
 

  

 

 

 

 

 

 

 
 
 
 
 

 
. Introduction 

 
The advent of high-throughput technologies and the concurrent 

advances in information sciences have led to a data revolution in 
biology.  This revolution is most significant in molecular biology, 
with an increase in the number and scale of “omics” projects over the 
last decade.  Genomics projects for example have produced impressive 
advances in our knowledge of genes and their encoded protein 
structures, proteomics initiatives help to decipher the role of post-
translation modifications on these structures and provide maps of 
protein-protein interactions, and functional genomics is the field that 
attempts to make use of the data produced by these projects to 
understand protein functions.  However, the biggest challenge today is 
to assimilate this wealth of information into a conceptual framework 
that will help us decipher life.  For example, the current views of the 
relationship between protein structure and function remain 
fragmented.  We know of their sequences, more and more about their 
structures, and we have information on their biological activities, but 
we have difficulties connecting these dots into a knowledgeable whole.  
We currently lack the experimental and computational tools for 
directly studying protein structure, function, and dynamics at the 
molecular and supra-molecular levels.  In this paper, we review some 
of the current developments in building the computational tools that 
are needed, focusing on the role that geometry plays in these efforts. 

It is worth mentioning first that geometric reasoning has been 
known to play a major role in chemistry and biology for a few decades 

 
 
 
 
 
 

 
 

 
  

 
 

now.  Indeed, molecular structure or shape and chemical reactivity are 
highly correlated as the latter depends on the positions of the nuclei 
and electrons within the molecule.  Chemists have long used three-
dimensional plastic and metal models to understand the many subtle 
effects of structure on reactivity and have invested in experimentally 
determining the structure of important molecules.  The same applies 
to biochemistry, where structural genomics projects are based on the 
premise that the structure of macromolecules implies their function. 
Physical properties of these molecules are then often expressed in 
terms of their geometry.  For example, potential active sites are often 
assimilated with cavities [6,7] while interactions with the environment 
are quantified through the surface area and/or volume of their shapes 

[8- 2].  This link between solvation and geometry has led to the 

development of implicit solvent models that play an essential role in 
improving simulations of molecular dynamics. 

Protein dynamics is multi-scale: from the jiggling of atoms (pico-
seconds), the domain reorganizations in proteins (micro to 
milliseconds), protein folding and diffusion (milli-second to seconds), 
binding and translocation (seconds to minutes).  Connecting these 
different scales is a central problem in polymer physics that remains 
unsolved, despite numerous theoretical and computational 

developments (for review, see [ 3, 4]).  Computer simulations play 

an essential role in all corresponding multi-scale methods, as they 
provide information at the different scales.  Usually, computer 
simulations of protein dynamics start with a large system containing 
the protein and many water molecules to mimic physiological 
conditions.  Given a model for the physical interactions between these 
molecules, their space-time trajectories are computed by numerically 
solving the equations of motion.  These trajectories however are 
limited in scope.  Current computing technologies limit the range of 
time scales that can be simulated to the microsecond level, for systems 

that contain up to hundred thousands of atoms [ 5].  There are many 

directions that are currently explored to extend these limits, from 
hardware solutions including the development of specialized 

computers [ 6] or by harnessing the power of graphics processor 
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units [ 7] to the development of simplified models that are 

computationally tractable and remain physically accurate.  Among 
such models are those that treat the solvent implicitly, reducing the 
solute–solvent interactions to their mean-field characteristics.  These 
so-called implicit solvent models are often applied to estimate free 
energy of solute-solvent interactions in structural and chemical 
processes, folding or conformational transitions of proteins and 
nucleic acids, association of biological macromolecules with ligands, 

or transport of drugs across biological membranes [ 8-27].  The main 

advantage of these models is that they express solute-solvent 
interactions as a function of the solute degrees of freedom alone, more 
specifically on its volume and surface area.  In this review, we will 
discuss how these geometric measures are usually computed for 
macromolecules. 

The paper is organized as follows. The next section provides a 
brief description of the representations of macromolecules and the 
mathematical definitions of their boundaries or surfaces. The 
following section reviews popular methods for computing the 
geometric measures of macromolecules using their most common 
representation, i.e. a union of balls.  The following section covers our 
work on the alpha shape theory and its application to measuring 
macromolecules.  The result section provides a small review of recent 
applications of the alpha shape theory to analyze the structures 
macromolecules, as well as examples of application for characterizing 
atomic environments with protein and detecting putative drug target 
sites in RNA.  We then conclude with a discussion of future research 
directions. 

 
2. The geometry of macromolecules 

 
Molecular structure and chemical reactivity are highly correlated 

as the latter depends on the positions of the nuclei and electrons 
within the molecule: this correlation is the rationale for high 
resolution studies of the structures of bio-molecules. Early 
crystallographers who studied proteins and nucleic acids could not 
rely—as it is common nowadays—on computers and computer 
graphics programs for representation and analysis of their structures. 
They had developed a large array of finely crafted physical models 
that allowed them to have a feeling for these molecules. These models, 
usually made out of painted wood, plastic, rubber and/or metal were 
designed to highlight different properties of the molecule under study. 
In the space-filling models, such as those of Corey-Pauling-Koltun 
(CPK) [28,29], atoms are represented as balls, whose radii are the 
atoms’ van der Waals radii. The CPK model has now become 
standard in the field of macromolecular modeling: a bio-molecule is 
represented as the union of a set of balls, whose centers match with 
the atomic centers and radii defined by van der Waals parameters. 
The structure of a biomolecule is then fully defined by the 
coordinates of these centers, and the radii values. The macromolecular 
surface is the geometric surface or boundary of these unions of balls. 
Note that other definitions are possible; this will be discussed in more 
details below. 
 

As described above, there is no consensus in computational 
biology as to which surface of the union of balls best relates to the 
physical properties of the molecule. Three models are widely used; 
namely, the van der Waals surface, the solvent accessible surface, and 

the molecular surface (see Figure  for a 2D illustration). 

The van der Waals surface, vdWB, is defined as the boundary of 

the union of balls   . It consists of a number of spherical patches 
meeting at common circular arcs.  

Lee and Richards [8] defined the solvent accessible surface SASB 
of a molecule as the locii of the center of a probe sphere with radius 
Rw as it rolls over the van der Waals surface vdWB. The value of Rw is 

usually set to .4 Å as it approximates the size of a water molecule. It 

can be shown that SASB is also the boundary of the union of balls  
   , where Bw are ”hydrated” balls representing the atoms, i.e. the 
vdW balls whose radii have been increased by Rw. 

The molecular surface, MSB, was introduced by Richards [ 0] as 

an alternate to the van der Waal’s surface and the solvent accessible 
surface. It is defined as the surface traced out by the front of the 

probe sphere while it rolls over vdWB (see left panel in Figure  for a 

two dimensional example). The molecular surface consists of three 
types of patches, namely, spherical patches, toroidal patches and 
inverse spherical patches. 

 

 
 
 

 

 

While geometric models (such as the union of balls discussed 
above) for the molecular surface provide a deterministic description of 
the boundary for the shape of a macromolecule, surface models using 
implicit or parametric surfaces may be favorable for certain 

applications [30,3 ].  

The implicit molecular surface models use a level set of a scalar 

function f:  3   that maps each point from the three dimensional 
space to a real value [32-34].  The most common scalar function used 
for macromolecular surfaces is a summation of Gaussian functions 
[35]. Other scalar functions such as polynomial and Fermi-Dirac 
switching function have been used as well [36]. Bates et al. [37] 
proposed the Minimal Molecular Surface as a level set of a scalar 
function that is the output from a numerical minimization procedure. 

Parametric surface models specify each point on the 
macromolecular surface by a pair of real value variables. Piecewise 
polynomials such as Non-Uniform Rational B-spline (NURBS) and 
Bernstein-Bézier have been proposed to generate parametric 
representations for molecular surfaces [30,38]. Spherical harmonics 
and their extensions parameterize the macromolecular surface using 
spherical coordinates and provide a compact analytical representation 

of macromolecular shapes [39,40,4 ]. 

We note that both implicit and parametric macromolecular 
surface models are not independent from the geometric models based 
on union of balls, as they usually have a set of parameters that are 
tuned such that they provide a reasonable approximation of the 
surface of the latter. We restrict this section to the description of the 
macromolecular surface models based on spherical harmonics 
functions. 

Spherical harmonics are single valued complex functions defined 

on a unit sphere using spherical coordinates (, ), that is, 
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  (   ) 
   

 (    )    (   ) 

Figure 1. Three molecular surface models (2D examples). Dashed, red 
circles represent the probe sphere. 
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in which l and m are integers with     [    ] and   
  (    ) are 

the associated Legendre polynomials. Any surface F that is 
topologically equivalent to a sphere can be approximated by a linear 
combination of spherical harmonics basis function 
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in which clm is the expansion coefficient. Since the spherical harmonics 

form a complete orthonormal basis, the parameterization of  (   ) 
is unique and the coefficients are independent [39]. It is possible to 
build spherical harmonics representations for a macromolecular 
surface S by truncating the infinite series in l of the basis functions to 
a value L that is chosen according to a desired level of approximation. 
The coefficients clm are then evaluated based on a representation of S 
in spherical coordinates [39]. 

The spherical harmonics representation provides a complete 
analytical formula for the macromolecular surface. It facilitates multi-
resolution approximations of molecular shapes and efficient shape 
comparison algorithm by taking the expansion coefficients clm as shape 

descriptors [4 ,42]. 

It should be noted that the spherical harmonics representation can 
only be applied to a macromolecule whose boundary is star like, that 

is, the radial function  (   ) is single valued. This restriction has 
limited the application of spherical harmonics based macromolecular 
surface as many of the macromolecular surfaces have non-zero genera 
due to the presence of tunnels and overhangs that lead to radial 

functions  (   ) that are not single valued. To circumvent this 
problem, an extension of the spherical harmonics called 3D Zernike 
functions has been proposed for modeling macromolecular surfaces 
[43-45]. 

 
3. Measuring macromolecules 

 
A common concrete model representing a molecular shape is a 

union of balls, in which each ball corresponds to an atom, with its 
center set at the position of the nucleus of the atom and its radius set 
to the vdW radius of the atom.  In what follows, we discuss the 
geometric properties of such union of balls, more specifically how we 
can measure their volume and surface area, how we can detect their 
pockets and cavities, and how we can quantify interactions between 
the balls. 
 

 
Computing the surface area and/or volume of a union of 

overlapping balls is not a trivial task.  The original approach of Lee 
and Richards [8] computed the surface area by first cutting the union 
of balls with a set of parallel planes.  The intersection of a plane with 
a ball, if it exists, is a circle that can be partitioned into accessible arcs 
on the boundary and occluded arcs in the interior of the union.  The 
accessible surface area of an atom i is then the sum of the 
contributions of all its accessible arcs, computed approximately as the 
product of the arc length and the spacing between the planes defining 
the arc. This method was originally implemented in the program 
ACCESS [8].  Shrake and Rupley [46] refined Lee and Richards' 
method and proposed a Monte Carlo numerical integration of the 
accessible surface area. Their method placed 92 points on each atomic 
sphere, and determined which points were accessible to solvent (not 
inside any other sphere).  Efficient implementations of this method 
include applications of look-up tables [47], vectorized algorithms 

[48] and parallel algorithms [49]. Similar numerical methods have 
been developed for computing the volume of a union of balls [50-53]. 
It is also worth mentioning MSMS, a program that allows for 
computing very efficiently an approximation of the surface area of a 
macromolecule by generating a triangulated version of its surface [54]. 

The surface area and/or volume computed by numerical 
integration over a set of points, even if closely spaced, is not accurate 
and cannot be readily differentiated.  To improve upon the numerical 
methods, analytical approximations to the accessible surface area have 
been developed, which either treat multiple overlapping balls 
probabilistically [55-57] or ignore them altogether [58,59].  While 
these approaches are approximative, they are fast and lead to 
differentiable geometric measures. In addition, they are well suited for 
hardware acceleration on graphics processing units [60]. 

Even better analytical methods describe the molecule as a union of 
pieces of balls, each defined by their center, radius, and arcs forming 
their boundary, and subsequently apply analytical geometry to 

compute the surface area and volume [6 -65].  For example, Pavani 

and Ranghino [5 ] proposed a method for computing the volume of 

a molecule by inclusion-exclusion.  In their implementation, only 
intersections of up to three balls were considered.  Petitjean however 
noticed that practical situations for proteins frequently involve 
simultaneous overlaps of up to six balls [64].  Subsequently, Pavani 
and Ranghino's idea was generalized to any number of simultaneous 
overlaps by Gibson and Scheraga [4] and by Petitjean [64], applying a 
theorem that states that higher-order overlaps can always be reduced 
to lower-order overlaps [66].   Doing the reduction correctly remains, 
however, computationally difficult and expensive.  The alpha shape 
theory solves this problem using Delaunay triangulations and their 
filtrations, as described by Edelsbrunner [67].  It will be discussed in 
the next section. 

The distinction between approximate and exact computation also 
applies to existing methods for computing the derivatives of the 
volume and surface area of a molecule with respect to its atomic 
coordinates [68-73].  In the case of the derivatives of the surface area, 
computationally efficient methods were implemented in the MSEED 
software by Perrot et al. [74] and in the SASAD software by 
Sridharan et al. [75]. All these methods introduce approximations to 
deal with singularities caused by numerical errors or by discontinuities 
in the derivatives [70]. 
 

The problem of detecting and measuring internal cavities of 
macromolecules is very popular as these cavities correspond to 
putative binding sites for drugs and thus represent attractive leads for 
the design of therapeutic drugs.  Most solutions to this problem rely 
heavily on geometry. They can be divided into three categories: (i) the 
grid-based methods, (ii) the probe sphere detection methods, and (iii) 
the analytical methods. 

In the grid-based method, the molecule is positioned on a three-
dimensional Cartesian grid whose vertices are then sorted into two 
groups: those that are covered by a protein atom and those that are 
not.  The latter are further characterized as being inside a pocket if 
they satisfy some geometric conditions (such as being inside and at a 
distance greater than the radius of a water molecule from the convex 
hull of the macromolecule).  The measures of these pockets (volume 
and surface area) are then computed by Monte Carlo integration over 
their corresponding grid points. POCKET [76], LIGSITE [77], 
LigandFit [78], PocketPicker [79], and McVol [53] are cavity-
detecting programs that implement this grid-based method. 

The probe sphere method proceeds by placing probe spheres that 
are tangent to the surfaces of two atoms of the biomolecules and then 
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reducing their radii to eliminate overlaps with neighboring atoms; all 
remaining spheres whose radii exceed a minimal cutoff value (usually 

 Å) are used to define the pockets and cavities.  This method was 

originally implemented in the program SURFNET [80] and later 

modified in the programs PASS [8 ] and PHECOM [82].  

Interestingly, the grid-based and probe sphere methods were recently 
combined in the program POCASA [83]. 

The alpha shape theory combined with the discrete flow concept 
was the first analytical method proposed for detecting and measuring 
inaccessible cavities [84] as well as pockets [6,85] in macromolecules.  
It has been extended since to detect channels between inner cavities 
and the outside [86].  The program CAVE implements a 
complementary approach in which the boundaries of the pockets are 
directly triangulated, forming the so-called enveloping triangulation 
[87]. 
 

While exact theories for computing the surface area and volume 
of a union of balls exist, the computations of contact areas between 
balls are more ambiguous as there is no unique definition of what a 
“contact” is.  Three overlapping balls provide a simple illustration of 
this problem. The regions of the balls that are covered by exactly two 
balls can be easily partitioned between the corresponding balls.  
Partitioning the region that is covered by all three balls, however, is 
more ambiguous.  Most methods that compute the contact areas 
between atoms in a molecule rely on a Voronoi partitioning of such 
overlapping regions; the contact between two atoms is then defined as 
the area of the face that separates their Voronoi regions (see for 
example [88-92]).   We note that these methods require special care 
for atoms on the surface of the molecule of interest, as the 
corresponding Voronoi cells are unbounded; this is usually resolved 
by adding water molecules based on molecular dynamics simulations 
[88,92].  Finally we mention that Apollonius diagrams (also called 
additive Voronoi diagrams) have also been used to provide an 
alternate definition of contacts [93,94].  

 
4. The alpha shape theory: a general framework to characterize 
the geometry of macromolecules 
 

Given a collection B={Bi} of N three-dimensional balls, the 
volume and the surface area of the union of B can be computed using 
the principle of inclusion-exclusion. That is, the volume and surface 

area of the union    can be expressed as an alternating sum of 
volumes and surface areas of the common intersections of the subsets 
of B, 
 
 

 (  )   ∑ (  )

 

   

  ∑  (      ) 

         
 

 ∑  (          )   

         

∑  (              )    

           

 

 

 

where  stands for either the volume V of the union of balls or the 
area of its boundary A.  There are two issues that need to be solved to 
make this equation computationally tractable. Firstly, we need to have 
a consistent way to reduce significantly the number of terms in the 
inclusion-exclusion formula; brute force application would lead to an 

algorithm with exponential running time, as the total number of terms 

is 2N- , with each term corresponding to the measure of the 

intersection of at most N balls.  Secondly, we need analytical formula 
for computing the non-empty intersections of balls. 

The first requirement was elegantly solved with the alpha shape 
theory.  It is based on the concept of Voronoi decompositions and 
Delaunay triangulations and their filtrations, as proposed by 
Edelsbrunner [67].  We illustrate its application to measuring the 
shape of a protein in Figure 2 and describe briefly its major 
components below. For a more comprehensive description, we refer 
the reader to the original paper of Edelsbrunner and to some 
application papers [7,84,95,96].  It is noteworthy however that 
Naiman and Wynn had introduced the concept of using the Voronoi 
decomposition and Delaunay triangulation to simplify the inclusion-
exclusion formula from a statistical perspective a little earlier [97]. 
 
Voronoi decomposition and dual complex 
Let us consider a finite set of spheres Si with centers ci and radii ri and 
let Bi be the ball bounded by Si.  We define the square distance 

between a point x and a sphere Si as   ( )   ‖     ‖
     

 . 
This distance definition allows for varying radii for the spheres.   

The Voronoi region Vi of the sphere Si consists of all points x 
that are at least as close to Si as to any other sphere, 

    {    |  ( )     ( )      }. Vi is a convex polyhedron 

obtained as the common intersection of finitely many closed half-
spaces, one per sphere Sj ≠ Si.   The union of all Voronoi regions Vi 
defines the (weighted) Voronoi diagram, also called the Laguerre 
diagram of the union of spheres; this union covers the whole space.  
The intersection of the Voronoi diagram with the union of balls Bi 

decomposes the union into convex regions of the form       .  The 
boundary of each such region consists of spherical patches on Si and 
planar patches on the boundary of Vi.  The spherical patches separate 
the inside from the outside and the planar patches decompose the 
inside of the union. 

The weighted Delaunay triangulation is the dual of the weighted 
Voronoi diagram obtained by drawing an edge between the centers of 
Si and Sj if the two corresponding Voronoi regions share a common 
face, called a Voronoi plane. Furthermore, we draw a triangle 
connecting ci, cj and ck if Vi, Vj and Vk intersect in a common line 
segment, called a Voronoi edge, and similarly we draw a tetrahedron 
between four centers if their Voronoi regions meet at a common 
point, called a Voronoi point. Assuming general position of the 
spheres, there are no other cases to be considered: this is a central 
property of the Delaunay triangulation that will lead to a significant 
simplification of the inclusion-exclusion formula (see below). 

Let us now limit the construction of the weighted Delaunay 
triangulation to within the union of balls.  In other words, we draw a 

dual edge between the two vertices ci and cj only if        and  
       share a common face, and similarly for triangles and 

tetrahedra.  The result is a sub-complex of the Delaunay triangulation, 
which is referred to as the dual complex K of the set of spheres. 

It is often useful to alter the spheres by increasing or decreasing 
their radii (we will see one application in the result section to study 
pockets in a large RNA molecule). We do this in a way that leaves the 
Voronoi diagram invariant. Let us model growth with a positive real 

number denoted α2. For each i let Si(α) be the sphere with center ci 

and radius   
     .  The alpha complex K of the spheres Si is the 

dual complex of the spheres Si(α). 
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Measuring the volume and surface of the union of spheres 

As proved in [67], the inclusion-exclusion formula that 
corresponds to the dual complex gives the correct volume of a union 
of balls, as well as the correct area of its boundary, the union of 
spheres. Here we state the corresponding theorem for the volume.  Let 
si be the simplex corresponding to the ball Bi, sij the simplex formed 
by the edge between the centers of the balls Bi and Bj, sijk the triangle 
corresponding to the three balls Bi, Bj, and Bk, and finally sijkl the 
tetrahedron defined by the four balls Bi, Bj, Bk, and Bl.  

 
Volume Theorem: 
 

 (  )   ∑ (  )

  

 ∑(         )

   

  ∑(                 )

    

 

 

                                                         ∑(                           )

     

 

Here V(Bi) is the volume of the ball Bi, Vi:j is the contribution of 
Bi to the volume of the intersection of the balls Bi and Bj, etc. A 
similar theorem is used to compute the surface area A.  They 
overcome the exponential complexity of the inclusion-exclusion 
formula by implicitly reducing higher-order to lower-order overlaps.  
In addition, we note that the balls in each term form a unique 
geometric configuration and that the analytic calculations of the 
volume and surface area can be done without case analysis [67]. 

Several formulas have been developed for computing the volumes 
and surface areas of the intersection of two, three and four balls with 
unequal radii (see for example [4,98,99]).  Of particular interest to 
macromolecule structure modeling, we have recently derived new 
formulas that satisfy a specific constraint, namely that the volume and 
surface area intersections are only expressed as functions of the radii 
of the balls and the distances between their centers [96]. 
 

Figure 2. Measuring the HIV-1 protease using the alpha shape theory. (A) The structure of the HIV-1 protease (PDB [1] code 3MXE) is shown in cartoon 
representation.  The structure was studied in the presence of an inhibitor, KC32, shown in CPK mode [3]. To compute its geometric properties, we proceed in 
three steps: (B) first, we compute the weighted Delaunay triangulation (shown as blue edges) of all the atomic balls representing the protein (not including the 
inhibitor); the Delaunay triangulation is then filtered, to yield the dual complex (C) and a set of pockets (D).  The dual complex (in red) is the subset of the 
Delaunay triangulation that is limited to simplices whose corresponding balls have a non-empty intersection.  The largest pocket, shown in green is found to 
align with the position of KC32 in the protein structure.  Three alternate pockets are shown in purple, magenta, and red (D). 
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Detecting pockets in a union of spheres 
A full description of how to detect and measure pockets in a union of 
balls based on the alpha shape theory is available in [6].  Briefly, the 
concept of pockets is ultimately connected to the notion of a 
continuous flow field defined on the Delaunay triangulation of these 

balls. Let   be the set of tetrahedra in the Delaunay triangulation and 

          where    is a dummy element representing the 

complement of the triangulation in   .  The flow relation ' ' with 

    is defined by: 

(i)   and   share a common triangle  , and 

(ii) The interior of   and the orthogonal center    lie on 

different sides of the plane defined by  . 

The orthogonal center    is the center of the smallest ball that is 

orthogonal to all four balls whose centers are the vertices of  . 

If    ,   is said to be a predecessor of   and   is then a successor 
of  .      is a sink if it has no successors; in other words, a 
tetrahedron is a sink if and only if it contains its orthogonal center.  
Sinks are important since they are responsible for the formation of 
voids: if H is a void of the union of balls then at least one tetrahedron 
in H is a sink. 

By definition, pockets consist of the Delaunay tetrahedra that do 

not belong to the dual complex K and are not ancestors of   . The 

voids are the only pockets without connection to the outside.  All 
other pockets connect to the outside at one or more places, called 

mouth. Figure 2 illustrates these concepts for the HIV-  protease. 

The tetrahedra that form the four major pockets detected by this 
method are shown overlaid with the structure of the protein.  
Interestingly, we find that the main pocket (shown in green) matches 
with the position of the inhibitor detected in the X-ray structure (see 
Figure 2, panel D) [3]. 

The surface area and volume of a pocket are easily computed by 
first identifying their tetrahedra and their faces that belong to the dual 
complex followed by the application of simplified inclusion-exclusion 
formulas similar to those used for measuring the dual complex (see 
[6,7] for details). 
 

The computation of contact areas between balls is ambiguous as 
there is no unique definition of what a contact is [5].  Here we follow 
the framework of the alpha shape theory described above.  The key 
step when applying this theory to measure a union of spheres is to 
derive the dual complex K of their centers (see above).  Two spheres 
Si and Sj that are connected by an edge in K overlap, i.e. the distance 
between their centers is smaller than the sum of their respective radii.  

Figure 3. Computing contact areas between overlapping spheres. A) Let us consider a sphere Si in contact with two other spheres, Sj and Sk, such that the 
corresponding caps Ci:j and Ci:k overlap.  To remove the ambiguity in dividing the overlap area we construct the Laguerre-Voronoi diagram [2] on the surface of 
the sphere (B).  This construction creates Voronoi regions for each cap and separates them with geodesic arcs (here we show the two regions corresponding to 
the two caps Ci:j and Ci:k in presence of other caps).  C) The Laguerre edge in the Voronoi diagram that partition the region of overlap between Ci:j and Ci:k is a 
great circle that passes through the two points that belong to all three spheres (shown as a dotted line). D) Cross section of the sphere Si through the cutting 
plane indicated by two arrows in panel C. Ci:j;k corresponds to a spherical diangle; its surface area is computed as a function of the cap height, hi:j , and the angle 
θ between the plane containing the great circle and the plane defining the cap Ci:j [4,5]. 

Measuring molecular shapes 

6 

Volume No: 8, Issue: 12, e201309001 Computational and Structural Biotechnology Journal | www.csbj.org 



Based on this observation, we proposed the following definition of 
contacts between balls [5]: 

Definition: Two spheres    and    in a union of spheres    are 

said to be in contact if and only if their centers     and    are 

connected by an edge in the dual complex   of    . 
The intersection between these two spheres is the union of two 

caps Ci:j  and Cj:i these two caps are connected at the level of the plane 
that separates the Voronoi cells of Si and Sj.  When the sphere Si is in 
contact with more than one sphere, say with spheres Sj and Sk, there is 
a possibility that the corresponding caps Ci:j  and Cj:i overlap: this 

occurs when the triangle cicjck is part of the dual complex K.  Figure 
3A illustrates this problem.  To remove the ambiguity in assigning the 
corresponding overlap region Ci:j;k to either the contact between Si and 
Sj or the contact between Si and Sk, we use the Laguerre Voronoi 
diagram  on the surface of Si. 

Sugihara [2] extended the concept of Laguerre diagram in the 
plane to a Laguerre Voronoi diagram on the surface of a sphere.  In 
his approach, the Laguerre distance from a point P to a circle Ci on 
the sphere is defined as the geodesic length of the tangent line 
segment from the point to the circle. Similar to the Voronoi diagram 
described above, this distance function creates Laguerre Voronoi 
regions for each cap and separates them with geodesic arcs (see Figure 
3B for an example of the Laguerre Voronoi diagram of ten circles on 
a sphere). We note that many of the properties of the weighted 
Voronoi diagram remain true in its spherical version. For example, if 
two circles intersect in two points, their Voronoi edge contains these 
two points. 

The definition of contacts based on the alpha shape theory given 
above leads to the following additive property for all contact areas 
associated with a sphere Si: 
 

    
   (  )   ∑    

 

 

 
where A(Si) is the surface area of Si not covered by any other sphere, 
Ai:j is the contact area between the spheres Si and Sj, and the 
summation extends to all spheres Sj such that cicj is an edge in the dual 
complex K.   

There is a trivial correspondence between the Laguerre Voronoi 
diagram of the caps on the surface of sphere Si and the set of 
simplices in the dual complex K that are associated with Si. For 
example, the two caps Ci:j and Ci:k overlap and share an edge in the 
spherical diagram if and only if the simplex sijk corresponding to the 
triangle formed by the centers of the three spheres Si, Sj, and Sk, 
belongs to K. This leads to the following inclusion-exclusion formula 
for the contact areas between a sphere Si and its neighbors: 

 

       (    )   ∑  (      )

 |      

   ∑  (       )

   |       

 

 

Here  is the area of the contribution of Ci:k  to the 

intersection of Ci:j and Ci:k, and  is the common 

contribution of Ci:k  and Ci:l to the intersection of Ci:j and Ci:k.  The 
computations of the different types of terms on the right side of this 
equation involve simple spherical geometry [5].  In Figure 3D, we 

illustrate the computation of . 

We note that the definition of contacts between spheres given 
here is different from the standard definition based on local geometric 
proximity. Indeed, two spheres may overlap (i.e. be close in space) 

without being connected by an edge in K and therefore would not be 
considered in contact according to our definition (see Figure 4 for an 
illustration of this point).  Our approach however is similar to the 
methods that define contacts in proteins based on the Voronoi 

diagram [88,89,92, 00]. 

 

 
 

 
Implementation 

The theory described above provides a framework for measuring a 
union of spheres, i.e. computing its accessible surface area and 
enclosed volume, detecting its cavities and pockets, as well as for 
locating neighboring spheres in the union and defining their contacts. 
The implementation of this theory involves five steps: (i) compute the 
Delaunay triangulation, (ii) generate the dual complex, (iii) compute 
the surface area and volume using the Volume Theorem given above 
and the corresponding Area Theorem, (iv) detect pockets and cavities 
using the concept of flows described above, and (v) calculate 
individual contact areas using the contact definition described above.  
Several implementations of step (i) to (iv) are available, such as 

AlphaShape, CASTp [6, 0 ], and AlphaVol [7].  We have recently 

developed a new implementation of the same four steps that enables 
the analysis of very large molecular systems with millions of atoms, 
such as viral envelopes, available in the program UnionBall [96].  The 
addition of step (v) within the alpha shape theory is new and 
currently available in just one software package, BallContact [5]. 

 
5. Applications 

 
The alpha shape theory provides an accurate and robust method 

for computing the geometric measures of a macromolecule.  Among 
these measures, surface area and volume are used to quantify the 
interactions between such a molecule and the water surrounding it in 
implicit solvent models.  The detection of pockets within a 
macromolecule and the determination of their sizes serve as a starting 
point for predictive studies of macromolecule-ligand interactions.  In 
addition, the determination of internal atomic contacts allows for 
better characterization of atomic interaction and better definitions of 

solvation energies (see for example [ 02].  We provide illustrations of 

two of these applications of the alpha shape theory to study 
macromolecules, namely the characterization of pockets in ribosomes 
and the quantification of residue environment in protein structures. 
We then review recent applications of the alpha shape to study the 
geometry of large biomolecules and its relationship to function. 

  

A(Ci: j;k )

  

A(Ci: j;kl )

  

A(Ci: j;k )

Figure 4. Difference between sphere overlap and sphere contact. Let us 
consider for illustration four circles Si, Sj, Sk, and Sl in the plane. Their dual 
complex, shown with solid red lines, is the union of the two triangles 

cicjcl and cjckcl and all their sub-simplices. The edge cick (shown as a 
dashed line) is not part of this dual complex and therefore the circles Si 
and Sk are not in contact, according to our definition based on the alpha 
shape theory. However, they do overlap, with the common intersection 
shown in light blue. 
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The high-resolution structures of bacterial ribosomes, and those 
of their complexes with antibiotics, have significantly advanced our 
understanding of drug-RNA interactions, and paved the way for new 
antibacterial drug discovery and design, with the ribosome as a target.  
A prerequisite to drug design is the determination of the sites where 
the ligand may interact with its receptor.  Binding sites of small 
molecule ligands are usually located in pockets (also referred to as 
clefts, or grooves) or cavities (i.e. pockets fully inaccessible to solvent) 
in the target macromolecule.  As described in the previous section, the 
alpha shape theory provides the theoretical background that allows us 
to detect and measure these pockets.  We have tested the performance 
of our own implementation, UnionBall [96], by checking if it is able 
to detect geometric pockets in the 30S subunit of the ribosome of 
Thermus thermophilus that are biologically relevant. The small 
ribosomal subunit is extensively studied as an antibiotic target, and 

there are at least eight structures of their complexes known [ 03].  

We use the structure of the complex hygromycin B - 30S as a 

reference (PDB code HNZ).  Figure 5 shows the results of the 

application of UnionBall on the 30S ribosome.  Note that all 
calculations were performed in the absence of an antibiotic molecule.  
We found that the deepest pocket, i.e. the largest pocket identified 
with a large alpha value, matches with the position of the antibiotics 
that binds to the 30S subunit of the ribosome. 
 

It is common to characterize the structural environment of a 
residue in a protein from the secondary structure element it belongs to 

and its accessible surface area [ 04].  The former characterizes the 

local conformation of the residue, while the latter is used to quantify 
the surface area that was buried upon folding, as it is expected to 
differ for hydrophilic and hydrophobic residues.  This has led to a 
quantification of the hydrophobic effect using the concept of a water-
implicit solvation free energy that is computed as a weighted sum of 

the accessible surface areas of all residues in a protein [ ].  We have 

extended this idea by accounting for the nature, and extent of, the 
inter-atomic contacts that are formed in the core of the protein as it 

folds [ 02, 05].  Here we show why the nature of the inter-atomic 

contacts matters. 
The fraction of the surface area of any atom that is in contact 

with solvent is called the solvent accessible surface area (ASA).  In 
parallel, we define the polar contact surface area, or PCA, and the 
non-polar contact area, or NPCA, of an atom as its area in contact 
with (or occluded by) polar and non-polar atoms, respectively.  In all 
analyses presented below, carbon and sulfur atoms were classified as 
non-polar atoms, while nitrogen and oxygen (neutral or charged) were 
classified as polar atoms. Note that PCA and NPCA should not be 
confused with the polar surface area and non-polar surface area, which 
commonly correspond to the accessible surface area of polar and non-
polar atoms, respectively.  All surface areas mentioned above (i.e., 
ASA, PCA, and NPCA) were computed based on the alpha shape 
theory and its definition of contacts. 

The calculation is performed with the program BallContact as 
follows. Each atom of the protein is represented as a ball, centered at 
the position of the atoms in the minimized structure for the protein, 
with a radius equal to RvdW+RH2O, where RvdW is the vdW parameter 

Figure 5. Detecting pockets in the small ribosomal subunit 30S. (A) The rRNA component of the 30S subunit of the ribosome of Thermus thermophilus (PDB 
code 1HNZ). (B) UnionBall detects a large pocket, shown in green that contains the binding site of hygromycin B, shown in red. (C) Evolution of the largest 
pocket found in the 30S ribosomal subunit, as we increase the parameter alpha from 0 Å to 6.6 Å. Note that the pocket remains in the vicinity of the binding 
site of hydromycin B.  The RNA structure is omitted for sake of clarity. (D) Unfortunately, UnionBall does not distinguish between the pocket corresponding to 
the binding site of the antibiotic (pocket shown in green, and antibiotics in red), from other deep pockets that appear at large alpha value (shown in purple), 
although the green pocket is the largest. 
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for the atom in AMBER94 and RH2O is the radius of the solvent 

probe, set to .4 Å.  For an atom i in the protein, the program 

outputs its accessible surface area, ASA, as well as the list of atoms 
that are in contact and the corresponding contact areas.  These atoms 
are then divided into two groups, those that are "near" (following the 
terminology of Shrake and Rupley [46]), i.e. that belongs to the same 
residue as i or to the backbone of the two flanking residues, and the 
others, named "long".  Atoms that are "near" account for the 
stereochemistry of the residue to which atom i belongs and are not 
included in the subsequent calculations.  Contact atoms that are 
"long" are further subdivided into polar and non-polar atoms, 
according to the definition above; the PCA and NPCA surface areas 
are then the sum of the corresponding contact areas. 

We define the environment of a residue in a protein as the union 
of the accessible areas of its atom and of all their "long" contacts.  
This environment is then divided into an ASA, PCA, and NPCA. 
These three values correspond to sums of areas on spheres, given in 
Å2; they are independent of each other. We define corresponding 
normalized values, XASA, XPCA, and XNPCA, according to: 
 

 
 

    
 

These three fractions of surface areas, expressed in percent, are no 

longer independent, as their sum is 00. 

We collected data on the environments (accessible to solvent, 
polar, or non-polar) of 305604 residues in a database of high-
resolution protein structures [5].  The corresponding average results 
are shown in Figure 6.  

 

 
 
 
 
 
 

 
We found that the non-polar environments of all twenty types of 

amino acids are weakly correlated to their accessible environments.  
This weak correlation illustrates that accessible surface area and 
contact areas provide complementary information that is relevant to 

the native conformations of the proteins.  We note that the plot of 
non-polar contact area versus accessible surface area partitions the 
amino acids into two groups, those with low ASA and high NPCA, 
namely C, V, I, L, M, Y, F, W, and the others; this partitioning 
parallels the groupings of amino acids as being either hydrophobic or 
hydrophilic. 
 

The alpha shape theory was originally developed in the early 

990s by Edelsbrunner and co-workers to characterize the shapes of 

sets of points (weighted or not) in 2D and 3D [67, 06, 07]. As 

weighted points can be seen as balls, and as molecules are usually 
represented as union of balls, it was not surprising to see alpha shapes 
being adapted to characterize the shapes of molecules. The first 
applications focused on measuring molecular shapes (i.e. computing 
their volume and surface area) [95] as well as on characterizing the 
“empty spaces” enclosed within the boundary of a molecule, namely 
cavities [84] and pockets [6,85]. While these applications of the 
alpha shape theory remain popular in structural biology with new and 
improved software implementations being released regularly, such as 

AlphaVol [7], CASTp [ 0 ], Vorlume [ 08], and UnionBall [96], 

many applications in new domains have been proposed. Here we 
review a few of these applications. 
 
Statistics of protein structure geometry 

Proteins are essential tools that perform a wide variety of 
biological functions inside the cell. Just like in the case of macroscopic 
tools, it is the shape and dynamics of a protein that define its 
function. Recent structural genomics initiatives have undertaken the 
vast challenge of finding the structures of all known proteins, in hopes 
of unraveling this relationship between geometry and function. The 
experimental determination of a protein structure at the atomic level 
remains, however, a difficult problem. There is hope however that 
theoretical and computational techniques will supplement 
experimental methods and enable protein structure prediction at the 

near atomic level [ 09, 0]. Many of these techniques rely on the 

knowledge derived from the analysis of the geometry of known 
protein structures. Such an analysis requires an objective definition of 
atomic packing within a molecular structure. The alpha shape theory 
has proved a useful approach for deriving such a definition.  Singh et 
al for example used the Delaunay complex to define nearest-neighbors 
in protein structures and to derive a four-body statistical potential 

[ ]. This potential has been used successfully for fold recognition, 

decoy structure determination, mutant analysis, and other studies (for 

a full review, see [ 2]). The potentials considered in these studies 

rely on the tetrahedra defined by the Delaunay triangulation of the 
points representing the atoms. In parallel, Zomorodian and colleagues 
have shown that it is possible to use the alpha shape theory to filter 
the list of pairwise interactions to generate a much smaller subset of 
pairs that retains most of the structural information contained in a 

proteins [ 3]. The alpha shape theory has also been used to 

characterize the shapes [ 4] and surfaces [ 5- 7]. 
 
Protein structure alignment 

The alpha shape theory allows for the detection of independent 
simplices characterizing the geometry of a protein structure. It is 
worth mentioning that it is possible to use this information to 
compare two protein structures and even to derive a structural 

alignment between these structures [ 8, 9]. 

 

Figure 6. The mean residue non-polar environment (XNPCA) is plotted 
against the mean residue solvent environment (XASA) for all twenty types 
of amino acids; XNPCA and XASA were computed from a set of 305604 
residues from a database of 1555 high-resolution protein structures. 
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Characterizing and predicting bio-molecular interactions 
As the function of a protein is related to its geometry and as 

function usually involves binding to a partner protein, significant 
efforts have been put into charactering the geometry of protein-ligand 
interactions, where ligands include small molecules, nucleic acids, and 
other proteins. Among these efforts, a few relate to the applications of 
the alpha shape theory. As described for example in Figure 5, the 
latter has been used extensively for detecting pockets and cavities 

within molecules that are putative binding sites [6, 0 ]. It has been 

recently extended to characterize binding sites at the surface of 

proteins [ 5- 7, 20, 2 ]. The alpha shape theory has also been 

used to characterize the interfaces in protein-protein complexes [ 22] 

as well as protein-DNA interactions [ 23]. For a complete review of 

the applications of the alpha shape theory to characterize protein 

interactions, the reader is referred to [ 24]. 

It is worth mentioning a geometric parallel between finding a 
structural alignment between two proteins and predicting the 
structure of their interactions. While the former is based on the 
identification of similar geometric patterns between the two 
structures, the latter is based on the identification of complementary 
patterns between the surfaces of the two structures. As mentioned 
above, geometric patterns based on the Delaunay triangulation have 
been used for structural alignment. In parallel, similar patterns have 

recently been used to predict protein-protein interactions [ 25]. 

 
Alpha shapes as a tool to characterize dynamics 

All the applications described above relate to the static geometry 
of molecules. Bio-molecules however are dynamics. A molecular 
dynamics simulation is designed to capture this dynamics: it follows 
the Newtonian dynamics of the molecule as a function of time, 
generating millions of snapshots over the course of the trajectory 

[ 26]. The alpha shape theory has proved useful to characterize the 

geometric changes that occur during such a trajectory. For example, 

using the concept of topological persistence [ 27], Kasson et al 

characterized structural changes in membrane fusion over the course 

of a simulation [ 28]. More recently, Lindow et al proposed a a 

Voronoi-based algorithm to extract the geometry and the dynamics of 

cavities and channels from a molecular dynamics trajectory [ 29]. 

 
6. Summary and Outlook 

 
The Alpha Shape Theory provides a fast, accurate, and robust 

method for characterizing the geometry of a macromolecule 
represented as a union of balls. In this paper, we have presented the 
mathematical foundations of this theory and described its applications 
to measuring the shape of a molecule. We have shown how it can be 
used to compute the volume and surface area of a union of balls, to 
detect and measure cavities and pockets inside the outer envelope of 
such a union of balls, and to compute the surface areas of the contacts 
between the balls. We have reviewed how these measures are related 
to properties of the molecule of interest, as well as recent applications 
of the alpha shape theory that go beyond studying the geometry of a 
single molecule. We conclude this paper with a description of one 
new challenge in biology in which the alpha shape theory is expected 
to prove useful. 

Recent advances in structural biology have produced an 
abundance of data on large macro-molecular complexes such as the 
RNA polymerase transcription complexes, the ribosome complexes, as 
well as large viral particles with more than sixteen million atoms.  
Modeling the dynamics of such large systems is as important as 
modeling smaller proteins.  It becomes impractical, however, to 

consider all atoms of such molecular machinery and we need to 
introduce approximations that consider the system at coarser levels of 
detail.  One possible approach is to represent the macro-molecular 
complex with a small number of spheres, supplemented with a model 
for their interactions that captures the physics of the underlying 
atomic model.  This model will include a potential energy function 
for internal interactions and a potential energy function to account for 
the solvent environment of the system.  We expect the latter to 
resemble the solvation potentials described in these papers that relate 
geometry and energy.  We also expect the alpha shape theory, which 
provides full characterization of union of balls or spheres, to play an 
important role in both characterizing the coarse-grained 
representations of these molecular machines and in developing the 
models for their interactions. 
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