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Abstract

A traceable biomarker is a member of a disease’s molecular pathway. A disease may be

associated with several molecular pathways. Each different combination of these molecular

pathways, to which detected traceable biomarkers belong, may serve as an indicative of the

elicitation of the disease at a different time frame in the future. Based on this notion, we intro-

duce a novel methodology for personalizing an individual’s degree of future susceptibility to

a specific disease. We implemented the methodology in a working system called Suscepti-

bility Degree to a Disease Predictor (SDDP). For a specific disease d, let S be the set of

molecular pathways, to which traceable biomarkers detected from most patients of d belong.

For the same disease d, let S0 be the set of molecular pathways, to which traceable biomark-

ers detected from a certain individual belong. SDDP is able to infer the subset S00 �{S-S0} of

undetected molecular pathways for the individual. Thus, SDDP can infer undetected molec-

ular pathways of a disease for an individual based on few molecular pathways detected

from the individual. SDDP can also help in inferring the combination of molecular pathways

in the set {S0+S00}, whose traceable biomarkers collectively is an indicative of the disease.

SDDP is composed of the following four components: information extractor, interrelationship

between molecular pathways modeler, logic inferencer, and risk indicator. The information

extractor takes advantage of the exponential increase of biomedical literature to automati-

cally extract the common traceable biomarkers for a specific disease. The interrelationship

between molecular pathways modeler models the hierarchical interrelationships between

the molecular pathways of the traceable biomarkers. The logic inferencer transforms the

hierarchical interrelationships between the molecular pathways into rule-based specifica-

tions. It employs the specification rules and the inference rules for predicate logic to infer as

many as possible undetected molecular pathways of a disease for an individual. The risk

indicator outputs a risk indicator value that reflects the individual’s degree of future suscepti-

bility to the disease. We evaluated SDDP by comparing it experimentally with other meth-

ods. Results revealed marked improvement.
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Introduction

Biomarkers are biological molecules present in blood, bodily fluids, and tissues. They are clas-

sified as either direct or indirect disease markers [1]. Direct biomarkers are directly indicative

of a disease. Biomarkers can help in the early detection and diagnosis of diseases. This in turn

facilitates the prevention of diseases and promotes potential therapeutic targets. Thus, bio-

markers are a good means for determining individuals with subclinical diseases before their

progression to clinical diseases [1].

Combining several biomarkers can identify individuals with high risk for developing a dis-

ease than individual biomarkers [2,3]. Therefore, compiling biomarker data from multiple lit-

erature associated with biomarker-disease associations has become a necessity for maximize

the pool of biomarkers. However, compiling such large-scale pool of biomarkers is infeasible

due to the practical challenges and resource costs involved [4]. This has led some current

computational methods to take advantage of the exponential increase in biomedical literature

as a rich source of biomarker information [5]. For example, MEDLINE database [6], which

currently indexes more than 2.5 million articles, contains valuable information related to bio-

markers. These methods employ text mining techniques for extracting and analysing bio-

marker-disease association from the literature. However, these methods have not been able to

sufficiently coordinate between the findings of the different literature associated with biomark-

ers. This has resulted in the lack of the following:

• Accuracy of extracting biomarker-disease terms.

• Identifying the common biomarkers that test positive among most patients with a specific

disease.

• Knowledge of the combination of biomarkers, whose collective presence is likely to induce a

specific disease.

We propose in this paper a novel methodology for personalizing an individual’s degree of

future susceptibility to a specific disease. The methodology was developed in such a way that it

overcomes the limitations of current methods outlined above. We implemented the methodol-

ogy in a working system called Susceptibility Degree to a Disease Predictor (SDDP). The pro-

posed system SDDP is able to predict the degree of future susceptibility to a specific disease for

an individual. It is composed of the following four components: information extractor, interre-

lationship between molecular pathways modeler, logic inferencer, and risk indicator.

The information extractor extracts from biomedical literature the common traceable bio-

markers of a specific disease. The component employs novel strict rule-based information

extraction techniques constructed based on established linguistic theories. These strict rules

ensure that only the traceable biomarker terms that are closely associated with a disease’s term

are extracted.

The interrelationship between molecular pathways modeler models the hierarchical interre-

lationships between the molecular pathways, to which the traceable biomarkers extracted by

the information extractor belong. This helps in inferring the combination of molecular path-

ways, whose traceable biomarkers collectively is an indicative of the disease.

The logic inferencer transforms the hierarchical interrelationships between the molecular

pathways into rule-based specifications. It also infers all an individual’s undetected molecular

pathways of the disease based on a few molecular pathways of the disease, to which traceable

biomarkers detected from the individual belong. This is crucial because, the more molecular

pathways of a disease inferred for an individual, the more accurate is the prediction of his/her

degree of future susceptibility to the disease. With reference to the hierarchical
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interrelationships between the molecular pathways, the component first composes rule-based

specifications that reflects the relationships between the molecular pathways of a specific dis-

ease. Then, the component uses the initial molecular pathways, whose traceable biomarkers

were detected, as given premises to recursively trigger the appropriate specification rules by

applying the standard inference rules of predicate logic. This leads to inferring as many as pos-

sible molecular pathways of the disease for the individual.

Each different combination of molecular pathways, to which detected traceable biomarkers

belong, gives a different indication of future degree of susceptibility to the disease [2,3]. SDDP

employs this fact to serve as an indicative of future elicitation of the disease for a specific indi-

vidual. Towards this, the risk indicator component assigns a risk indicator value for the indi-

vidual’s degree of future susceptibility to the disease based on his/her inferred combination of

deficient molecular pathways.

We provide description and limitation of current approaches in Section “Related Work”.

We provide our motivation and outline of the approach in Section “Motivation and Outline of

the Approach”. We describe the Information Extractor, Interrelationship between MPs Mod-

eller, Logic Inferencer, and Risk Indicator components of SDDP in Sections “Information

Extractor”, “Interrelationship between MPs Modeller”, “Logic Inferencer”, and “Risk Indica-

tor”, respectively. We experimentally evaluate the information extraction and ranking features

of SDDP in Sections “Evaluating the Information Extraction Feature of SDDP Experimentally”

and “Evaluating the Ranking Feature of SDDP Experimentally”, respectively. We provide our

conclusion in Section “Conclusion”.

Related work

Description of current approaches

Most current computational methods that attempt to identify the risk factors associated with a

disease employ statistical-based or text mining-based techniques. Some of these methods

investigated single nucleotide polymorphisms (SNPs) genetic variants for their role in diseases.

They employed statistical methods (such as logistic regression and neural networks) and sev-

eral non-parametric techniques (such as the set association technique) [7]. Frau et al. [8]

employed network medicine and systems genomics approaches to identify genetic variations

associated with diabetes and 12 other traits. The authors could identify a set of 38 genetic vari-

ants with cross traits effects. Kycia et al. [9] employed epigenomic and functional genomic

approaches to identify the mutated genes associated with a disease. The authors discovered a

possible role of C2CD4B and C2CD4A genes as therapeutic targets for preventing diabetes.

Vana et al. [10] investigated the characteristic features of mutated genes and their levels of risk

associated with a disease. The authors identified protein encoding genes, whose mutations

have great impact on the development of diabetic condition.

The relationships among disease-related proteins were investigated in [11] using the SciMi-

ner text-mining tool [12], which uses a dictionary and rule-based technique for recognizing bio-

logical terms in texts. The extracted dataset contained 26,716 relationships between disease-

related proteins. Einarson et al. [13] extracted data from literature published between 2007 and

2017 to estimate the prevalence of CVD among patients with diabetes. The results showed that

CVD is a major cause of comorbidity among patients with diabetes. Abbasi et al. [14] extracted

relationships between diseases’ incidents and 167 blood and urinary-based markers.

A number of studies employed logic-based computational methods to infer the risk factors

associated with a disease. Wynn et al. [15] demonstrated that logic-based models can be used

effectively to perform biological inferences about the fundamental characteristics of molecular

networks. Jafari et al. [16] demonstrated that logic-based methods are useful for improving
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static conceptual models in molecular biology. Palù et al. [17] demonstrated that logic-based

models can be used effectively for predicting protein structures and functions.

Inflammatory markers play a role in the progression and development of diseases [18]. For

example, about 127–129 inflammatory cytokines have been elevated on the onset of a disease

[18]. Several methods employed data mining techniques for investigating these markers as

potential predictors of the development of diseases. Some of these methods found elevated lev-

els of markers among individuals with diseases [19].

Limitations of the current approaches

We outline below the four major limitations of the current approaches described in Subsection

“Description of Current Approaches”:

1. Assessing only a single outcome: Often, traditional biomarker methods assess only a single

(or a few) biomarker for its association with a disease [20]. Investigating only a single bio-

marker is likely to have inherent limitations. Most of these methods target only specific case

studies or/and risk factors. However, most diseases are multifactorial where several bio-

markers and risk factors are involved. Moreover, these methods become unstable as more

SNPs are identified [7]. This is because, as the number of parameters surpasses the number

of cases, parameter fluctuation estimates become extremely large.

2. Inability to compose a clear disease’s combination of biomarkers, whose collective presence is an
indicative of the disease: Each different combination of deficient molecular pathways of a dis-

ease gives a different indication of the susceptibility to a disease [2,3]. Current methodologies

have not come up with a clear disease’s combination of biomarkers, whose collective presence

is likely to induce the disease. This is because, in part, identifying a combination of biomarkers

for each disease requires a large number of phenomic associations to be at hand, which in

turn, requires a large number of biomarkers to be confirmed by many clinical outcomes [2].

3. Performing predictions that may not always be accurate: The more molecular pathways of a

disease detected for an individual, the more accurate is the prediction of his/her degree of

future susceptibility to the disease. However, most current methodologies base their predic-

tions of a disease on only a few deficient molecular pathways, whose biomarkers test posi-

tive. This is because the procedure requires a large number of biomarkers to be checked

beforehand by medical tests, which is laborious and expensive. Therefore, the predictions

of these methodologies may not always be accurately.

4. Associating unrelated biomarker-disease terms: Most of the information extraction methods

in the area of biomarkers employ NLP-based techniques that do not follow strict linguistic

principles. This results in associating too many biomarker-disease terms, some of which are

not really associated. Employing strict NLP techniques is crucial, especially when applied to

large literature that lack standardization, which is the case in current biomedical literature.

Moreover, most of the methods that employ statistical techniques (such as logistic regres-

sion and neural networks) may produce many false positive results, if the number of predic-

tor variables becomes rather large [21].

Motivation and outline of the approach

Motivation

To the best of our knowledge, this is the first research work that combines the following three

techniques for predicting an individual’s degree of future susceptibility to a specific disease:
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information extraction, inference rules of predict logic [22], and modeling the interrelation-

ships among the molecular pathways of a specific disease. We implemented each of the three

techniques in a separate component of the SDDP system. Combining the three techniques

(i.e., components) enables SDDP to overcome the limitations of current methods outlined in

Subsection “Limitations of the Current Approaches”. Moreover, this is the first research work,

to the best of our knowledge, that employs the inference rules of predict logic [22] to infer as

many as possible undetected molecular pathways of a disease for an individual based on a few

molecular pathways of the disease, to which traceable biomarkers detected from the individual

belong. The logic-based inference component of SDDP ensures that the collective combination
of inferred molecular pathways of a disease for an individual, whose traceable biomarkers were

detected from the individual, is likely be an indicative of the disease. Combining the three tech-

niques enables SDDP to overcome the four major limitations of the current approaches out-

lined previously as follows:

• Overcoming limitation 1: SDDP overcomes this limitation by assessing the association

between any number of detected traceable biomarkers. Actually, the more traceable bio-

markers of a disease detected for an individual, the more accurate is the SDDP’s prediction

of the individual’s degree of future susceptibility to a disease. SDDP extracts biomarker data

from a large number of study sources to quantify biomarker-disease associations. This facili-

tates subgroup analyses, which leads to more accurate biomarker exposure estimation [2,3].

This also enables SDDP to investigate with better accuracy the following: (1) a large bio-

marker exposure range, and (2) biomarker population subgroups and their associations with

specific diseases.

• Overcoming limitation 2: SDDP overcomes this limitation by composing a clear list of the

common traceable biomarkers that is detected in most patients with a specific disease. It

could so by coordinating and integrating the findings/data found within 463,331 biomedical

literature that focus on biomarkers. The outcomes of current methods in coordinating

between the findings/data of these studies have not been sufficient enough to compose clear

lists of the common traceable biomarkers detected in most patients with a specific disease.

Also, SDDP overcomes limitation 2 by predicting the smallest and tightly defined set of

molecular pathways that elicit a specific disease. It does so by modeling the hierarchical

interrelationships between the molecular pathways of a specific disease based on their over-

lapping characteristics.

• Overcoming limitation 3: SDDP overcomes this limitation by personalizing an individual’s

degree of future susceptibility to a specific disease. It does so by employing the inference

rules of predict logic to infer as many as possible undetected molecular pathways of a disease

for an individual based on a few molecular pathways of the disease, to which traceable bio-

markers detected from the individual belong.

• Overcoming limitation 4: SDDP overcomes this limitation by employing novel strict NLP

rule-based information extraction techniques. These strict rules enable SDDP to extract only
the traceable biomarkers terms that are closely associated with a disease terms based on the

structure of sentencese. SDDP extracts only traceable biomarker-disease pair of terms that

co-occur: (a) significantly within texts, and (b) in significant number of texts. Towards this,

SDDP computes terms’ co-occurrence probabilities using Z-score [23], where two terms are

considered to be associated, if their co-occurrence probability of being associated is signifi-

cantly greater than being unassociated.
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Outline of the approach

Fig 1 presents the system architecture. It shows the relationships between the four components

comprising our proposed system SDDP. Table 1 presents abbreviations of key terms used in

the paper. We define below key concepts used in the paper:

• Disease molecular pathway: It is a pathway that is known to have at least one disrupted mole-

cule associated with a disease. For example, estrogen receptor, overexpression, and EGFR

are pathways for breast, gastric, and colorectal cancers, respectively. The involved molecules

share specific recognizable phenotypic pattern and interacting signaling pathways, which

can be manifested in the disease regulatory molecular network. This is caused by deregula-

tion of the molecular network of the disease, which can result in disordered physiological

processes associated with the disease. Such data can be obtained from clinical notes about

patients’ diseases.

• Molecular Characteristic Tree: It is a representational model that depicts the hierarchical

interrelationships between the molecules associated with a specific disease based on their

overlapping biological characteristics.

• Molecular Pathway Interrelationships Network: It is a network representing the hierarchical

interrelationships between the molecular pathways of a disease based on their shared mole-

cules manifested in the disease’s Molecular Characteristic Trees.

• Biomarker: It is a measurable substance, process, or structure indicator of a disease. In this

work, we only consider measurable molecular substances (i.e., traceable biomarkers) that

predict a patient’s specific disease.

Fig 1. SDDP system architecture.

https://doi.org/10.1371/journal.pone.0243127.g001
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With reference to the system architecture in Fig 1, we outline below the sequential process-

ing steps taken by SDDP to predict the degree of future susceptibility to a specific disease for

an individual:

1. Information extractor component: This component extracts from biomedical literature the

common MMs that test positive among most patients with a specific disease. Section “Infor-

mation Extractor” describes this process in details.

2. Interrelationship between MPs modeller component: This component models the hierar-

chical interrelationships between the molecular pathways of a specific disease, whose MMs

were extracted by the information extractor component. The component performs the

modelling through the following steps:

a. Constructing MCTs: The component constructs Molecular Characteristic Trees (MCTs)

for each set S of MMs that belongs to a same molecular pathway. Each tree is rooted at

one of the MMs in the set S. Section “Constructing MCTs” describes this process in

details.

b. Constructing MPIN: The component constructs a MP Interrelationships Network

(MPIN) representing the hierarchical interrelationships between the MPs of the disease

based on their shared biological characteristics manifested in their MCTs. Section “Con-

structing MPIN” describes this process.

3. Logic inferencer component: This component applies the inference rules for predicate logic

to infer as many as possible undetected molecular pathways of a disease for an individual

based on a few molecular pathways of the disease, to which MMs detected from the individ-

ual belong. The component performs the inferencing through the following two steps:

a. Composing rule-based specifications: The component composes specification rules that

reflect the interrelationships between the different MPs of a disease. It composes these

rules with reference to the MPIN (recall step 2-b). Section “Composing Rule-Based Spec-

ifications” describes this process in details.

b. Applying the inference rules for predicate logic: This component uses the initial molecu-

lar pathways, whose biomarker molecules tested positive by medical screening for the

individual, as given premises to recursively trigger the appropriate specification rules. It

does so by applying the standard inference rules for predicate logic. Section “Applying

the Inference Rules for Predicate Logic” describes this process.

4. Risk indicator component: Based on the combination of molecular pathways of a disease

inferred by the logic inferencer component for an individual, this component outputs a risk

indicator value. The indicator reflects the individual’s degree of future susceptibility to the

disease.

Table 1. Abbreviations of key terms used in the paper.

Term Abb. Term Abb.

Molecule Pathway MP Natural Language Processing NLP

Molecular Marker MM MP Interrelationships Network MPIN

Type 2 Diabetes T2D Molecular Characteristic Tree MCT

Part Of Sentence Tree POST Single Nucleotide Polymorphism SNP

https://doi.org/10.1371/journal.pone.0243127.t001
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Information extractor

For most diseases, there are currently unclear lists of the common MMs that test positive

among most patients with these diseases [4]. However, there has been an exponential increase

in biomedical literature associated each disease, which can be used as sources for composing

these lists. Unfortunately, there is a lack of coordination between the data found within these

different studies. Moreover, there is a lack of coordination between the findings of these stud-

ies [24]. This has significantly diminished the effectiveness of these studies. SDDP takes advan-

tage of this literature to computationally and automatically extract from them the common

MMs that test positive among most patients with a specific disease. SDDP will employ the

extracted MMs to model the hierarchical interrelationships between the MPs containing these

MMs.

We first retrieve the biomedical literature associated with a specific disease from a reputable

biological database. In the implementation of SDDP, we retrieved the abstracts of biomedical

literature from PubMed [25]. We process the abstracted biomedical literature using the Java

library of OpenNLP [26]. OpenNLP provides the following services for processing Natural

Language texts. It parses, tokenizes, segments sentences, tags Part-Of-Speech (POS), recog-

nizes and extracts named entity, and provides co-reference resolution, etc. From each set of

publications associated with a specific disease, SDDP extracts the MM terms that are semanti-

cally related to the disease terms. We retrieved human genes, genetic disorders, and traits from

the Online Mendelian Inheritance in Man (OMIM) [27,28]. We retrieved expression profiles

of human protein coding genes from the Human Protein Atlas (HPA) [29].

The co-occurrence of a molecular term t and a disease term d in a sentence may not always

be an indicative that t and d are really related [30]. For t and d to be associated, they have to be

semantically related in the sentences. SDDP employs novel computational linguistic tech-

niques for extracting the MM terms that are semantically related to a disease term. The tech-

niques consider not only the explicit co-occurrences of terms but also their implicit co-

occurrences in sentences.

We composed novel strict information extraction NLP-based rules that govern the extrac-

tion of semantically related terms. The rules are constructed based on established linguistic

principles. We investigated many linguistics principles to compose the strict rule-based tech-

niques. These strict rules ensure only the MM terms that are semantically related to a disease

terms are extracted based on the structure of sentences. These rules overcome the limitations

of most current NLP-based information extraction techniques, which may associate terms that

are not necessarily related.

In the framework of SDDP, a sentence is perceived as a hierarchical structure comprised of

constituents (i.e., clauses, units, and groups) [31]. Constituents are determined based on a set

of linguistic rules that define the Constituents’ appropriate syntactic composition. Each sen-

tence is conceived as a ordered rooted tree called POST. The tree reflects the syntactic struc-

ture of a sentence based on its constituents’ hierarchical dependency relations. SDDP

considers a MM term and a disease term to be semantically related, if their co-occurrence

probability of being semantically related is significantly greater than being unrelated in sen-

tences. Towards this, it computes the co-occurrence probabilities of MM-disease terms using

Z-score [23].

Due to space limitation, we describe below only two of our proposed strict NLP-based

information extraction rules. The first rule is based on the linguistic principle that states an

antecedent is closely related to subsequent terms in sentence, if these terms are linked to the

antecedent by some pronoun (e.g., “whom”, “which”, “it”, “who”, and “that”) [32]. Based on

this, we replace each pronoun with the closest terms that are part of the predecessor
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independent clause. The second rule is based on the linguistic principle that states a pair of

independent clauses linked by a preposition modifier (e.g., “whereas”, “while”, and “but”) is

unrelated [33,34]. Based on this, we consider the co-occurrence of a MM-disease pair of terms

unrelated, if each of the terms is mentioned in a separate independent clause and the two inde-

pendent clauses are linked by a preposition modifier. We present the complete set of our pro-

posed NLP rules in Appendix A of the supplemental material in S1 File.

Example 1. Consider Fig 2 and the following sentence: “In some studies, SLC6A2 and

SLC6A4 are linked, whereas susceptibility to OCD was linked to G1287A and 5-HIT”. Each of

the nouns “SLC6A4” and “SLC6A2” is unrelated to each of the nouns “5-HIT”, “OCD”, and

“G1287A”, because the two sets of nouns are connected by the preposition modifier “whereas”.

The nouns “SLC6A4” and “SLC6A2” are related. The nouns “5-HIT”, “OCD”, and “G1287A”

are related.

Interrelationship between MPs modeller

Constructing MCTs

Most molecules associated with a disease have overlapping biological characteristics. To

account for these shared characteristics, we construct Molecular Characteristic Trees (MCTs)

for each MP of a specific disease. An MCT models the hierarchical interrelationships between

the molecules of a MP based on their overlapping biological characteristics. A set of MCTs are

constructed for each MP. The number of these MCTs is the number of the MMs extracted by

the information extractor component that belongs to the MP. Each MCT will be rooted at a

node representing one of the MMs of the MP. Let S be a set of MPs of a specific disease, whose

MMs were extracted by the information extractor component. To account for the common

biological characteristics among the molecules of each MP MP 2S, we construct MCTs for

MP. Each MCT mct that belongs to MP is constructed as follows. mct will be rooted at a node

Fig 2. POST for the sentences presented in Example 1. A compound unit consists of two or more conjuncts connected

by one or more coordinators. A conjoint clause is a constituent linked to another constituent by a coordination. An

adverbial clause contains conjunctive adverbs.

https://doi.org/10.1371/journal.pone.0243127.g002
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ni representing a MM mm2MP. Each molecule mol that is biologically related to mm is repre-

sented by a node nj and is connected to ni by an edge. The molecules that are biologically

related to mol are represented by nodes, which will be connected to nj.
That is, an MCT is the outcome of transforming a molecular network structure into a hier-

archical tree-like structure for the purpose of identifying the relative associations of molecules

to a root molecule node. The transformation from a network structure to a tree structure is

performed by removing multiple parentage of nodes. That is, each node should have only one

parent node. This is accomplished by performing bottom-up search runs for each branch

structure starting from the root node. At each run, all associations (i.e., edges) that connect a

node n to the root node are removed except for the one that maintains the shortest path from

n to the root. If there are more than one shortest path from n to the root, only one of them is

selected at random.

Example 2 (running example). Consider the MP “CXC chemokine”, which is involved in

T2D. Fig 3 shows a fragment of the MCTs for “CXC chemokine”. The two MCTs shown in the

figure are rooted at the MMs “IL-8” and “TNF- α”, which belong to “CXC chemokine” and are

involved in T2D. The figure shows fragments of the interrelationships between some of the

molecules related to the two MMs.

Constructing MPIN

To infer the MPs, to which detected traceable biomarkers belong, we need to identify their

interrelationships. These interrelationships will be transformed by SDDP into inference speci-

fication rules, which will be used by the system to infer as many as possible undetected molecu-

lar pathways of the disease for an individual. Towards this, we construct a network

representing the hierarchical interrelationships between the MPs of the disease based on their

shared molecules manifested in the MCTs of these MPs. We call the resulting network MP

Interrelationships Network (MPIN).

An MPIN is constructed as follows. Each set of molecules that belongs to a MP MPx is rep-

resented by a node named MPx in the MPIN. Two MPs MPx and MPy in the MPIN are linked

by an edge, if there is at least on common molecule shared by MPx and MPy. That is, S(MPx) \
S(MPy) 6¼ ;, where S(MPx) and S(MPy) are the sets of molecules that belong to MPx and MPy,
respectively. The hierarchical relationship between MPx and MPy is depicted in the MPIN

Fig 3. A fragment of the MCTs for the MP “CXC chemokine” associated with T2D.

https://doi.org/10.1371/journal.pone.0243127.g003
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based on the hierarchical level of their lowest common molecule relative to: (1) the lowest root

node among the set of root nodes of the MCTs that belong to MPx, and (2) the lowest root

node among the set of root nodes of the MCTs that belong to MPy.
Let ncom be the lowest common molecule node. Let nx be the lowest molecule root node of

MPx. Let ny be the lowest molecule root node of MPy. Let �x be the hierarchical level of ncom
with regard to nx. Let �y be the hierarchical level of ncom with regard to ny. If �x < �y, an arrow

originating from MPy to MPx is initiated in the MPIN to depict the hierarchical relationship

between MPy and MPx. In this case, MPx is more specific than MPy.
Example 3 (running example). Fig 4 shows a fragment of MPIN depicting the interrela-

tionships between the MPs associated with T2D in our running example.

Logic inferencer

Composing rule-based specifications

We compose rule-based specifications that reflect the interrelationships between MPs, whose

detected traceable biomarkers collectively is an indicative of a disease. Eventually, these rules

will be used by SDDP as inference rules to infer as many as possible undetected molecular

pathways of a disease for an individual based on a few molecular pathways, to which traceable

biomarkers detected from the individual belong.

We composed these rules with reference to the MPIN that depicts the interrelationships

between MPs. Towards this, we convert the interrelationships between the MPs manifested in

the MPIN into transformation rules. Specifically, we convert the hierarchical interrelationships

between the MPs in the MPIN by chaining them together into logical transformation rules.

We compose the rule-based specifications in a format resemble the premises of predicate

logic [23]. A predicate is a logical statement composed of one or more variables. It is trans-

formed to a proposition by connecting its statements by logical connectives. In the framework

of SDDP, the specification rules are developed in the same manner. Specification rules are

updated periodically to reflect newly discovered MMs for a disease or/and newly published

works about the disease.

Fig 4. A fragment of MPIN depicting the hierarchical interrelationships between MPs associated with T2D in our running example. MPxyz denotes

the MP, whose name abbreviation is xyz.

https://doi.org/10.1371/journal.pone.0243127.g004
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Example 4 (running example). Fig 5 shows a fragment of specification rules that reflect the

interrelationships between the MPs associated with T2D. They are constructed with reference

to the MPIN in our running example in Fig 4. A complete list of these rules is shown in Appen-

dix B of the supplemental material in S1 File.

Applying the inference rules for predicate logic

The more molecular pathways of a disease inferred for an individual, the more accurate is the

prediction of the individual’s degree of future susceptibility to the disease. Therefore, we pro-

pose to use the inference rules of predict logic [22] to infer as many as possible undetected

molecular pathways of a disease for an individual based on a few molecular pathways, to which

traceable biomarkers detected for the individual belong. In the framework of SDDP, Prolog is

used as the logic programming language. This is because Prolog enables us to easily avoid infi-

nite loops by setting the search algorithm for matching predicates to breadth-first and by itera-

tive-deepening using meta-interpreters.

By matching an individual’s detected traceable biomarkers (e.g., MMs) that revealed abnor-

malities for a specific disease (e.g., by medical screening) with the corresponding ones in the

MCTs of the disease’s MPs, SDDP can identify the initial MPs associated with the disease for

the individual. SDDP will use these initial MPs as given premises to trigger the appropriate

specification rules (Section “Composing Rule-Based Specifications”) by applying the standard
inference rules for predicate logic. This will lead to implicitly infer as many as possible MPs of

the disease for the individual. Fig 6 shows the major standard inference rules for predicate

logic [23]. Thus, SDDP employs the following for inferring the MPs of a disease for an individ-

ual that are indicative of the disease: (1) the specification rules (i.e., premises) of a disease, (2)

the initial deficient MPs (i.e., given premises) for an individual identified by medical screening,

and (3) the standard inference rules for predicate logic (recall Fig 6).

The specification rules are triggered by applying the standard inference rules for predicate

logic. SDDP triggers recursively the specification rules using the given premises, auxiliary

Fig 5. A sample of specification rules that reflect the interrelationships between MPs associated with T2D

constructed with reference to the MPIN in Fig 4. Ri denotes rule/premise number i. The logic symbols “^”, “_”, and

“!” denote conjunction, logical disjunction, and implies respectively.

https://doi.org/10.1371/journal.pone.0243127.g005
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inferred premises, and the standard inference rules for predicate logic. At each recursion, a

specification rule (i.e., a premise) is triggered and applied to the premises that have been

proven previously. This will lead to a newly proven premise. The conclusions will be a set of

inferred MPs. The conclusions are valid, if they have been deducted from all previous premises

[23].

Example 5 (running example). Consider that the initial deficient MPs of T2D identified by

medical screening for an individual are MPsMB and MPCTM. As Fig 7 shows, the inference

rules could infer the following four MPs for the individual: MPTRXN (from step 5), MPATM

(from step 8), MPRRR (from step 10), and MPTRAN (from step 13).

Risk indicator

Each different combination of detected traceable biomarkers’ molecular pathways outputs by

component Logic Inferencer gives a different indication of future degree of susceptibility to

the disease [2,3]. That is, each different combination of molecular pathways, to which detected

traceable biomarkers belong, may serve as an indicative of the elicitation of the disease at a dif-

ferent time frame in the future. Thus, a combination of inferred MPs of a disease for an indi-

vidual can be an indicative of the individual’s degree of future susceptibility to the disease.

This led us to assign a risk indicator value for each combination of identified MPs of a specific

disease for a specific individual. Each indicator reflects an individual’s degree of future suscep-

tibility to a disease.

An indicator value is assigned to a combination of MPs of a disease for an individual as fol-

lows. Let S be the set of MPs of a specific disease. We assign a score to each combination c�S.

The score reflects the degree of association between the combination c and the disease. Specifi-

cally, it reflects the dominance status of c relative to each other combination c0 � S. First, we

Fig 6. Major standard inference rules for predicate logic.

https://doi.org/10.1371/journal.pone.0243127.g006
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compute the pairwise beats and looses for each combination. This is performed based on the

co-occurrences of the combination’s MPs in the abstracts of biomedical publications associ-

ated with a disease d under consideration. Combination ci beats combination cj, if the number

of times that the co-occurrence weight of ci is greater than that of cj in abstracts. Eventually,

each combination c is assigned a score, which is the difference between the number of times

that c beats the other combinations and the number of times it loses. Finally, the combinations

are ranked based on their dominance scores.

An individual is given a risk indicator value that reflects his/her future degree of susceptibil-

ity to the disease d as follows. Let cx be the combination of MPs output by component Logic

Inferencer for the individual (recall Section “Logic Inferencer”). The individual will be

assigned a risk indicator value corresponds to the dominance rank of combination cx. That is,

after all MP combinations are ranked based on their dominance scores, the individual will be

assigned a risk indicator value corresponds to the dominance rank of cx. In Appendix C of the

supplemental material in S1 File, we describe in details how risk indicators are computed.

Example 6. Consider that there are ten combinations of MPs: c1-c10. Consider that the

number of co-occurrences of each of the ten combinations in three biomedical publications

(p1-p3) associated with the disease under consideration is as shown in Table 2. Table 3 shows

how the score St of each of the ten combinations is computed based on its number of occur-

rences in the three publications presented in Table 2. For example, let c9 be the combination of

Fig 7. Inferring MPTRXN, MPATM, MPRRR, and MPTRAN from the given premises MPSMB and MPCTM, which are associated with T2D, as described in

our running example 5.

https://doi.org/10.1371/journal.pone.0243127.g007
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the MPs, to which detected traceable biomarkers from an individual belong. The individual

will be given the risk indicator 3 (see the last row in Table 3).

Evaluating the information extractor component of SDDP

experimentally

We implemented SDDP in Java and ran it under Windows 10 Pro and Intel(R) Core(TM) i7-

6820HQ processor. The RAM and CPU of the machine have 16 GB and 2.70 GHz respectively.

The objective of this test is to evaluate the quality of the information extraction feature of

SDDP. That is, we aim at evaluating the impact of the information extractor component of

SDDP on its prediction accuracy. This is because we wanted to evaluate our novel linguistic

strict rule-based information extraction techniques employed by the information extractor

component. As described in Section “Information Extractor”, these strict rules were con-

structed to ensure that only the biomarker terms (e.g., mutated genes biomarkers) that are

closely associated with a disease are extracted.

• We evaluated the information extraction feature of SDDP by comparing it with the following

four text mining methodologies: SCAIView [24,35], AEGDA [36], BeFree [37], and PKDE4J

[38]. For the evaluations, we used the reported results of AEGDA, BeFree, and PKDE4J. Spe-

cifically, we used the reported results of AEGDA, BeFree, and PKDE4J in [36]. Moreover, we

used the same four gold stand corpora and setting described in [36]. As for the evaluation of

SCAIView, we performed the following: (1) used the latest version of SCAIView Academia

Table 2. The number of co-occurrences of each of the ten MP combinations in three publications associated with

a disease as described in Example 6.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

p1 3 0 0 0 7 0 3 6 3 0

p2 0 3 7 3 0 0 0 3 0 4

p3 3 3 5 0 0 6 0 0 4 0

https://doi.org/10.1371/journal.pone.0243127.t002

Table 3. Beats/looses scores of the combinations of the MPs described in Example 6 based on their number of co-occurrences on the three publications as shown in

Table 2.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

c1 0 0 + - 0 0 - + + -

c2 0 0 + - - 0 - 0 + 0

c3 - - 0 - - 0 - - - -

c4 + + + 0 0 0 0 + + +

c5 0 + + 0 0 0 - 0 0 0

c6 0 0 0 0 0 0 0 + 0 0

c7 + + + 0 + 0 0 + + 0

c8 - 0 + - 0 - - 0 - 0

c9 - - + - 0 0 - + 0 -

c10 + 0 + - 0 0 0 0 + 0

Sci 0 +1 +8 -6 -1 -1 -6 +4 +3 -2

Risk Indicator 5 4 1 9 6 6 9 2 3 8

“+” denotes: combination ci beat combination cj. “-” denotes: combination ci lost to combination cj. “0” denotes: ci and cj have the same number of beats and looses. Sci
is the dominance score of ci.

https://doi.org/10.1371/journal.pone.0243127.t003
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[35] (accessed date May 31, 2020), and (2) ran queries consisting of a MeSH [39] disease

name and the keyword human genes. We evaluated SDDP using the same 10-fold cross-vali-

dation strategy reported in [36]. Below are brief descriptions of SCAIView, AEGDA, BeFree,

and PKDE4J:

• SCAIView [35,24]: SCAIView incorporates the following two external software components

for retrieving biomedical literatures: ProMiner (named entity recognition tool) and SCAI-

View (knowledge discovery framework). Retrieved biomedical texts are ranked based on the

frequency of co-occurrences of terms associations included within them.

• AEGDA [36]: Bhasuran and Natarajan [36] proposed a gene-disease association method

based on supervised machine learning. For easy reference, we are going to name the method

AEGDA "Automatic Extraction of Gene-Disease Associations”. The method adopts local

and global semantics and syntax techniques for extracting gene-disease associations from

the literature. It employs SVM classifier and ensemble learning.

• BeFree [37]: Bravo et al. [37] proposed a supervised learning-based method called BeFree

for identifying gene-disease associations extracted from biological texts. The method

employs machine learning techniques coupled with dependency kernel and text’s morpho-

syntactic features.

• PKDE4J [38]: Song et al. [38] proposed the text-mining system PKDE4J, which is an exten-

sion of the Stanford CoreNLP [40]. It employs rule-based relation and dictionary-based

entity extraction methodology.

Below are brief descriptions of the four gold standard corpora used in the evaluations of

AEGDA, BeFree, and PKDE4J:

• EU-ADR [41]: It is a multi-relation annotated corpus. The corpus is annotated with multiple

concepts (e.g., diseases, genes, drugs) and their interrelationships.

• GAD [42]: The corpus was released as a part of the BeFree system [37]. The corpus focuses

solely on the extraction of gene-disease associations including a large number of false, posi-

tive, and positive negative associations.

• CoMAGC [43]: It is a multi-faceted relation annotation corpus. The corpus focuses on gene-

cancer associations as well as the frequency of their co-occurrences. Specifically, the corpus

focuses on breast, prostate, and ovarian cancers.

• PolySearch [44]: The corpus was released as a part of the PolySearch system [45] for extract-

ing the associations between over ten biological concepts.

Since AEGDA and BeFree have reported results, we only ran SDDP and SCAIView against

the EU-ADR, GAD, CoMAGC, and PolySearch gold standard corpora. Table 4 presents

description of the corpora.

We computed the Recall, Precision, and F-value of SDDP and SCAIView using the follow-

ing standard formulas: Recall = TP/(TP+FN); Precision = TP/(TP+FP); F-value = (2 Precision

Table 4. Description of the corpora used in the evaluation.

EU-ADR GAD CoMAGC PolySearch

Number of abstracts 100 5330 408 374

Number of occurred diseases 964 5330 821 522

Number of unique diseases 126 923 3 10

https://doi.org/10.1371/journal.pone.0243127.t004
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� Recall)/(Precision + Recall), where: FP = False positive, TP = True Positive, and FN = False

Negative. Figs 8–11 plots the Precision, Recall, and F1-value using the EU-ADR, GAD,

CoMAGC, and PolySearch, respectively.

To further evaluate the impact of the information extractor component of SDDP on its pre-

diction accuracy, we constructed a version of SDDP, whose information extractor component

Fig 8. Comparing the performance of the four methods for extracting information pertaining gene-disease associations

from the EU-ADR corpus.

https://doi.org/10.1371/journal.pone.0243127.g008

Fig 9. Comparing the performance of the four methods for extracting information pertaining gene-disease associations

from the GAD corpus.

https://doi.org/10.1371/journal.pone.0243127.g009
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is replaced by PolySearch2 [45]. That is, the modified version of SDDP employs PolySearch2

rather than SDDP’s information extractor component for extracting genes and diseases terms

from the EU-ADR, GAD, CoMAGC, and PolySearch gold standard corpora. PolySearch2 is a

text mining tool for extracting relationships between genes, diseases, drugs, mutations, and

Fig 11. Comparing the performance of the four methods for extracting information pertaining gene-disease associations from

the PolySearch corpus.

https://doi.org/10.1371/journal.pone.0243127.g011

Fig 10. Comparing the performance of the four methods for extracting information pertaining gene-disease associations

from the CoMAGC corpus.

https://doi.org/10.1371/journal.pone.0243127.g010
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metabolites found within texts [45]. PolySearch2 supports generalized information extraction

queries. For example, a query could be: For a given term x, extract each term y associated with

x from biomedical publications, where x and y have significant co-occurrences in the publica-

tions. We ran the modified version against the four corpora described previously. Then, we

compared the prediction accuracies of the modified and unmodified versions of SDDP. Figs

12 and 13 show the results.

As Figs 8–11 show, SDDP outperformed SCAIView, AEGDA, BeFree, and PKDE4J. The

experimental results revealed also that the unmodified version of SDDP outperformed the

modified one, especially in terms of precision (recall Fig 12). This is attributed to the

Fig 12. The overall average Precision of the unmodified and modified versions of SDDP.

https://doi.org/10.1371/journal.pone.0243127.g012

Fig 13. The overall average Recall of the unmodified and modified versions of SDDP.

https://doi.org/10.1371/journal.pone.0243127.g013
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effectiveness of the strict linguistic rules employed by the information extractor component in

extracting not only explicitly mentioned molecular terms (e.g., genes) within texts, but also

implicitly mentioned ones. Some important terms pertaining biological molecules and diseases

may occur implicitly within biomedical texts. For instance, the nouns “p14ARF gene” and

“p53 protein” in Example 8 in Appendix 8 of the Supplemental Material in S1 File will be

determined by SDDP to be implicitly associated. Thus, information extraction techniques that

rely only on explicitly mentioned terms can miss such vital implicitly mentioned terms. So, the

employment of SDDP to the concept of semantic relationship between molecular terms in sen-

tences contributed to its performance over the other methods. This concept ensures each co-

occurrence of a pair of molecule terms in a sentence is disregarded, if the pair is unrelated

grammatically (recall Section “Information Extractor” and the Supplemental material). That

is, SDDP considers the co-occurrence of a pair molecule terms in a sentence a reflection of

their association only if the pair is semantically related in the sentence.

Evaluating the risk indicator component of SDDP experimentally

In this test, we aim at evaluating the risk indicator component of SDDP experimentally.

Unfortunately, we could not find an accessible comparable method that produces risk indica-

tors. Therefore, we decided to evaluate and compare only the ranking feature of the risk indi-

cator component. Since the ranking feature of SDDP’s risk indicator component plays a

significant role in the performance of the component, evaluating it sheds a light on the effec-

tiveness of the whole component. Towards this, we evaluate the ranking feature of SDDP by

comparing it experimentally with PWK [46]. The code of the PWK is available at [47].

PWK predicts gene-disease associations by computing the cosine similarity between vectors

representing genes and vectors representing a disease. The method assigns vectors to gene and

disease terms based on their co-occurrences in PubMed database. The gene-disease associa-

tions are predicted with reference to MeSH database [39]. Based on the cosine similarities

between genes and a disease, genes are ranked accordingly.

For the evaluations, we used the data of gene-disease associations in OMIM database

[27,28,48] as gold standard. Gene-disease associations in OMIM are manually curated. We

selected 3318 genes and 447 diseases that are found also in the MeSH database. We constructed

the disease and gene dictionary according to MeSH. We retrieved the biomedical literature asso-

ciated with the selected genes and diseases terms from PubMed [25]. The date of the search was

May 17, 2020. This resulted in 714,214 publications. We submitted the following PubMed query:

(“diseases” [MeSH Terms]) AND “genes” [MeSH Terms] AND (has abstract [text]) AND

(English [lang]) AND “humans” [MeSH Terms] AND (“0001/01/01” [PDAT]: “2020/05/

17” [PDAT]).

Evaluating the risk indicator of SDDP in terms of its ranking feature

For PWK, we ranked genes according to their similarity to a disease by varying the cosine sim-

ilarity in the range [0–1]. Recall that PWK ranks genes based on their cosine similarities with a

disease. For SDDP, we ranked genes as follows. Let M be the set of ranked MP combinations

associated with a disease output by SDDP’s Risk Indicator component. Let r be the dominance

rank of combination c 2M (recall Section “Risk Indicator”). Each gene 2 c is assigned the

rank of the dominance rank of c. We identified the top x genes ranked by SDDP and PWK,

where x ranges from 5–50 in an increment of 5, with reference to the OMIM gold standard. Fig

14 shows the result.
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As Fig 14 shows, SDDP outperformed PWK. This can reflect the practical viability and

effectiveness of SDDP’s combination of implicit and explicit techniques. The implicit tech-

nique is SDDP’s feature of inferring molecule terms (e.g., genes) that co-occur implicitly with

disease terms using the rules of predicate logic. The explicit technique is SDDP’s feature of

extracting molecule terms that co-occur explicitly with disease terms in texts using the method-

ology described in Section Information Extractor. That is, the performance of SDDP is attrib-

uted, in part, to the effectiveness of the rules of predicate logic in inferring MP terms that co-

occur implicitly with disease terms in biomedical texts. Moreover, the employment of SDDP to

the concept of identifying dominant MPs associated with a disease terms (recall Section Risk

Indicator) has also contributed significantly to the performance of SDDP. This concept guar-

antees that uninformative MPs associated with a disease term in texts are filtered and excluded.

A MP associated with a disease is considered uninformative, if it has only few occurrences in

abstracts or found in abstracts associated with many other diseases.

Over all, we attribute the performance of SDDP over PDW to the fact that SDDP employs a

combination of statistical and logic-based techniques while PWK employs only a statistical-

based technique. That is, SDDP includes a combination of statistical-based explicit term

extraction as well as and logic-based implicit term extraction techniques. Our hypothesis is

that crucial molecule terms and disease terms are likely to have implicit co-occurrences in bio-

medical texts. Thus, systems that employ only statistical-based techniques (such as PWK) are

likely to miss identifying vital molecule-disease association information.

Evaluating the impact of the size of retrieved texts on the ranking accuracy

of SDDP

In real-world setting, the size of biomedical literature increases constantly over time. There-

fore, it is important for evaluating the impact of accumulating size of biomedical literature

dataset on the prediction accuracy of SDDP. Towards this, we evaluated the prediction accura-

cies of SDDP and PWK using different sizes of the dataset. We partitioned the dataset into

Fig 14. The average Recall of top x genes associated with a disease ranked by SDDP and PWK, where x ranges from 5–50 in an

increment of 5.

https://doi.org/10.1371/journal.pone.0243127.g014
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four disjoint testing subsets at random. We then performed four evaluation runs over the set

of testing dataset, which accumulates in each run successively. Initially, the two systems were

run against one of the four subsets. At each run, thereafter, an unused subset is added to the

current testing subset, and the systems are run against the accumulating set. Thus, the set of

dataset accumulates successively.

For PWK, we considered 0.6 as the cosine similarity for ranking genes according to their

similarity to a disease. This is because: (1) the recall rate of PWK decreases as cosine similarity

increases and its precision rate increases as cosine similarity increases, and (2) the recall and

precision tend to remain stable around 0.6. We evaluated the prediction accuracies of the two

systems using different sizes of the dataset. Fig 15 shows the average Recall of ranking the top 5

genes associated with a disease based on accumulating size of revealed PubMed texts.

The experimental results showed that the prediction accuracy of the SDDP improved con-

stantly as the size of accumulating revealed dataset increased (see Fig 15). After the size of

accumulating revealed dataset reached 33%, the prediction accuracy of PWK improved con-

stantly as the size of accumulating dataset increased. However, the rate at which the prediction

accuracy of SDDP increased was higher than that of PWK. This is advantageous to SDDP,

since the size of biomedical literature associated with biomarker molecules increases con-

stantly over time in real-world setting. This was confirmed by the experimental results, where

the set of mutated genes/MMs associated with a specific disease that was inferred by SDDP

increased as the fraction of revealed literature dataset increased. This in turn, led to a continu-

ous enhancement of the MPIN, which represents the hierarchical interrelationships between

the MPs of the disease. The reason for the constant improvement of the prediction accuracy of

SDDP as the size of dataset increases is that every time a new set of texts is revealed, new MMs

are extracted by the Information Extractor component. This leads to optimizing and enhanc-

ing current MCTs as well as the construction of new MCTs rooted at the newly extracted

MMs. The enhancement of MCTs, in turn, leads to the enhancement of MPINs. The

Fig 15. Average Recall of ranking the top 5 genes associated with a disease based on accumulating size of dataset.

https://doi.org/10.1371/journal.pone.0243127.g015
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enhancement of MPINs, in turn, leads to inferring new MPs. Inferring New MPs, in turn, may

lead to updating and optimizing the set of dominant MPs associated with a disease.

Conclusion

We proposed in this paper a novel methodology for personalizing an individual’s degree of

future susceptibility to a specific disease. We implemented the methodology in a working sys-

tem called SDDP. To the best of our knowledge, this is the first research work that combines

the following three techniques for predicting an individual’s degree of future susceptibility to a

specific disease: information extraction, inference rules of predict logic, and modeling the

interrelationships among the molecular pathways of a specific disease. Moreover, this is the

first research work, to the best of our knowledge, that employs the inference rules of predict

logic to infer as many as possible undetected molecular pathways of a disease for an individual

based on a few molecular pathways, to which traceable biomarkers detected from the individ-

ual belong.

The logic-based inference component of SDDP ensures that the collective combination of

inferred molecular pathways of a disease for an individual, whose traceable biomarkers were

detected from the individual, is likely be an indicative of the disease. We evaluated the infor-

mation extraction feature of SDDP by comparing it with the following four text mining meth-

odologies: SCAIView [24], AEGDA [36], BeFree [37], and PKDE4J [38]. The experimental

results showed that SDDP outperformed the other methods. This is attributed to the effective-

ness of the strict linguistic rules employed by the information extractor component of SDDP.

That is, the strict linguistic rules employed by SDDP contributed to its performance.

We also evaluated the ranking feature of SDDP by comparing it experimentally with PWK

[46]. The results showed that SDDP outperformed PWK, which is attributed, mainly, to its

ability to infer molecular pathways that co-occur implicitly with disease terms using the rules

of predicate logic. The experimental results revealed that the performance of SDDP over PWK

kept increasing at a higher rate as the size of dataset kept being increased. This is advantageous

to SDDP, since the size of biomedical literature associated with MMs increases constantly over

time in real-world setting.
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