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Abstract 

Background:  Physical performance declines and executive dysfunctions are predictors of dementia. However, their 
associations are not well understood in Asian older adults without dementia (cognitively normal [CN] and mild cogni-
tive impairment [MCI]), especially in a single study.

Objective:  Examine the associations between physical performance measures with executive function (EF)-based 
and non-EF-based neurocognitive tests and whether preclinical dementia cognitive status i.e., CN and MCI, moder-
ated these associations.

Methods:  We examined cross-sectional cohort of 716 community-dwelling older adults without dementia (CN = 562 
and MCI = 154) using multivariable linear regression models. We associated three simple physical performance meas-
ures, namely timed-up-and-go (TUG), fast gait speed (FGS), and 30-s chair stand test (30 s-CST), with a comprehensive 
neurocognitive test battery measuring EF and non-EF cognitive functions. Moderating effects of cognitive status on 
the associations were examined. In all models, we controlled for pertinent covariates, including age, education, medi-
cal and psychiatric status.

Results:  Upon controlling for covariates, TUG was most strongly and positively associated with multiple EF-based 
neurocognitive tests, followed by FGS, with 30 s-CST having the weakest associations. For all physical performance 
measures, no significant associations with non-EF-based neurocognitive tests were detected. Cognitive status sig-
nificantly moderated the associations between all physical measures and several neurocognitive tests, with stronger 
associations in the MCI than CN.
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Introduction
Mild cognitive impairment (MCI) represents a preclinical 
transition from healthy cognitive functioning to demen-
tia [1]. Compared to healthy older adults without cogni-
tive impairment (CI), impaired physical performances 
are common and are significant predictors of dementia 
in a disease-stage-dependent manner [2–4]. Physical 
performance impairments are often co-morbid with cog-
nitive impairment at the preclinical dementia stage (i.e. 
MCI). It is unsurprising, as motor control and cognition 
are controlled by prefrontal cortices, fronto-parietal, and 
cingulate regions of the brain, which are vulnerable to 
age-related pathologies, and vascular and neurodegener-
ative diseases [5–7]. Given the shared neural mechanisms 
between physical performance and cognition, under-
standing the associations between physical performance 
tests and cognition can lead to improved dementia risk 
prediction and early interventions.

There are various physical performance tests with high 
validity to test physical performance of older adults, 
often with varying difficulty levels, thus placing different 
levels of physical and cognitive demands on the test par-
ticipants. Several complex physical performance meas-
ures—e.g., stride length, stride time variability, and dual 
motor-cognitive tasks—require specialized laboratory 
equipment, which limits their application in community 
settings where most older adults without dementia reside 
in. In contrast, simple physical performance tests, includ-
ing timed-up-and-go (TUG), fast gait speed (FGS), and 
30-s chair stand test (30  s-CST), are valid and easy to 
administer within a wide range of clinical and community 
settings—especially in large-scaled community screening 
programs—and among adults with and without cognitive 
impairment [8–11].

When considering potential associations between 
physical performance and cognition, it is important to 
recognize that cognition involves several distinct abilities 
or processes. A critical aspect of cognition is executive 
function (EF), which involves a set of interrelated higher-
order cognitive abilities that regulate thoughts, actions, 
and behaviours [12, 13]. Although related, EF can be 
considered conceptually and neurobiologically distinct 
from other aspects of cognition, including learning and 

memory [14]. However, distinct cognition functions 
often work in concert when completing a task. For exam-
ple, working memory is required to retain newly learned 
information while executing other tasks, including learn-
ing, reasoning, and comprehension [15]. Similarly, the 
execution of a single physical performance test could 
engage multiple cognitive domains, and it is possible that 
impairment in physical performance could be evident 
prior to cognitive decline. A longitudinal study indicated 
that slow gait speed predicted decline in cognition, espe-
cially EF, to a greater degree than poor cognition predict-
ing gait slowing [16]. Another study suggested that gait 
slowing precedes the diagnosis of MCI [17]. This direc-
tional effect may be explained by the occurrence of neu-
rodegeneration, including white matter degeneration, in 
brain regions that subserve cognition and motor control 
[18]. Physical performance may be more sensitive to such 
neurodegeneration prior to cognitive performance. Thus, 
examinations of the associations between cognitive and 
physical performance tests may identify preclinical mark-
ers and improve screening and diagnostic assessments 
[10].

Extant literature has shown significant associations 
between complex physical performance and neuro-
cognitive tests, specifically EF-based cognitive tests. 
For example, stride time variability is associated sig-
nificantly with multiple cognitive measures [19]. How-
ever, several gaps in knowledge in the literature persist. 
First, studies examining the associations between 
simple physical performance measures, including the 
TUG, FGS and 30  s-CST, and cognitive functions in 
older adults, especially of Asian descendants, are rela-
tively scarce. Second, there is a lack of studies con-
trasting these associations in cognitively normal (CN) 
versus individuals in the preclinical dementia stage 
(MCI), with the few studies that have examined such 
associations in separate studies presenting inconsist-
ent findings [20–23]. Specifically, despite diagnos-
tic group-based differences in physical performance 
measures demonstrated in different stages of cognitive 
impairment in older adults [24] and stage-dependent 
declines in cognitive abilities, very few studies have 
examined the associations between simple physical 

Conclusion:  Compared to FGS and 30 s-CST, TUG had the most robust associations with multiple EF-based cogni-
tive functions. Given their differential associations with global and detailed neurocognitive tests and significant 
moderating effects of cognitive status, findings highlight a need to carefully consider the choices of simple physical 
performance tests when using these tests with a heterogenous group of community-dwelling older adults without 
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performance measures and executive functions (EFs), 
directly comparing older adult with and without MCI 
within a single study. Older adults with altered physical 
performance measures, i.e. those diagnosed with MCI, 
have increased reliance on EFs as physical performance 
tasks become increasingly difficult to execute as one’s 
condition progresses [5, 20]. As a result, EF and physi-
cal performance could be more tightly coupled among 
individuals with cognitive impairment. Amongst the 
very few studies examining physical performance meas-
ures and cognition in older adults with MCI/ Alzhei-
mer’s disease (AD) and compared them with CN, they 
were limited by small sample sizes, were conducted in 
the clinical settings, and in Western countries/popula-
tions, thus limiting the generalizability of the findings 
[6, 25, 26]. Third, most extant studies focused on exam-
ining the associations between physical performance 
measures with either the global cognition score [27], 
such as the Mini-Mental State Examination (MMSE), 
or a limited battery of neurocognitive tests exclusively 
assessing executive functions [16, 28, 29]. This issue 
raised the question on whether cognitive processes 
other than executive functions are also associated with 
simple physical performance measures. Furthermore, 
whether there is a single physical performance test that 
has significant associations with both global cognition 
and specific cognitive domains is also unclear. Hence, 
previous studies with frequently isolated examinations 
of the relationships between complicated physical per-
formance measures within a single diagnostic entity 
at the late disease stage (i.e. AD) hinders a more com-
prehensive and holistic understanding of the nuanced 
relationships between physical performance and differ-
ent cognitive processes in the preclinical AD stages [5]. 
Further investigation on whether cognitive status mod-
ifies the associations between multiple simple physical 
performance and a comprehensive battery of neurocog-
nitive tests is thus warranted.

Taken together, there is a gap in knowledge on inves-
tigations of simple physical performance measures and 
their differential associations with global cognition and 
comprehensive neurocognitive tests, encompassing the 
EF and non-EF cognitive domains, within a single study 
in Asian older adults, and whether these associations 
are moderated by cognitive status. To this end, analyz-
ing the Community Health and Intergenerational (CHI) 
cohort, a community-based cohort study based in Sin-
gapore [30], we aimed to investigate:

1)	 Differential associations between simple physical 
performance tests and a) global cognition, b) EF-
based, and c) non-EF-based cognitive domains;

2)	 Hypothesized differences in the associations with 
global, EF-based, and non-EF-based cognitive 
domains, based on the different simple physical per-
formance tests;

3)	 Whether preclinical dementia cognitive status (i.e., 
CN/MCI) moderated the associations between sim-
ple physical performance and neurocognitive tests.

Methods
Participants and procedures
The participants were part of a larger cohort study: CHI. 
The CHI study is an ongoing study involving community-
dwelling older adults in Singapore, aiming to investigate 
the biological, psychological, and social aspects of the 
aging process [30]. The inclusion criteria for the CHI 
study were older adults aged between 60 and 99  years. 
Participants were recruited via door-to-door visits in the 
Western region of Singapore or by word of mouth.

Data for 831 participants were available. Specifically, 
for our research aims in this paper, we established the 
following eligibility criteria for data analysis. First, par-
ticipants must have completed their neurocognitive 
assessments and were not diagnosed with dementia. 
Neurocognitive diagnoses were performed via conduct-
ing a consensus meeting of psychiatrists and psycholo-
gists who reviewed participants’ scores comprising the 
Clinical Dementia Rating Scale, Modified Mini-Mental 
State Examination (MMSE), and the neurocognitive bat-
tery, which would be described subsequently. Cognitive 
statuses of CN, MCI or dementia were determined based 
on Peterson’s criteria for MCI [31] and the Diagnostic 
and Statistical Manual of Mental Disorders, DSM-V cri-
teria for Major Neurocognitive Disorder (dementia) [32]. 
Those with Parkinson’s disease and other self-reported 
neurological disorders were also excluded from the anal-
ysis. Participants must have completed at least one of the 
three physical performance measures. These exclusion 
criteria resulted in a final sample size of 716 participants 
in this study (CN = 562; MCI = 154).

Measures
Physical performance measures
Assessors ensured the following before the start of each 
physical performance measure test: participants were 
physically well, wore their regular footwear, and had their 
assistive devices at hand if required. Participants were 
allowed to stop if they experienced fatigue when execut-
ing the test(s). If they still wished to continue, partici-
pants could arrange to finish the remaining measure(s) 
on a different date. Participants were not tested beyond 
their limits, and assessors were present throughout all 
test measures to ensure safety.
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The three physical performance measures, the TUG, 
FGS and 30  s-CST, takes minimal time and space dur-
ing testing. TUG is an easy tool to assess mobility and 
overall physical function in older adults [33, 34], and 
demonstrates high predictive utility for future institu-
tionalization, falls, and mortality [35–37]. Gait speed, 
or measuring how long it takes for a participant to walk 
a short distance, is a widely used measure of functional 
capacity in healthy and clinical older adult populations 
[9, 38]. Gait speed has been used as a predictor of decline 
in functional mobility and is also associated with a range 
of health-related outcomes, such as frailty, falls, and cog-
nitive decline [39, 40]. While the current literature sug-
gests that protocols for gait speed tests differ greatly [9, 
38], we chose to examine fast gait speed (FGS) in our 
study, measured over a distance of six meters, with the 
inclusion of both acceleration and deceleration.  Lastly, 
30  s-CST examines functional lower extremity strength 
and endurance in older adults [11, 41], and is a predic-
tor of risk for falls [41]. For TUG and FGS, a higher score 
indicates lower performance. Whereas for 30  s-CST, a 
higher score indicates higher performance.

There are important differences among the three physi-
cal performance measures. 30  s-CST measures specifi-
cally lower body ability, whereas TUG and FGS examine 
functional mobility, with scores associated with various 
health-related outcomes. Gait and walking [42] ability 
have been increasingly recognized not only to associate 
with the musculoskeletal system, but also neurocognitive 
ability. However, TUG is a more complicated test than 
FGS—completion of TUG requires more complex motor 
performance sequences from the test subject than FGS 
[42, 43]. The detailed procedures and scoring methods 
for each physical performance measure are described in 
the supplementary text.

Neurocognitive tests
Global cognition—MMSE
MMSE is a brief 30-point cognitive screening tool, which 
assesses global cognitive function. The score ranges from 
zero to 30, with a higher score indicating a higher cog-
nitive performance. This study used English and Man-
darin-translated and modified versions, which had been 
adapted to local cultural contexts, with the norms vali-
dated in the Singaporean population [44].

Detailed neurocognitive tests measuring specific cognitive 
domains
We administered a neurocognitive battery of tests, which 
have previously been validated and utilized in the current 
population [45]. These tests evaluate specific cognitive 
functions, including attention, learning, memory, motor 
speed, and executive functions [46]. We included: 1) Rey 

Auditory Verbal Learning Test (RAVLT), 2) Digit Span 
Forward and Backward Task, 3) Color Trails Test (CTT) 
1 and 2, 4) Block Design Test, and 5) Semantic Fluency 
(Animal) Test. RAVLT, Block Design Test, and Semantic 
Fluency (Animal) Test are non-EF-based neurocognitive 
tests, while the rest of the tests are EF-based tests. Sup-
plementary Table  1 describes each neurocognitive test, 
the cognitive domain(s) assessed, and its task descrip-
tions in detail. For all cognitive tests, a higher score indi-
cates better cognitive performance, except for only Color 
Trails Test (CTT) 1 and 2, in which a higher score indi-
cates lower cognitive performance.

Covariates
Covariates comprised age, sex, years of formal education, 
depressive and anxiety symptoms, body-mass index, con-
sumption of prescription medicine, the total number of 
morbidities, physical activity level, smoking status, and 
alcohol consumption [47, 48]. We assessed depressive 
and anxiety symptoms employing the 15-item Geriatric 
Depression Scale (GDS) and the 20-item Geriatric Anxi-
ety Inventory (GAI). We measured physical activity levels 
by using the International Physical Activity Question-
naire (IPAQ)’s standard scoring protocol [49]. Details of 
the measures are available in the supplementary text.

Statistical analyses
We compared differences in demographic characteristics 
in the CN and the MCI groups using independent t-tests 
or chi-squared tests, whenever appropriate. Independent 
t-tests were performed to test the differences in the phys-
ical performance and neurocognitive tests in CN com-
pared to mild cognitive impairment. To investigate the 
differences in physical performance tests between CN 
and MCI, further controlling for covariates, we employed 
linear regression models with cognitive status as the 
independent variable (MCI, with CN as the reference 
group) and the physical performance tests as the depend-
ant variables, separately. Supplementary Table  2  details 
the findings.

To examine aims 1 and 2, investigating the associations 
between physical performance and neurocognitive tests, 
we ran linear regression models with the physical perfor-
mance tests as the independent variable and the neuro-
cognitive tests as the dependant variables. We presented 
two analytic models, one model unadjusted and a subse-
quent model fully adjusted for covariates.

To investigate aim 3, examining the moderating effect 
of cognitive status on the associations between physi-
cal performance and neurocognitive tests, all the linear 
regression models were built on top of the respective 
fully adjusted models from aim 2, with the addition of an 



Page 5 of 16Ng et al. BMC Geriatrics          (2022) 22:798 	

interaction term between physical performance tests and 
cognitive status.

We presented all the findings addressing aims 1, 2 and 
3 in two parts, with the EF-based neurocognitive tests 
presented in Tables 3, 4, 5 and 6, and the findings for the 
non-EF-based neurocognitive tests presented in Supple-
mentary tables 3 and 4. All the analyses were performed 
using Statistical Package for the Social Sciences (SPSS) 
version 24.0 (IBM SPSS Statistics for Windows, Ver-
sion 24.0). To correct for multiple testing, especially for 
measures with high correlations like those examined in 
our study, we performed the Benjamini–Hochberg Pro-
cedure. Considering the likelihood of type I against type 
II error, we applied a false discovery rate (FDR) of 0.10 
correction to the observed p-values across the statistical 
tests corresponding to those answering our three a priori 
aims. A final FDR-corrected p-value of 0.038 and below 
was considered statistically significant.

Results
Demographic characteristics
Table  1 summarizes the demographic characteristics of 
the total study participants (N = 716), comparing par-
ticipants in CN = 562 versus MCI = 154. They have 
similar mean ages in both groups, with (mean ± SD) 
CN = 67.94 ± 5.65 and MCI = 68.27 ± 7.03. Most par-
ticipants were women, with n (%) CN = 378 (67.3%) and 

MCI = 95 (61.7%) and highly educated, i.e., years of for-
mal education, with (mean ± SD) CN = 13.21 ± 4.20 and 
MCI = 12.47 ± 4.40. Other demographic characteristics 
did not differ according to the cognitive status, except 
depressive symptoms higher in the MCI group (MCI: 
mean = 1.57, SD = 2.56; CN: mean = 0.95, SD = 1.63, 
p = 0.005). Table 2 shows that of the three physical per-
formance tests, only the TUG significantly differed in 
CN versus MCI (MCI: mean = 9.99, SD = 2.52; CN: 
mean = 9.43, SD = 2.35, p = 0.010). For the global and 
detailed neurocognitive tests, all measures except the 
CTT Interference had significant differences comparing 
the two groups. Supplementary Table  5. presented the 
differences in demographic characteristics of participants 
excluded and included in the sample.

Supplementary Table  2. shows the differences or lack 
thereof in the three physical performance tests between 
cognitive status (MCI versus CN as the reference group), 
upon controlling for covariates. Similar to the results 
shown in Table 2, FGS and 30 s-CST had no significant 
differences between groups at the bivariate level. Further 
controlling for covariates did not change the findings. On 
the other hand, despite TUG being significantly higher in 
MCI at the bivariate level (β = 0.558, 95% CI = 0.133 to 
0.982, p = 0.010, R2 = 0.9%), upon further controlling for 
covariates, the association was attenuated (β = 0.345, 95% 
CI = -0.027 to 0.717, p = 0.069, R2 = 27.7%).

Table 1  Demographic characteristics of cognitively normal versus mild cognitive impairment

Notes: MCI mild cognitive impairment, BMI body-mass index, MET Metabolic equivalent of task

* indicates p<0.05, ** indicates p<0.01, and *** indicates p<0.001

Demographics Characteristics Cognitively normal;mean ± SD  
or n (%)

MCI;mean ± SD or n (%) P-values

Sample Size 562 (78.5) 154 (21.5)

Age (in years) 67.94 ± 5.65 68.27 ± 7.03 0.591

Sex

Women 378 (67.3) 95 (61.7) 0.212

Men 184 (32.7) 59 (38.3)

Years of formal education 13.21 ± 4.20 12.47 ± 4.40 0.065

Depressive symptoms 0.95 ± 1.63 1.57 ± 2.56 0.005**

Anxiety symptoms 1.12 ± 2.44 1.60 ±  3.44 0.105

BMI (kg/m2) 23.74 ± 3.76 23.80 ± 3.84 0.853

Total number of prescription medicine 2.12 ± 2.72 2.02 ± 2.43 0.694

Total number of morbidities 2.30 ± 1.60 2.34 ± 1.77 0.773

Physical activity levels (MET) 4354.21 ± 5594.17 4294.93 ± 3957.51 0.903

Smoking status

Yes 8 (1.4) 5 (3.2) 0.167

No 553 (98.6) 149 (96.8)

Alcohol consumption

Yes 115 (20.5) 27 (17.5) 0.428

No 446 (79.5) 127 (82.5)
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Differential associations between physical performance 
measures and EF‑based and non‑EF‑based neurocognitive 
tests
As shown in Table 3, amongst the associations with EF-
based cognitive domains, all, except one of the bivari-
ate associations (CTT interference; β = -0.039, 95% 
CI = -0.083 to 0.005, p = 0.080, R2 = 0.4%), with TUG, 
FGS, and 30  s-CST were significant. Upon fully con-
trolling for covariates, several associations remained 
significant and explained a relatively large portion of 
variance, particularly associations with the higher-level 
executive functions. They include associations between 
higher TUG with lower digit span backward (β = -0.08, 
95% CI = -0.148 to -0.011, p = 0.023, R2 change = 10.7%), 
higher CTT1 (β = 1.713, 95% CI = 1.057 to 2.369, 
p < 0.001, R2 change = 16.6%), higher CTT2 (β = 1.539, 
95% CI = 0.445 to 2.633, p = 0.006, R2 change = 19%), and 
lower CTT interference (β = -0.032, 95% CI = -0.053 to 
-0.012, p = 0.002, R2 change = 3%).

As shown in Supplementary Table  3, the associations 
with non-EF-based cognitive domains: All except three 
(i.e., FGS with RAVLT T5 and with RAVLT recognition 
trial, and 30 s-CST with RAVLT B) bivariate associations 
were significant. However, upon fully controlling for 
covariates, none of the associations remained significant.

Differential associations between physical performance 
measures and neurocognitive tests
As shown in Table 3, despite significant associations with 
MMSE (global cognition) at the bivariate levels across the 
three physical performance tests, with higher scores on 
physical performance tests associated with lower MMSE 
scores (specifically TUG: β = -0.214, 95% CI = -0.27 to 
-0.157, p < 0.001, R2 = 7.2%), only TUG remained sig-
nificantly and inversely associated with it upon control-
ling for covariates (β = -0.116, 95% CI = -0.177 to -0.055, 
p < 0.001, R2 = 15.9%).

As shown in Table 3, for detailed neurocognitive tests, 
after controlling for covariates, all three physical perfor-
mance tests were significantly associated with CTT1. 
On the other hand, there were many other differences 
in the significant associations between the physical per-
formance with EF-based cognitive tests. After fully con-
trolling for covariates, higher TUG remained associated 
significantly with several neurocognitive tests, includ-
ing lower global cognition-MMSE (β = -0.116, 95% 
CI = -0.177 to -0.055, p < 0.001, R2 = 15.9%), lower digit 
span backward (β = -0.080, 95% CI = -0.148 to 0.011, 
p = 0.023, R2 change = 10.7%), higher CTT2 (β = 1.539, 
95% CI = 0.445 to 2.633, p = 0.006, R2 change = 19%), and 
lower CTT interference (β = -0.032, 95% CI = -0.053 to 

Table 2  Means and standard deviations of the physical performance and neurocognitive tests in cognitively normal compared to 
mild cognitive impairment

Notes: MCI mild cognitive impairment, TUG​ timed up and go test, FGS fast gait speed, 30s-CST 30-second chair stand test, MMSE mini-mental state examination, CTT​ 
color trail test, RAVLT Rey Auditory Verbal Learning Test

* indicates p<0.05, ** indicates p<0.01, and *** indicates p<0.001

Demographics Characteristics Cognitively normal (n=562);mean (SD) MCI (n=154);mean (SD) P-values

TUG​ 9.43 (2.35) 9.99 (2.52) 0.010*

FGS 3.67 (0.97) 3.77 (0.93) 0.230

30s-CST 14.60 (4.40) 13.86 (4.84) 0.075

Global Cognition- MMSE 28.3 (1.703) 27.29 (2.353) <0.001***

Digit span forward 10.41 (2.36) 9.95 (2.32) 0.032*

Digit span backward 7.05 (2.03) 6.12 (1.93) <0.001***

CTT 1 49.64 (17.19) 61.65 (30.07) <0.001***

CTT 2 100.54 (28.09) 123.71 (50.48) <0.001***

CTT Interference 1.13 (0.56) 1.15 (0.63) 0.783

Block Design test 34.99 (9.68) 30.92 (11.71) <0.001***

RAVLT T1 5.88 (2.02) 4.76 (2.01) <0.001***

RAVLT T5 12.32 (2.01) 10.78 (2.27) <0.001***

RAVLT B 5.28 (1.89) 4.82 (1.98) 0.008**

RAVLT T6 10.71 (2.66) 8.29 (2.77) <0.001***

RAVLT Sum T1-T5 49.57 (8.48) 41.95 (9.44) <0.001***

RAVLT Delayed Recall 10.82 (2.66) 8.01 (3.24) <0.001***

RAVLT Recognition Trial 14.12 (1.23) 12.59 (2.25) <0.001***

RAVLT Recognition Trial – False Positive 2.04 (3.31) 4.26 (5.22) <0.001***

Semantic Fluency (Animal) Test 18.29 (4.11) 14.91 (4.65) <0.001***
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-0.012, p = 0.002, R2 change = 3%). Whereas for FGS, only 
CTT2 (β = 5.232, 95% CI = 2.56 to 7.904, p < 0.001, R2 
change = 19%) remained having significant associations 
after fully controlling for covariates. Lastly, for 30 s-CST, 
only higher 30  s-CST remained significantly associated 
with higher CTT interference after fully controlling for 
covariates (β = 0.015, 95% CI = 0.004 to 0.025, p = 0.005, 
R2 change = 3%).

Significant moderation of associations by cognitive status
For the EF-based cognitive tests, cognitive status mod-
erated the associations between all three physical 
performance tests with CTT1 (Figs. 1b, 2b and 3b). Fur-
thermore, there were several other significant modera-
tion effect of cognitive status on the associations between 
the three physical performance measures with other EF-
based cognitive tests.

For EF-based cognitive tests, other than CTT1 
(β = 2.657, 95% CI = 1.414 to 3.899, p < 0.001, R2 
change = 1.7%), Table  4 and Fig.  1c show that the asso-
ciations between TUG with one other neurocognitive 
tests that were stronger in MCI, in that higher TUG was 
associated with higher CTT2 (β = 3.356, 95% CI = 1.273 
to 5.440, p = 0.002, R2 change = 1%), but not global cogni-
tion (Fig. 1a).

As shown on Figs.  2a, b, and c and Table  5, similarly, 
associations between FGS and global cognition and two 
detailed neurocognitive tests were significantly moder-
ated by cognitive status; In MCI, compared to CN, FGS 
had higher strength of associations with MMSE, CTT1 
and CTT 2, in that higher FGS was associated with 
lower MMSE and higher CTT1 and CTT 2 (β = -0.36, 

95% CI = -0.67 to -0.049, p = 0.023, R2 change = 0.6%; 
β = 10.78, 95% CI = 7.563 to 13.997, p < 0.001, R2 
change = 4.1%; β = 14.643, 95% CI = 9.228 to 20.058, 
p < 0.001, R2 change = 2.7%, respectively).

For 30 s-CST, only the association with CTT1 was moder-
ated by cognitive status, in that higher 30 s-CST was associ-
ated with lower CTT1 (β = -0.735, 95% CI = -1.33 to -0.141, 
p = 0.015, R2 change = 0.7%) (Table 6 and Fig. 3a, b and c).

As shown in Supplementary Table  4a, b and c, for 
the non-EF-based cognitive tests, after fully control-
ling for covariates, cognitive status had no significant 
moderation effects on most associations with TUG, 
except Semantic Fluency (Animal) Test (β = 0.321, 95% 
CI = 0.049 to 0.594, p = 0.021, R2 change = 0.6%. After 
fully controlling for covariates, cognitive status remained 
having significant moderation effect (with higher asso-
ciations in MCI vs CN) on the associations between 
FGS/30 s-CST and two neurocognitive tests, i.e. RAVLT 
Recognition Trial (β = 0.384, 95% CI = 0.114 to 0.653, 
p = 0.005, R2 change = 0.9%; β = -0.055, 95% CI = -0.103 
to -0.007, p = 0.024, R2 change = 0.6%, respectively), and 
Block Design test (β = -2.092, 95% CI = 3.679 to 0.505, 
p = 0.010, R2 change = 0.6%; β = 0.312, 95% CI = 0.029 to 
0.594, p = 0.031, R2 change = 0.4%, respectively).

Taken together Tables 4 and 5, Figs. 1 and 2, and Sup-
plementary Table 4, several associations between all three 
physical performance tests and neurocognitive tests were 
highly contingent on cognitive status. Across most of the 
significant associations, MCI had the higher strength of 
association compared to CN, in that lower physical meas-
ures were significantly and more strongly associated with 
lower cognitive tests than CN and vice versa.

Table 4  Associations between TUG and executive function-based neurocognitive tests– added interaction term between TUG and 
cognitive status

Notes: MMSE mini-mental state examination, CTT​ color trail test, TUG​ timed up and go test, FGS fast gait speed, 30s-CST 30-second chair stand test, β unstandardized 
beta-coefficient, 95% CI 95% confidence interval

* indicates p<0.05, ** indicates p<0.01, and *** indicates p<0.001

All the statistical models here were built on top of the respective adjusted models from Table 3, with the addition of an interaction term between physical 
performance tests and cognitive status. Reference group was the cognitively normal group. For TUG and FGS, a higher score indicates lower performance. Whereas 
for 30s-CST, a higher score indicates higher performance. For all cognitive tests, a higher score indicates better cognitive performance, except for only Color Trails Test 
(CTT) 1 & 2, in which a higher score indicates lower cognitive performance

Neurocognitive tests/ 
physical performance 
tests

TUG Interaction Model

TUG​ Cognitive Status  TUG x Cognitive Status 

β (95% CI) p-values β (95% CI) p-values β (95% CI) p-values R2change

Global Cognition- MMSE -0.089 (-0.244 to 0.066) 0.259 -0.585 (-1.771 to 0.601) 0.333 -0.022 (-0.139 to 0.095) 0.710 0.000 

Digit span forward -0.123 (-0.335 to 0.09) 0.258 -1.154 (-2.786 to 0.477) 0.165 0.085 (-0.076 to 0.246) 0.299 0.001 

Digit span backward -0.114 (-0.288 to 0.059) 0.196 -1.06 (-2.39 to 0.27) 0.118 0.029 (-0.103 to 0.16)  0.67 0.000 

CTT 1 -1.512 (-3.154 to 0.129) 0.071 -15.922 (-28.51 to -3.334) 0.013** 2.657 (1.414 to 3.899)  <0.001*** 0.017 

CTT 2 -2.536 (-5.289 to 0.217) 0.071 -13.195 (-34.309 to 7.919) 0.22 3.356 (1.273 to 5.44) 0.002** 0.010 

CTT Interference -0.009 (-0.061 to 0.043) 0.734 0.214 (-0.183 to 0.612) 0.291 -0.019 (-0.058 to 0.02) 0.336 0.002
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Discussion
This study presents three notable findings. First, of the 
three physical performance tests examined, only TUG 
was significantly associated with global cognition. With 
detailed neurocognitive tests, upon controlling for covar-
iates and multiple testing, all three physical performance 
tests only strongly associated with EF-based cognitive 
tests, but not memory-based neurocognitive tests. Sec-
ond, there were differential associations between the 
physical performance measures and global and EF-based 
neurocognitive functions. Specifically, TUG had the 
highest number of and the strongest significant asso-
ciations with neurocognitive tests, followed by the FGS, 

and lastly, 30 s-CST. Notably, TUG was not only associ-
ated with global cognition, but it also had significant and 
robust associations with multiple EF-based neurocogni-
tive tests, encompassing executive functions, information 
updating and monitoring, and mental shifting. Notably, 
TUG was also most strongly and positively associated 
with the more cognitively demanding neurocognitive 
tests which taps on higher-order cognitive domains, 
instead of the lower domains. Third, we showed pilot data 
on the significant moderating effect of cognitive status on 
the associations between all three simple physical perfor-
mance tests and multiple EF and non-EF-based neuro-
cognitive tests, in that several associations between three 

Table 5  Associations between FGS and executive function-based neurocognitive tests– added interaction term between FGS and 
cognitive status

Notes: MMSE mini-mental state examination, CTT​ color trail test, TUG​ timed up and go test, FGS fast gait speed, 30s-CST 30-second chair stand test, β unstandardized 
beta-coefficient, 95% CI 95% confidence interval

* indicates p<0.05, ** indicates p<0.01, and *** indicates p<0.001

All the statistical models here were built on top of the respective adjusted models from Table 3, with the addition of an interaction term between physical 
performance tests and cognitive status. Reference group was the cognitively normal group. For TUG and FGS, a higher score indicates lower performance. Whereas 
for 30s-CST, a higher score indicates higher performance. For all cognitive tests, a higher score indicates better cognitive performance, except for only Color Trails Test 
(CTT) 1 & 2, in which a higher score indicates lower cognitive performance

Neurocognitive tests/ 
physical performance 
tests

FGS Interaction Model

FGS Cognitive Status FGS x Cognitive Status

β (95% CI) p-values β (95% CI) p-values β (95% CI) p-values R2change

Global Cognition- MMSE 0.276 (-0.117 to 0.669) 0.169 0.498 (-0.696 to 1.692) 0.413 -0.36 (-0.67 to -0.049) 0.023* 0.006 

Digit span forward 0.237 (-0.302 to 0.776) 0.388 0.617 (-1.019 to 2.253) 0.459 -0.254 (-0.68 to 0.172) 0.242 0.002 

Digit span backward 0.087 (-0.353 to 0.528) 0.697 -0.191 (-1.528 to 1.146) 0.779 -0.165 (-0.513 to 0.183) 0.351 0.001 

CTT 1 -8.015 (-12.086 to -3.945) <0.001*** -29.498 (-41.857 to -17.139) <0.001*** 10.78 (7.563 to 13.997) <0.001*** 0.041 

CTT 2 -11.886 (-18.737 to -5.034) 0.001* -34.343 (-55.144 to -13.542) 0.001* 14.643 (9.228 to 20.058) <0.001*** 0.027 

CTT Interference 0.029 (-0.103 to 0.161) 0.667 0.27 (-0.13 to 0.671) 0.185 -0.068 (-0.173 to 0.036) 0.197 0.002

Table 6  Associations between 30s-CST and executive function-based neurocognitive tests– added interaction term between 30s-CST 
and cognitive status

Notes: MMSE mini-mental state examination, CTT​ color trail test, TUG​ timed up and go test, FGS fast gait speed, 30s-CST 30-second chair stand test, β unstandardized 
beta-coefficient, 95% CI 95% confidence interval

* indicates p<0.05, ** indicates p<0.01, and *** indicates p<0.001

All the statistical models here were built on top of the respective adjusted models from Table 3, with the addition of an interaction term between physical 
performance tests and cognitive status. Reference group was the cognitively normal group. For TUG and FGS, a higher score indicates lower performance. Whereas 
for 30s-CST, a higher score indicates higher performance. For all cognitive tests, a higher score indicates better cognitive performance, except for only Color Trails Test 
(CTT) 1 & 2, in which a higher score indicates lower cognitive performance

Neurocognitive tests/ 
physical performance 
tests

30s-CST Interaction Model

30s-CST Cognitive Status 30s-CST x Cognitive Status

β (95% CI) p-values β (95% CI) p-values β (95% CI) p-values R2change

Global Cognition- MMSE 0.066 (-0.009 to 0.140) 0.084 -0.272 (-1.074 to 0.530) 0.506 -0.042 (-0.097 to 0.013) 0.136 0.002 

Digit span forward -0.012 (-0.114 to 0.09) 0.812 -0.621 (-1.717 to 0.474) 0.266 0.022 (-0.053 to 0.098) 0.559 0.000 

Digit span backward -0.002 (-0.085 to 0.082) 0.972 -0.893 (-1.79 to 0.003) 0.051 0.007 (-0.055 to 0.068) 0.834 0.000 

CTT 1 0.411 (-0.393 to 1.214) 0.316 20.289 (11.662 to 28.916) <0.001*** -0.735 (-1.33 to -0.141) 0.015* 0.007 

CTT 2 0.493 (-0.838 to 1.825) 0.467 30.478 (16.181 to 44.775) <0.001*** -0.785 (-1.771 to 0.201) 0.118 0.002 

CTT Interference 0 (-0.024 to 0.025) 0.972 -0.136 (-0.403 to 0.131) 0.319 0.012 (-0.007 to 0.03) 0.211 0.002
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Fig. 1  a, b and c Moderating effects of cognitive status on associations between TUG and neurocognitive tests. For TUG, a higher score indicates 
lower performance. For MMSE, a higher score indicates better cognitive performance, whereas for Color Trails Test (CTT) 1 and 2, a higher score 
indicates lower cognitive performance
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Fig. 2  a, b and c Moderating effects of cognitive status on associations between FGS and neurocognitive tests. For FGS, a higher score indicates 
lower performance. For MMSE, a higher score indicates better cognitive performance, whereas for Color Trails Test (CTT) 1 and 2, a higher score 
indicates lower cognitive performance
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Fig. 3  a, b and c Moderating effects of cognitive status on associations between 30 s-CST and neurocognitive tests. For 30 s-CST, a higher score 
indicates higher performance. For MMSE, a higher score indicates better cognitive performance, whereas for Color Trails Test (CTT) 1 and 2, a higher 
score indicates lower cognitive performance
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physical performance tests and neurocognitive tests were 
highly contingent on cognitive status. Across most of the 
significant associations, MCI had the higher strength of 
and positive association compared to CN, in that lower 
physical measures were significantly and more strongly 
associated with lower cognitive performance than CN. 
Hence, our findings suggest that despite the absence of 
significant differences in the three physical performance 
tests between CN and MCI, given their differential asso-
ciations with global and detailed neurocognitive tests and 
moderations by cognitive status, there is a need to care-
fully consider the choices of simple physical performance 
tests when using these tests with a heterogenous group of 
community-dwelling older adults without dementia.

There were differential associations between the three 
simple physical performance tests with the EF-based 
neurocognitive measures. Intriguingly, only the TUG 
was significantly and strongly associated with global cog-
nition, but not the FGS and 30  s-CST. For the detailed 
neurocognitive tests, there were differential associations 
between physical performance measures and the EF-
based neurocognitive functions. All three physical per-
formance tests were strongly associated with the CTT 
tests. These findings align with previous studies showing 
that low physical performances were strongly associated 
with low EF scores [20, 27, 50, 51], implying diminished 
executive controls involving motor-controls and speed 
components. Amongst the three physical performance 
tests, TUG was significantly and strongly associated with 
the highest number of EF-based neurocognitive tests. 
They encompass executive functions, information updat-
ing and monitoring, and mental shifting, suggesting that 
the involvements of multiple EF-based cognitive domains 
are necessary to execute transfer, turning and walking 
in this complex task, concurring with previous findings 
found in other populations [52, 53]. Here, we showed the 
presence of these associations in both CN and MCI. Thus, 
physical tasks involving a lower grade of planning and 
less complexity in nature, such as the FGS and 30 s-CST, 
may explain the non-significant and weaker associations 
with neurocognitive measures [54]. Furthermore, TUG 
was more strongly associated with the more cognitively 
demanding cognitive tests, which taps on higher-order 
cognitive domains, than the less cognitively demanding 
tasks, such as the digit forward test. As such, complex 
cognitive processes that involve not only the storage of 
information in short-term memory but also the manipu-
lation of that information, as is required in the digit span 
backward test, may be relevant to complex motor coordi-
nation and strength required of the TUG.

Extant literature has mostly focused on examin-
ing the associations between physical performance 
and neurocognitive tests in participants diagnosed 

with neurodegenerative diseases [55]. In this study, we 
extended the literature by investigating these associations 
in a sample comprising those at risk of dementia (CN 
and MCI), comparing head-to-head the presence and the 
lack of associations between physical performance and 
EF-based cognitive tests in older adults without demen-
tia. Such an investigation has implications for informing 
future studies on whether there is a need to separately 
examine these associations, particularly in heterogene-
ous community-dwelling samples with varying cognitive 
status. Amongst the three physical performance tests, we 
found that there was a significant and strong moderat-
ing effect of cognitive status on the associations between 
all three physical performance tests and neurocognitive 
tests. Across most of the significant associations, MCI 
had the higher strength of association compared to CN, 
in that lower physical measures were significantly and 
more strongly associated with lower cognitive tests than 
CN. These findings thus suggest that the strengths and 
the presence of several associations between physical 
performance tests and neurocognitive tests are contin-
gent on cognitive status, supporting the need for sepa-
rate examination of their associations in a heterogenous 
population at risk of developing dementia. For example, 
the higher strengths of associations between TUG and 
two EF-based tests in MCI compared to CN suggest that 
the associations were more tightly coupled in MCI, with 
a potential higher engagement of EF required to exe-
cute the TUG test as one progresses to MCI [5, 20]. As 
hypothesized, there could be compensatory mechanisms 
to mitigate the insults caused by the aging processes, vas-
cular damages, and/or the neurodegenerative processes 
as one progresses from CN to MCI [10]. A higher engage-
ment of EF required to execute physical performance 
could be explained by the age-associated decline in motor 
and sensory systems, which lead to a decrease in automa-
ticity, accompanied by the compensatory mechanism of 
an increased engagement of EF [19]. In this study, we rea-
soned that by engaging with this compensatory mecha-
nism and thus increased reliance on EF, older adults with 
MCI attempt to maintain their abilities to process motor 
sensory inputs. A shared neurobiological substrate for 
these strongly associated measures in MCI could explain 
this association; A neuroimaging study shows that white 
matter hyperintensity load was associated strongly with 
not just motor control and posture measures, but also EF 
dysfunctions [56]. Extending beyond this study, a previ-
ous longitudinal study showed that physical performance 
impairment in patients with dementia causes EF dysfunc-
tion, leading to central misprocessing of information 
[19], highlighting plausible causal relationships between 
the measures. Taken together, given that MCI is common 
but frequently underdiagnosed in community-dwelling 
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older adults, our findings highlighted despite no signifi-
cant differences in the three physical performance tests 
between CN and MCI, the necessity to consider the type 
of simple physical performance test employed and the 
baseline cognitive status when examining the associa-
tions between physical and neurocognitive tests.

This study has several limitations. The cross-sectional 
nature of this study does not allow causal inference, and 
future studies using longitudinal design [57] are thus 
warranted to test the directionality of the associations, 
particularly honing in on the moderating effects of cog-
nitive status. The physical performance measures were 
also limited to the simple tests, especially when we did 
not have dual-task motor performance tests, rendering 
us unable to examine the higher-level physical meas-
ures. However, the focus of this study was to examine 
the usefulness of the simple physical tests. Furthermore, 
the methodology for measuring dual-task motor perfor-
mance is not yet standardized, with some studies focus-
ing more on one task than the other, which can make the 
direct comparisons of dual-task motor performance find-
ings across studies relatively difficult [58]. Although une-
qual group sample sizes in MCI and CN might may have 
affected the differential associations between MCI and 
CN, compared to the extant studies that frequently exam-
ined such associations separately in either MCI or CN in 
N < 100 older adults, our study is one of the largest with 
investigation of these associations in both CN (N = 562) 
and MCI (N = 154) participants. Lastly, we did not have a 
representative sample, and thus our findings have limited 
generalizability. However, this study addressed the gap in 
knowledge on the lack of studies examining these asso-
ciations in this understudied and underrepresented pop-
ulation. Our sample has higher proportions of younger, 
male and highly-educated older adults, and how these 
factors could influence the associations between meas-
ures could be topics for future investigations.

To the best of our knowledge, this is to date one of the 
first studies associating three simple physical perfor-
mance measures and an extensive battery of neurocog-
nitive tests in community-dwelling older adults without 
dementia. This study contributed pilot data to further our 
understanding on the granularities in the cognitive pro-
cesses associated with different physical performances. 
Second, all the participants in the study were clinically 
diagnosed during the study’s monthly consensus meet-
ing (involving two senior consultant psychiatrists and 
a neuropsychologist), overcoming the issue of using 
cut-offs scores from screening tests employed in previ-
ous studies [59], which invariably has its shortcomings 
in inaccurately classifying cognitive status. Third, our 
sample population included CN older adults and those 

diagnosed with MCI, allowing us to examine the associa-
tions between physical performance and detailed neuro-
cognitive tests at a modifiable disease stage, overcoming 
limitations in the extant literature primarily examin-
ing these associations in patients with dementia and/
or AD. Fourth, we have also shown differential associa-
tions between the three physical performance tests with 
global and detailed neurocognitive tests, highlighting the 
usefulness of a simple physical performance test, espe-
cially the TUG, in the communal setting, with potential 
positive impacts on public health screening approaches. 
Lastly, this is the first study to investigate and show pilot 
data on both statistically significant and clinically mean-
ingful moderating effects of cognitive status on the asso-
ciations between the measures, especially in less-studied 
Asian community-dwelling older adults.

In summary, our results showed that amongst the three 
tests, TUG, and to a lesser extent FGS, were useful physi-
cal performance tests in associating with neurocogni-
tive tests in community-dwelling older adults without 
dementia. Hence, looking for signs of impairments in 
TUG, and to a lesser extent FGS, could potentially iden-
tify older adults at risk of cognitive impairment in the 
communal setting. Further validation of the longitudinal 
causal associations and moderating effects of cognitive 
status between these measures is required. Lastly, owing 
to the strong associations and shared neural mechanisms 
with cognitive functions, by improving physical perfor-
mances, clinicians from different backgrounds, including 
gerontologists, physiatrists, occupational and physical 
therapists, could improve physical and cognitive func-
tions concurrently, improving these prominent modifi-
able factors for dementia and other geriatric syndromes.
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