the next generations, mice carrying the Cre

allele (Paxip1fl/fl:CreNPHS2 and Paxip1fl/2:CreNPHS2 mice) were

considered as conditional null mutants (PTIP2), whereas

littermates that did not express the Cre recombinase were used

as controls (PTIP+). All animal procedures were approved by the

University Committee on Use and Care of Animals (UCUCA) of

the University of Michigan and performed in compliance with

ULAM recommendations.

Antibodies
Rabbit polyclonal antibodies used to detect Nephrin (1:1000)

and Podocin (1:500) were kindly provided by L.B. Holzman

(University of Pennsylvania, Philadelphia, PA). Chicken anti-PTIP

was described previously [54]. Additional antibodies were

commercially available: mouse clone 6F-H2 anti-WT1 (1:1000,

DAKO, Carpinteria, CA), anti-H3K4me3 and anti-H3K27me3

(AbCam, Cambridge, MA), anti-Magi2 (Sigma-Aldrich, St. Louis,

MO), anti-Ntrk3 (AF1404, R & D Systems, Minneapolis, MN),

Alexa Fluor 488 F(ab9)2 fragment of goat anti-rabbit IgG, Alexa

Fluor 568 F(ab9)2 fragment of goat anti-mouse IgG, Alexa Fluor

488 donkey anti-goat IgG (1:500; Molecular Probes, Life

Technologies, Carlsbad, CA).

Urine Collection and Analysis
Mice had access to a standard breeder chow (Purina 5008) and

water ad libitum. Urine was collected early in the afternoon for

three consecutive days from individual mice at 1, 3, 6 and 12

months of age and stored frozen until use. After thawing, 2 mL

urine was run on a SDS-PAGE and stained with Coomassie Blue

to test for the presence of proteins/albumin, using recombinant

mouse albumin (Sigma-Aldrich, St. Louis, MO) as a control.

Quantitative assessment of urine albumin and creatinine concen-

trations were determined by ELISA using the Albuwell M and

Creatinine Companion kits (Exocell Inc., Philadelphia, PA).

Specimen Preparation for Microcopy Analyses
Mice at 1, 3, 6, and 12 months of age were sacrificed and their

kidneys were perfused, fixed, and processed for histology, indirect

fluorescence and electron microcopy analyses. Briefly, mice were

anesthetized by intraperitoneal injection of 40 mg/kg sodium

Figure 5. Gene Expression in the Glomerulus. Real-time qRT-PCR
for the indicated genes was performed on total RNA isolated from
glomerular preparations. A) Confirmation of two genes that are down-
regulated in PTIP2 (black) kidneys compared to controls PTIP+ (open)
kidneys. B) Confirmation of two genes that are up-regulated in PTIP2
kidneys compared to controls. C) Expression levels of podocyte marker
genes in PTIP+ and PTIP2 glomerular preparations.
doi:10.1371/journal.pgen.1001142.g005
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Figure 6. Ntrk3 in the Glomerulus. Fresh frozen tissues were sectioned and fixed in methanol followed by immunostaining with goat anti-Ntrk3,
rabbit anti-WT1, or rabbit anti-Nephrin, as indicated. PTIP+ sections (A–C, G–I) showed strong Ntrk3 staining in all glomeruli, in a pattern similar to
Nephrin. The PTIP2 kidney sections (D–F, J–L) showed much lower levels of Ntrk3 protein in glomeruli. All micrographs were taken at manually set,
equal exposures. Right panels (C, F, I, L) are overlays of Ntrk3 and WT1 or Ntrk3 and Nephrin and are counterstained with DAPI (blue) to visualize all
cell nuclei.
doi:10.1371/journal.pgen.1001142.g006
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pentobarbital and prepared for systemic perfusion. A saline

solution was first injected through the abdominal aorta to the

entire mouse body at a pressure of approximately 70 mmHg as

previously described [55]. As soon as the general bloodstream had

been cleared, a solution of 4% paraformaldehyde in PBS was

substituted. It was left to perfuse at the same flow conditions for

approximately 10 minutes. Kidneys were removed, decapsulated,

cut into pieces, and incubated for 2 additional hours in the

appropriate fixative solution before being processed for histology,

indirect immunofluorescence, and electron microscopy.

Histology and Indirect Immunofluorescence
Kidneys were fixed in 4% paraformaldehyde, embedded in

paraffin, sectioned at 5 microns, and stained with Periodic Acid

Shiff or Masson Trichrome. For immunofluorescence analyses

with Nephrin, PTIP, WT1 and Magi2, sections were dewaxed,

rehydrated, and microwaved for 10 minutes in a citric acid-based

antigen unmasking solution (Vector Laboratories, Burlingame,

CA). Sections were permeabilized with 0.3% Triton X-100 in PBS

and blocked with 10% goat serum in PBS. Primary antibodies

were incubated overnight at 4uC in PBS, 0.1% Triton, 2% goat

serum. Sections were washed twice and incubated with the

secondary fluorescent antibodies and DAPI in PBS, 0.1% Triton,

2% goat serum for 1 hour in the dark at room temperature. The

sections were washed again and mounted in Mowiol. Stained and

fluorescent-labeled sections were analyzed under a Nikon ES800

microscope. Micrographs were taken with a digital spot camera,

using equivalent exposure times among sections. For Ntrk3

staining, fresh frozen sections were dried, fixed in methanol at

220uC and washed in PBS, 0.1% Tween 20 before incubation

with anti-Ntrk3 antibodies at 1 mg/ml.

For quantitation of immunofluorescent signals, ImageJ 1.42 was

utilized. H3K4me3 stained sections were digitally captured and

light intensity measured by placing a fixed size circular area over

the nuclei of cells and summing all pixels over the given area. At

least 6 podocytes and 6 control cells, either mesangial or

endothelial, were measured for each of 8 glomerular tufts (at least

48 podocytes and 48 other cells for each genotype). The average

signal intensity was then expressed as a ratio of podocyte intensity

to non-podocyte cell intensity for each of the glomerular

micrographs taken.

For Cre activity detection, the Rosa26-lacZ reporter strain was

used [56]. Mice carrying CreNPHS2 and Paxip1fl/fl were crossed to

Rosa26-stop-lacZ:Paxip1fl/+ to generate Paxip1fl/fl:CreNPHS2:

Rosa26-lacZ animals. Kidneys were excised at 1 month of age

and stained for b-galactosidase activity as described [57].

Scanning and Transmission Electron Microscopy
Longitudinal slices of kidneys from PTIP+ and PTIP2 mice

fixed with 2.5% glutaraldehyde in 0.1M Sorensen’s buffer (pH 7.2)

for 2 hours at room temperature were processed for scanning

electron microscopy following standard procedures. Briefly, after

several washes with the Sorensen’s buffer alone, the samples were

dehydrated by successive washes in graded ethanol solutions,

critical point dried, mounted on a stub, sputter coated with gold-

palladium, and examined under an AMRAY 1910 field emission

scanning electron microscope. Pieces of the kidney cortex (1 mm3),

fixed with 2.5% glutaraldehyde in Sorenson’s buffer for 2 hours at

room temperature, were processed for transmission electron

microscopy following standard procedures. They were embedded

in PolyBed 812 resin (Polysciences Inc.), cut into 1-micron slices

and stained with toluidine blue. Sample areas were selected based

on the presence of glomeruli and cut into ultra-thin sections for

analysis under a Philips CM-100 transmission electron micro-

scope. The selected SEM and TEM images are representative of at

least 10 different glomeruli per kidney.

Isolation of Mouse Glomeruli
Glomeruli were isolated from the kidneys of individual mice by

sieving as described [58]. Briefly, 1 month-old mice were sacrificed

by CO2 inhalation and kidneys were removed. After decapsula-

tion, the kidneys were finely minced on ice and passed sequentially

through nylon meshes of 90 and 41 microns (Sefar Filtration Inc.,

Depew, NY). The glomeruli-enriched fraction (GEF) was retained

on top of the 41-micron mesh, while kidney tubules were flushed

through. RNA was isolated directly from the mesh.

RNA Extraction and Reverse Transcription
Total RNA was extracted from the GEF of individual 1-month-

old mice using the RNeasy Tissue Micro Kit (Qiagen, Valencia,

CA) following the manufacturer’s instructions. RNA concentration

and purity were determined by nanodrop analysis on an Agilent

Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA). Using

the Ovation RNA Amplification System V2 (NuGEN Technol-

ogies, San Carlos, CA), 500 ng total RNA was reversed

transcribed and linearly amplified into single-stranded cDNA,

Figure 7. Chromatin Immunoprecipitation (ChIP) at the Ntrk3
Locus. A) Schematic of the sequences surrounding the first Ntrk3 exon ,
the transcription start site (+1) and the ATG start codon (+627) are
indicated. The positions of the four primers used for PCR analyses of the
immunoprecipitated chromatin are shown. B) ChIP experiment using
anti-PTIP antibodies and chromatin from whole glomeruli enriched from
PTIP+ (open bars) and PTIP2 (grey bars) kidneys. C) ChIP experiment as in
B but with anti-H3K4me2 antibodies. D) ChIP experiment as in B but
using anti-H3K4me3 antibodies. E) ChIP experiment as in B but using
anti-H3K27me3 antibodies. For B–E, all values are expressed as the mean
of 3 replicates; error bars are one standard deviation. Statistically
significant differences are indicated (*P,0.05).
doi:10.1371/journal.pgen.1001142.g007

H3K4 Methylation and Chronic Glomerular Disease

PLoS Genetics | www.plosgenetics.org 12 October 2010 | Volume 6 | Issue 10 | e1001142



which concentration and purity were determined by nanodrop

analysis on an Agilent Bioanalyzer 2100 (Agilent Technologies).

Microarray and Real-Time qPCR Analyses
Microarray analyses were done by the University of Michigan

Comprehensive Cancer Center (UMCCC) Affymetrix and

Microarray Core Facility. The FL-Ovation cDNA Biotin Module

V2 kit (NuGEN Technologies, San Carlos, CA) was used to

produce biotin-labeled cRNA, which was then fragmented and

hybridized to a Mouse 430 2.0 Affymetrix GeneChip 39 expression

array (Affymetrix, Santa Clara, CA). Array hybridization, washes,

staining, and scanning procedures were carried out according to

standard Affymetrix protocols. Expression data were normalized

by the robust multiarray average (RMA) method and fitted to

weighted linear models in R, using the affy and limma packages of

Bioconductor, respectively [59,60]. Only probe sets with a

variance over all samples superior to 0.1, a p-value inferior or

equal to 0.05 after adjustment for multiplicity using the false

discovery rate [61], and a minimum 2-fold difference in expression

were selected for the analysis. The complete data set is available

from the Gene Expression Omnibus database (accession num-

ber GSE17709).

Microarray data were confirmed by real-time quantitative PCR

analysis. 25–50 ng single-stranded cDNA was amplified in

triplicate in a 384-well plate, using the 7900HT Fast Real Time

PCR system (Applied Biosystems, Foster City, CA) and expression

levels of selected genes was determined by SYBR Green or

TaqMan assays (Applied Biosystems). PCR primers pairs and

TaqMan probes used in this study are presented in Table S2.

Chromatin Immunoprecipitation
Glomeruli were isolated from 6 PTIP+ and 6 PTIP2 kidneys by

sieving as described above. Glomeruli were resuspended in 1 ml

PBS and cross linked with 1% formaldehyde for 10 minutes with

rocking at room temperature. Chromatin preparation, immuno-

precipitation, and PCR analysis was essentially as described

previously [13]. Primers pairs for the Ntrk3 locus were as follows:

P1, 59- CAATGTATTTTGCTTCCTTGCC, 59- AAGAAAGG-

Figure 8. Analysis of Ntrk3 Mutant Kidneys. A) Comassie stained SDS/PAGE gels of urine collected from 4 day old Ntrk32/2 and wild-type
littermates. B) Immunostaining of 4 day old kidneys from wild-type and Ntrk32/2 kidneys as indicated. From left to right, glomeruli are shown at
increasingly older stages of development. Note discontinuous Magi2 staining and reduced Nephrin staining in older glomeruli of Ntrk32/2 kidneys
compared to control littermates.
doi:10.1371/journal.pgen.1001142.g008

Figure 9. Ultrastructural Analysis of Ntrk3 Mutant Kidneys.
Kidneys from Ntrk32/2 (9) and control littermates at 4 days of age were
examined by scanning (A, B) and transmission electron microscopy (C,
D). A, B) Note the disorganized patterning and irregularly shaped
primary and secondary foot processes. C, D) Note the fusion of foot
processes and the lack of well-spaced slit diaphragms in Ntrk3 mutants
in D. Scale bars are 1 mm in A and B, 2 mm in C, and 500 nm in D.
doi:10.1371/journal.pgen.1001142.g009
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GTTAGGGGAATCCG; P2, 59- AACCCGTGCGTTTCG-

TAAGG, 59- GGAGGAAGGAGGAGAAGGAAGATG; P3, 59-

GCATCTTCCTTCTCCTCCTTCCTC, 59- AAGTCACCAA-

GTCCCACCTCCTAG; P4, 59- TTTGCCTTCCCACCGTC-

TGTTG, 59- TGCCTTTGAAACGCCGAAC.

Supporting Information

Table S1 Podocyte-specific genes that are unchanged after PTIP

deletion.

Found at: doi:10.1371/journal.pgen.1001142.s001 (0.03 MB

DOC)

Table S2 Quantitative RT-PCR primer sets and probes.

Found at: doi:10.1371/journal.pgen.1001142.s002 (0.02 MB

DOC)
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