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The rapid progress of the combination of medicine and engineering provides better chances for the clinical treatment and
healthcare engineering. Traumatic brain injury (TBI) and its related symptoms have become a major global health problem. At
present, these techniques has been widely used in the rehabilitation of TBI. In this review article, we summarizes the progress of
the combination of medicine and industry in the rehabilitation of traumatic brain injury in recent years, mainly from the
following aspects: artificial intelligence (AI), brain-computer interfaces (BCI), noninvasive brain stimulation (NIBS), and
wearable-assisted devices. We believe the summary of this article can improve insight into the combination of medicine and
industry in the rehabilitation of traumatic brain injury.

1. Introduction

With the development of the society, traumatic brain injury
(TBI) is gaining more attention because of its higher rates
of morbidity and mortality. It is defined as a traumatic struc-
tural or physiological disruption of brain function, mainly
caused by an external physical force. Traumatic brain injury
(TBI) is the mainly common cause of death and disability in
those aged under 40 years in the UK [1]. TBI still plague mil-
lions of peoples around the world every year [2]. Though the
efforts for exploring therapeutic strategies for the rehabilita-
tion of TBI have been taken over the past few decades, there
is still a lack of effective treatment for it, and the treatment of
TBI is far from satisfactory. Meanwhile, the combination of
medicine and engineering brings new rehabilitation methods
to TBI patients. The combination of medicine and engineer-
ing is a newly developed interdisciplinary subject in recent
years, which is the product of the integration and innovation

of medical science and engineering science, and it brings new
idea to this significant public health issue. In this review arti-
cle, we outline recent breakthroughs in the combination of
medicine and engineering and their applications in the reha-
bilitation of TBI. We believe the summary of this article can
improve insight into the usage of the combination of medi-
cine and engineering in TBI’s rehabilitation. As shown in
Figure 1, we mainly describe advances including artificial
intelligence (AI), brain-computer interfaces, and noninvasive
brain stimulation (NIBS) et al.

2. Artificial Intelligence (AI)

Artificial intelligence is a broad interdisciplinary field, which
is composed of logic, cognitive psychology, decision theory,
neuroscience, linguistics, computer engineering, and so on
[3]. As time goes by, artificial intelligence is gradually chang-
ing the clinical practice of medicine. With the continuous
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development of digital data acquisition, machine learning,
and computing foundation, the application of artificial intel-
ligence is expanding to the field previously considered as
human experts [4]. The fields of traumatic brain injury
(TBI) and artificial intelligence (AI) have been studied for a
long time. In recent years, artificial intelligence (AI) is
applied in the rehabilitation of traumatic brain injury (TBI)
widely. The application of AI in TBI’s rehabilitation mainly
including computer-assisted rehabilitation training, robotic-
assisted rehabilitation training, virtual reality (VR), and
smart mobile technology.

2.1. Computer-Assisted Rehabilitation Training. Cognitive
dysfunction is one of the main consequences of traumatic
brain injury (TBI). Cognitive impairment leads to a serious
decline in the quality of life after TBI and is involved in the
impact of depressive symptoms on emotional role function-
ing [5]. By far, computer-assisted rehabilitation training has
been widespread application in the cognitive rehabilitation
in people with traumatic brain injury (TBI).

A study of 35 patients with traumatic or vascular brain
injury found that compared with conventional treatment,
cognitive training can effectively improve the rehabilitation
effect after TBI, which brings new hope for TBI patients [6].
In this study, they detail an introduction to how computer-
assisted cognitive rehabilitation (CACR) uses multimedia
and informatics resources directly to utilize specific hardware

systems and software to activate the expression of impaired
neurocognitive function through specific programs. In
2013, Cruz et al. developed a new Web-based rehabilitation
tool called “COGWEB” that intensive cognitive training is
provided at home at an affordable cost under clinical pre-
scription and supervision, compared with previous tradi-
tional cognitive rehabilitation technique. The COGWEB
system motivated the treatment positive of patients with
traumatic brain injury [7]. Dou et al. conducted a clinical
study to evaluate the efficacy of computerized error-free
learning memory rehabilitation program for Chinese
patients with traumatic brain injury (TBI) in 2006. The result
indicated that computer-assisted memory rehabilitation
(CAMG) improved the memories of patients with TBI [8].
Another study examined the effectiveness of computer-
assisted cognitive rehabilitation (CACR) in patients with
traumatic brain injury (TBI), the result found that CACR sig-
nificantly improved the cognition of TBI patients, but the
extent and nature of these gains remains to be further studied
[9]. In the above, we can know that computer-based inter-
ventions seem to hold great promise in improving working
memory in people with acquired traumatic brain injury, but
it is more commonly used for cognitive rehabilitation after
traumatic brain injury and the durability of its efficacy
remains to be studied. Meanwhile, a systematic review and
meta-analysis found that computer-assisted rehabilitation
training might be a benefit to improve visual and verbal
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Figure 1: The application of Medicine-Engineering integration in the rehabilitation of TBI.
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working memory for TBI patients, but other domains such as
attention, processing speed, and executive functions were not
benefited by the interventions [10]. We can learn that the
application of computer-assisted cognitive rehabilitation
(CACR) in TBI rehabilitation remains to be further explored.
The advantages and disadvantages of computer-assisted
rehabilitation training are summarized in Table 1.

2.2. Robotic-Assisted Rehabilitation Training. In the past
decades, rehabilitation robots have been rapid and vast devel-
opments. As a relatively young and rapidly developing field,
rehabilitation robots are increasingly infiltrating into the
clinical environment [11]. An increasing number of patients
are suffering from limb motor dysfunction, which may be
caused by stroke-related nerve damage, traumatic brain
injury, or multiple sclerosis [12]. The robotic-assisted reha-
bilitation therapy can deliver high-quality training to
enhance the recovery process and promote the recovery of
limb function.

One study presented the application of novel self-feeding
robots in TBI rehabilitation, and the self-feeding robots
improved the activities of daily living of patients with TBI
[13]. In another study [14], Zeng et al. recruited 2 patients
with TBI to evaluate the application of collaborative wheel-
chair assistant system (CWAS) in cerebral palsy and trau-
matic brain injury users. The results showed that CWAS
improved the patients’ motor function. Meanwhile, robotic
gait training is applied in gait impairment after TBI widely.
In 2016, Stam et al. [15] reported a case study that uses
robotic gait assistive technology is beneficial for the rehabili-
tation of participants with TBI. Another study also confirmed
that robotic-assisted locomotor training can improve the
locomotor performance of patients with TBI [16]. In a study
of 16 participants with TBI receiving 18 robotic gait training
duration six weeks, the result of this study demonstrated that
robotic-assisted treadmill training (RATT) improves step
length greater than manually assisted treadmill training
(MATT) [17]. Ozgur et al. designed Configurable Arm Reha-
bilitation Games for patients with chronic upper limb
impairment after TBI. The gamified rehabilitation platform
using tangible robots can well promote the rehabilitation of
limb function [18]. In addition, Brewer et al. designed a
model called visual feedback distortion for the rehabilitation
of patients with TBI [19]. Two patients were enrolled in a six-
week rehabilitation program. In this case, patients who are
physically capable of advancing in rehabilitation did not pre-
vent them because they had reached habitual or self-imposed
limits, and each patient followed the level of visual feedback

distortion higher than her performance predicted in the ini-
tial evaluation.

In the above, we can learn that robotic-assisted rehabilita-
tion training pays more attention to the limb motor dysfunc-
tion after TBI; in my opinion, we should focus on the robot
research of hand fine motion rehabilitation in the future.
The advantages and disadvantages of robotic-assisted rehabil-
itation training are summarized in Table 2.

2.3. Virtual Reality- (VR-) Based Training. Virtual reality
(VR) is a new and developing technology, which combines
the characteristics of VR technology such as autonomy, inter-
activity, and existence with rehabilitation training. VR is
described as “an advanced human-computer interaction
mode that allows users to interact in a natural way with a
computer-based environment for training and full immer-
sion.” [20]. VR is now offering more new treatment measures
for patients with TBI.

A study of 33 TBI patients examined the usability of a vir-
tual reality driving simulator [21]. All patients were asked to
perform a VR driver rehabilitation (VR-DR) system and
completed the related User Feedback Questionnaire. The
result found that the VR-DR system could be well applied
to the rehabilitation training of TBI patients. Another study
tested the availability and efficacy of a newly developed vir-
tual reality- (VR-) based community living skills training
program for people with TBI, and the result suggested the
produced positive changes in TBI subjects [22]. The study
of 18 patients with severe TBI found that through two con-
secutive days of 3D-cancellation in an interactive virtual
environment, VR and robotics technology improved the
attention impairment in patients with TBI [23]. Similarly,
Bisson’s study also shown that rehabilitation training in an
interactive visuo-haptic environment may be beneficial to
the early recovery of attention in patients with TBI [24].
Additionally, virtual reality (VR) has been used in conjunc-
tion with robotics, biofeedback training, and modern multi-
touch technology. In 2019, Maggio et al. [25] conducted a
study of 56 participants with TBI; the experimental group
underwent rehabilitation training with Lokomat Pro,
equipped with a VR screen; the rehabilitation protocol con-
sisted of a total of 40 training sessions. Ultimately, the result
supported that Lokomat plus virtual reality can improve the
cognitive and behavioral functions in participants with TBI.
Using multitouch-multiuser tabletop (MMT) devices: Snow-
flake MultiTeach (MT) and Diamond Touch Table (DTT),
coupled with MediqVR virtual reality (VR) platform, and

Table 1: The advantages and disadvantages of computer-assisted
rehabilitation training.

Computer-assisted rehabilitation training

Advantages
(1) Overall function increase significantly [6].
(2) The simplicity of its use and comfort [7].

Disadvantages
(1) Lack of studies to determine the possible side

effects of these interventions [7].

Table 2: The advantages and disadvantages of robotic-assisted
rehabilitation training.

Robotic-assisted rehabilitation training

Advantages

(1) The increase in mobility is beneficial to
learning, communication, motivation, and
social interaction [14].

(2) Better steerability [14].
(3) Higher intensity gait therapy [16].

Disadvantages
(1) Lack of personalized robot-assisted training

(e.g., speed parameter) [17].
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computer-based interactive applications were applied in
rehabilitation design; the research found that MediqVR
training improves the patients’ intuition, communication
and expression ability, enable them to carry out social activ-
ities naturally, and reduce the patients’ social anxiety [26].
We summarized the advantages and disadvantages of virtual
reality- (VR-) based training in Table 3.

2.4. Mobile Health (mHealth) Technology. TBI can lead to
severe motor, cognitive, and emotional disturbance, and the
rehabilitation of TBI is a long process. Fortunately, Mobile
Health (mHealth) is an emerging technology, which can help
to diagnose and manage patients with TBI greater.

One study explored that the effectiveness of a prospective
memory assists method combining smartphones with Web-
based calendars in community-dwelling patients with trau-
matic brain injury [27]. Patients were asked to use a windows
phone- (version 7.5) based smartphone as the primary mem-
ory compensation strategy during the intervention phase,
avoiding the use of existing assistive tools and strategies. A
study of 13 patients received a group-based therapy for six
weeks, and the result supported that the smartphone
improved patients’ memory problems significantly. Another
study assessed compliance with an 8-week intervention daily
ecological momentary assessments (EMA) conducted via a
smartphone application, and the result also demonstrated
the efficacy of mHealth system [28]. There are also reports
of new technologies that Interactive iBook-Based Patient
Education be applied to improve the self-reported measures
of patient and family knowledge, and it is helpful to improve
the potential anxiety and other symptoms after TBI [29]. The
advantages and disadvantages of Mobile Health (mHealth)
Technology are summarized in Table 4.

3. Brain-Computer Interfaces (BCI)

Brain-computer interfaces (BCI) are developing into a possi-
ble method to replace the brain’s normal output pathways of
peripheral nerves and muscles, and allowing paralytic
patients can use a new method of communication and com-
puter control, which has developed significantly over the past
several decades [30]. Brain-computer interface (BCI) can
convert brain signals obtained by noninvasive and invasive
methods into control signals of some external devices, such
as computer cursor or robot limb [31].

Many clinical studies confirmed the effectiveness of BCI
in the rehabilitation of patients with TBI [32, 33]. Morrison

et al. applied Hopfield neuronal networks to prevent the loss
of memory in TBI patients by using cerebral organoids or
external microelectronics, which provide a starting point
for new treatment strategies [34]. In addition, the integration
of brain-computer interface (BCI) and functional electrical
stimulation (FES) technologies also bring better treatment
[35]. Although the BCI technology has advanced signifi-
cantly over the years, it still faces many challenges. These
challenges mainly include signal degradation (from
implanted recording electrodes), accuracy and robustness of
neural decoding algorithms over time, miniaturization of
the system, adverse events from using FES, and ease of use
of whole system et al., so the application of BCI in TBI reha-
bilitation still need further exploration. We summarized the
advantages and disadvantages of brain-computer interfaces
(BCI) in Table 5.

4. Noninvasive Brain Stimulation (NIBS)

In the past few years, the extensive use of noninvasive brain
stimulation (NIBS) technology has led to a significant devel-
opment in our understanding of brain behavioral relation-
ships [36]. As a potential treatment for neurological and
psychiatric diseases, including traumatic brain injury, it has
also received extensive attention [37]. NIBS mainly includes
transcranial direct current stimulation (tDCS) and transcra-
nial magnetic stimulation (TMS).

4.1. Transcranial Direct Current Stimulation (tDCS). Trans-
cranial direct current stimulation (tDCS) is one method of
NIBS. It can increase or decrease cortical excitability accord-
ing to different polarities (anode or cathode), regulate synap-
tic plasticity through long-term inhibition or enhancement,
and promote long-term functional recovery [38]. It can pro-
vide a safe and noninvasive method for regulating neural
excitability during neurorehabilitation.

In 2014, Middleton et al. [39] conduct a study, which
enrolled 5 patients with chronic neurologic insult, which
stroke or traumatic brain injury more than 6 months. Partic-
ipants were requested to complete 24 courses (40 minutes,
three times a week) of upper limb physical therapy (UE-
PT) and to perform bihemispheric tDCS on the motor cortex
at a speed of 1.5MA in the first 15 minutes of each course.
The result indicated that this therapy improves patients’ indi-
cators significantly. The emergence of posttraumatic disor-
ders of consciousness (DOC) increases the mortality of
patients and restricts their rehabilitation. A double-blind

Table 3: The advantages and disadvantages of virtual reality- (VR-)
based training.

Virtual reality- (VR-) based training

Advantages
(1) More usable and cheaper tools [20, 21].
(2) Well-tolerated [24].

Disadvantages

(1) Accessibility and the cost of virtual tools [20].
(2) VR assessment protocols appear to be

primarily implemented for mild TBI [20].
(3) Eye fatigue [24]

Table 4: The advantages and disadvantages of Mobile Health
(mHealth) Technology.

Mobile Health (mHealth) technology

Advantages
(1) Low-cost [27].
(2) Allowed the clinician to provide focused and

personalized information [29].

Disadvantages
(1) These data represent a small sample, broader

TBI population should be exercised with
caution [28].
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RCT study has found that tDCS can effectively improve the
consciousness disorder of the people with TBI [40]. The sys-
tematic review of transcranial direct current stimulation
(tDCS) effects on the rehabilitation of traumatic brain injury
(TBI) also supported that although tDCS has been used in
clinical treatment, it still needs further improvement, and
the after-effects of tDCS are mostly short lived [41]. The
advantages and disadvantages of transcranial direct current
stimulation (tDCS) are summarized in Table 6.

4.2. Repeated Transcranial Magnetic Stimulation (rTMS).
rTMS is another noninvasion method to stimulate the human
brain. It can influence brain plasticity and cortical reorgani-
zation through stimulation-induced changes in neuronal
excitability, and the treatment effects of rTMS on cortical
excitability depend on the stimulation parameters applied,
including the stimulus intensity, frequency, and duration of
stimulation [42]. The low-frequency rTMS (<1Hz) applied
at the motor threshold or slightly suprathreshold intensities
result in a suppression of cortical excitability, and high-
frequency (≥5Hz) suprathreshold stimulation will lead to
increased cortical excitability [43, 44].

Disorders in memory and neural behavior are a common
sequence of TBI. A study shows that low-field magnetic stim-
ulation (LFMS) improved the cognitive and motor function
of TBI mice significantly. The neuroprotective effect of LFMS
may be achieved through the regulation of cellular prion pro-
tein (PrPc) and/or circadian rhythm-related proteins [45]. A
case report found that rTMS could improve the neural activ-
ity, to regulate the neural activity, and/or to facilitate recovery
in patients with disturbance of consciousness after TBI [46].
Another study confirmed that high-frequency transcranial
magnetic stimulation could reduce the pain scores of patients

with TBI and improve quality of life [47]. Headache is
another common symptom after TBI; Leung et al. conducted
a study to test the effectiveness of rTMS in headache after
TBI; the result indicated that rTMS can alleviate the head-
ache symptom and provide a transient mood-enhancing ben-
efit [48].

Although rTMS has been widely used in the rehabilita-
tion of TBI, there are still a lot of areas that need to improve.
There is evidence that rTMS may be led to adverse events
such as seizure [49], so we should consider the safety when
we use it. The advantages and disadvantages of Repeated
Transcranial Magnetic Stimulation (rTMS) are summarized
in Table 7.

5. Wearable-Assisted Devices

Wearable-assistive devices have been used in the rehabilita-
tion of neurological disorder such as traumatic brain injury
widely. According to the report [50], Mikołajczyk et al. car-
ried out the research and design of the system for elbow reha-
bilitation which consists of a single-degree-of-freedom
(SDOF) solution and a single-axis stepper motor with a con-
troller. They designed an exoskeleton, a wearable, external
structure which can support or even replace the muscle actu-
ation in the patient, and the system promotes the rehabilita-
tion of upper limb function after TBI. Portable electronic aids
have also developed rapidly in recent years. In the study [51],
we learned that portable electronic aids may improve the
function of patients with TBI in the areas of learning, organi-
zation, and initiation, but its clinical application may be lim-
ited by its high price and low clinical confidence. The
advantages and disadvantages of wearable-assistive devices
are summarized in Table 8.

Table 5: The advantages and disadvantages of brain-computer interfaces (BCI).

Brain-computer interfaces (BCI)

Advantages

(1) Invasive BCI: High accuracy [31]
(2) Increase remote access to rehabilitation supporting transition into home [32].
(3) Allows for a better control of the system as well as greater effects on brain reorganizations [33].
(4) Implantable BCIs have provided neural recordings with increased spacial resolutions [35].

Disadvantages

(1) Limited ability to represent more than two signal output choices [30].
(2) The risks and expenses associated with the surgery [31].
(3) Signal degradation (from implanted recordings electrodes), accuracy and robustness of neural decoding algorithms over

time, miniaturization of the system, muscle fatigue when using FES, and overall system ease-of-use [35].

Table 6: The advantages and disadvantages of transcranial direct current stimulation (tDCS).

Transcranial direct current stimulation (tDCS)

Advantages

(1) Relative ease of use and good safety profile [37].
(2) A safe, noninvasive technique [39].
(3) Stimulation was well-tolerated [39].
(4) It is a painless, noninvasive, easily applied, and effective therapy [40].

Disadvantages

(1) There is an ongoing debate about the precise neurophysiological processes that are stimulated by these techniques [36].
(2) They can only directly affect activity in cortical regions [36].
(3) Did not focus on possible late-occurring side effects or side
(4) Effects that might be caused by intensified use [36].
(5) Lack of large-sample clinical trials [40].
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6. Discussion

In this paper, we summarized the application of interdisci-
plinary combination between medicine and engineering in
the rehabilitation of traumatic brain injury. With the rapid
development of science and technology, the interdisciplinary
combination between medicine and engineering technology
brings new hope to TBI patients. Artificial intelligence (AI),
brain-computer interfaces (BCI), noninvasive brain stimula-
tion (NIBS), and wearable-assistive devices have been widely
used in the rehabilitation of patients with TBI; meanwhile,
there are still some areas that need to improve.

First, as summarized above, we can see that the applica-
tion of these technologies lacks high evidence from clinical
trials, so we should conduct more clinical trials to prove their
effectiveness in the future. When it comes to the application
of virtual reality (VR), we must consider the limitations of
it. The application of virtual reality technology in clinical
practice is mainly limited by two factors: accessibility and
the cost of virtual tools [20]. Additionally, Many interdisci-
plinary combinations between medicine and engineering
technologies lack standardized treatment procedures; we
should make efforts to develop the individualized, precise
treatments in the future.

Secondly, clinician attitudes are important which can
affect the use of any assistive technology in the training and
supporting for the rehabilitation of TBI patients, so we
should improve the awareness of clinician for the new reha-
bilitation facility. Moreover, according to report [52], tradi-
tional Chinese medicine therapy especially acupuncture and
moxibustion therapy is a benefit to the rehabilitation of TBI
patient; He et al. showed that early application of acupunc-
ture gets better effects on restoration of arousal function of
the brain in patients with TBI than functional electrical stim-

ulation. So whether we can further the role of acupuncture
therapy.
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