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Autism spectrum disorder (ASD) is an umbrella term de-
scribing a group of neurodevelopmental disorders charac-
terized by two core features: impaired social communication 
and restricted and repetitive behaviours, which include 
atypical responses to sensory information.1–3 ASD has a 
heterogeneous aetiology, in which genetic risk involving 
many heterogenous genetic variants plays a large role.1,2 
Unfavourable prenatal, perinatal, and neonatal conditions, 
including advanced parental age and birth before 32 weeks of 
gestation, are associated with an increased risk of ASD.1 The 
prevalence of ASD, currently estimated as 1% to 2%, has in-
creased during the last years, most likely because of growing 
awareness and improved diagnostics.1–3 Males are affected 3 
to 4 times more often than females.1–3 ASD is often accom-
panied by other disorders, including intellectual disability, 
anxiety disorder, and depression.1,2

A recent meta-analysis4 indicated that ASD in children 
is diagnosed at an average age of 43 months. However, accu-
mulating evidence indicates that the first signs of ASD arise 
during infancy.5–7 The first aim of this review is to summa-
rize the signs of ASD emerging in the first postnatal year. Our 
knowledge of the early signs was boosted by studies that pro-
spectively followed infants at high familial risk of ASD, who 
at the age of 2 or 3 years most likely had ASD or who did not 
meet the criteria for probably having ASD, and infants at low 
familial risk of ASD. The review's second aim is to discuss the 
pathophysiology underlying the emergence of ASD signs in 
infancy. From neuropathological and neuroimaging studies 
in adolescents and adults, it is well known that ASD is associ-
ated with widespread alterations in the so-called ‘social brain’. 
The social brain consists of extensive networks to which the 
frontal, temporal, and parietal cortices and cerebellum largely 
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Abstract
Autism spectrum disorder (ASD) is characterized by altered development of the so-
cial brain with prominent atypical features in the fronto-temporo-parietal cortex 
and cerebellum. Early signs of ASD emerge between 6 and 12 months: reduced social 
communication, slightly less advanced motor development, and repetitive behav-
iour. The fronto-temporo-parietal cortex and cerebellum play a prominent role in the 
development of social communication, whereas fronto-parietal-cerebellar networks 
are involved in the planning of movements, that is, movement selection. Atypical 
sensory responsivity, a core feature of ASD, may result in impaired development of 
social communication and motor skills and/or selection of atypical repetitive behav-
iour. In the first postnatal year, the brain areas involved are characterized by gradual 
dissolution of temporary structures: the fronto-temporo-parietal cortical subplate 
and cerebellar external granular layer. It is hypothesized that altered dissolution of 
the transient structures opens the window for the expression of early signs of ASD 
arising in the impaired developing permanent networks.
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contribute.3,8,9 The current review hypothesizes that the disso-
lution of the temporary neural structures in these parts of the 
brain, that is, an altered dissolution of the cortical subplate in 
the frontal, temporal, and parietal cortices resulting in an ex-
cess of white matter interstitial neurons10 and the dissolution 
the cerebellar external granular layer (EGL),11 may underlie 
the emergence of the early signs of ASD.

SIGNS OF ASD DU R I NG I N FA NC Y

Signs of altered social communication

Subtle impairments in social communication are the first spe-
cific signs of ASD.12 These impairments can be detected from 
6 months onwards.5,6 The first signs especially consist of lower 
rates of social behaviour, including gazing at an adult's face, 
smiling or vocalizing to an adult with eye contact, initiating 
joint attention, and responding to one's name.5,6,13 Most likely, 
impaired attention to biological motion, in particular to the 
movements of other persons' eyes and mouth, plays a pivotal 
role in the development of social signs.14,15 Impaired attention 
to biological motion results, among others, in reduced joint at-
tention, which in turn interferes with language development 
and the acquisition of social knowledge.14,16,17 The lower rates 
of social behaviour emerging between 6 and 12 months are 
generally due to regression, that is, a significant decrease in (or 
loss of) previously acquired behaviour.5

At the beginning of the second year, impairments in so-
cial communication are clearer.1,18 In addition, other social 
signs may emerge, such as lower rates of sharing gestures, 
lower social reciprocity, and less coordinated communica-
tion involving gaze, facial expression, and vocalizations.6,18 
In response, parent behaviour may change. For instance, 
parents may produce fewer labelling utterances; in response 
to the infant's limited signs of communication, parents may 
produce more play actions.18

This indicates that the expression of impaired social 
communication starts in the second half of the first year. 
However, during this period signs are mostly too subtle to 
be picked up by parents and clinicians. In general, it is from 
the age of about 12 months onwards that parental screening 
questionnaires19 and spontaneously uttered parental con-
cerns about their infant's social and language skills20,21 get 
predictive validity for ASD in infants with high familial risk.

Signs of altered sensory processing

Sensory concerns, such as hyperresponsiveness to sound or 
touch, are among the first signs that distinguish infants later 
diagnosed with ASD (i.e. infants with ASD) from infants 
without ASD.20 With increasing age, the difference in sensory 
responsivity between infants with ASD and typically develop-
ing infants increases.22 At preschool age, signs of hyporespon-
siveness are reported, such as ignoring loud noise, lacking 
attention for novel objects, and not responding to pain.23

Signs of altered motor development

Infants with ASD may also show impaired motor develop-
ment. Currently, it is unclear whether or not abnormal gen-
eral movements may assist the prediction of ASD because the 
limited data available are contradictory.7 It is conceivable that 
infants with ASD have a higher prevalence of poor repertoire 
general movements or fidgety movements with an abnormal 
quality, but most likely these signs have limited predictive 
power for ASD.7 Presumably, prediction will be best in groups 
of infants at high familial or biological risk (see the section on 
the ‘Pathophysiology of altered motor function in ASD’).

The meta-analysis by Lim et al.7 indicated that motor signs 
in the form of less advanced gross and fine motor skills emerge 
around 6 months. The study by Sacrey et al.20 indicated that 
parents also report motor concerns in infants with ASD from 
such an early age onwards. However, Tran et al.21 could not 
confirm this finding. Between 6 and 12 months, infants with 
ASD may start to produce more repetitive movements, such as 
hand flapping, than infants without ASD.24 The motor signs 
in the second half of the first year are subtle. For instance, the 
motor performance of infants with ASD aged 6 to 12 months 
is less advanced than that of infants without ASD; however, 
infants with ASD generally perform within the norms.25 This 
may explain the contradictory findings on the parental con-
cerns regarding motor development of infants with ASD. From 
12 months onwards, delays in achieving motor skills and the 
presence of repetitive, ritualistic behaviour (e.g. simple motor 
strategies or lining up of toys) are more prominent.6,7

PATHOPH YSIOLOGY OF TH E E A R LY 
SIGNS OF ASD

Neuropathology, neuroimaging, and 
electrophysiology

Neuropathological and neuroimaging studies in adolescents 
and adults reported that ASD is associated with widespread 
alterations in the social brain.3,8,9 The social brain includes 
the medial prefrontal cortex, the association areas in the 
parietal and temporal cortices, the cerebellum, amygdala, 
and brainstem.26 The alterations in individuals with ASD 
include overconnectivity, underconnectivity, and a more 

What this paper adds

•	 The early social and motor signs of autism spec-
trum disorder emerge between the ages of 6 and 
12 months.

•	 Altered dissolution of transient brain structures 
in the fronto-temporo-parietal cortex and cere-
bellum may underlie the emergence of these early 
signs.
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diffuse connectivity between networks. This results in re-
duced network specialization and a loss of hubs (nodes on 
which global long-range connectivity converges) in the pre-
frontal, temporal, and parietal cortices.3,8

The pathogenesis of ASD starts during prenatal life and 
involves many of the complex, interacting, and long-lasting 
processes of brain development, including neural prolifera-
tion, migration, dendrite and axon outgrowth, synaptogen-
esis, neural cell death, synapse reorganization, and network 
configuration.27 Recent neuropathological studies suggested 
that the development of the cortical subplate is also altered 
since the frontal, temporal, and parietal cortices of adults 
with ASD contain an excess of subplate neurons, especially 
white matter interstitial neurons.10,28,29

Neuroimaging studies in young children with high and 
low familial risk revealed that brain development in children 
with ASD is characterized by aberrant growth: early over-
growth is followed by regression.30 This is best documented 
for the frontal, temporal, and cingulate cortices.30 Early 
overgrowth is the net result of a decreased growth in grey 
matter and increased white matter growth. This is visible 
around 12 months.31 At the age of 2 years, the white matter 
trajectories of children with ASD start to show reduced in-
tegrity compared to those of children without ASD.32 From 
this age onwards, the volumes of the striatum and amygdala 
and the thickness of the temporal cortex decrease with in-
creasing age, whereas the thickness of the frontal cortex in-
creases in individuals with ASD.33

Whether the social brain of children with ASD func-
tions differently from that of children without ASD already 
at birth is currently unclear since resting-state functional 
magnetic resonance imaging studies in infants with high 
familial risk provided contradictory results.34,35 Yet, a dif-
fusion tensor imaging study in 6-week-old infants reported 
that infants with high familial risk pair thalamic-prefrontal 
underconnectivity with thalamic-occipital and thalamic-
motor overconnectivity.36 Also, a multichannel electroen-
cephalography study in 3-month-old infants indicated that 
infants with high familial risk showed signs of decreased 
connectivity in the frontal area and increased connectivity 
in the temporoparietal areas. In addition, the early parame-
ters of altered connectivity are associated with higher rates 
of signs of ASD at 18 months.37 A morphometric study fo-
cusing on the subcortical regions and cerebellum described 
that at the age of 4 to 6 months the volume of both areas was 
larger in infants with high familial risk than in infants with 
low familial risk. The larger volumes in early infancy were 
related to higher scores of repetitive behaviour at the age of 
3 years.38 These findings correspond to those by Wolff et al.32 
that signs of altered development of cerebellar pathways and 
the genu of the corpus callosum at 6 months are associated 
with higher scores of repetitive behaviour and sensory im-
pairment at the age of 2 years.

These data demonstrate that even during infancy the 
brain development of children with ASD differs from that 
of children without ASD. They also indicate that the im-
pairments are increasingly clear with increasing age, in 

particular after the age of 12 months. The impairments are 
widespread in the social brain, with the most prominent de-
viancies found in the cortico-subcortical networks involving 
the frontal, temporal, and parietal cortices and cerebellum. 
The widespread alterations in the young social brain explain 
why social signs are the most specific early signs of ASD.

Altered sensory processing

Atypical sensory responsivity occurs in most individuals 
with ASD, affecting all sensory modalities.39 Robertson and 
Baron-Cohen suggested that sensory impairments are a core 
characteristic of the neurobiology of ASD.39 A key feature 
of sensory impairment is the large intertrial response vari-
ability.39 The variable and thus less reliable sensory infor-
mation may underly the altered development of both social 
communication and motor development. Less accurate sen-
sory feedback may hamper the interpretation of especially 
complex non-verbal face and gaze signals, the development 
of joint attention, and motor skills.16,40,41

In ASD, all sensory modalities are affected, including 
the visual system. In children with severe or profound vi-
sual impairment, the prevalence of ASD is significantly in-
creased.42,43 The most common ophthalmological disorders 
associated with ASD are retinopathy of prematurity, optic 
nerve hypoplasia, Leber congenital amaurosis, and microph-
thalmia/anophthalmia.42 Most children with these disorders 
have additional neurological pathologies, most commonly 
cerebral visual impairment.43 The additional neurological 
abnormalities and their underlying neuropathology largely 
explain the increased prevalence of ASD among children 
with severe visual impairment. In children in whom visual 
impairment is based on peripheral ophthalmic pathology 
only, the risk of ASD is not or only slightly increased.44

When the mirror neuron system, the group of neurons 
that mirror the neural activity involved in the actions of oth-
ers, was discovered in the early 1990s, it was soon thought 
that an impaired mirror neuron system could be a core char-
acteristic of ASD.45 Indeed, children with ASD have some-
what limited capacities to imitate: on average they perform 
between the 18th and 21st centile of typically developing 
children.46 However, it is increasingly clear that this im-
pairment cannot be attributed to an impaired mirror neu-
ron system.45,47,48 Rather than being attributed to a deficit 
in the mirror neuron system, the mildly impaired capacities 
to imitate may be explained by impaired abilities to process 
biological motion.49

Pathophysiology of altered motor function 
in ASD

Children, young people, and adults with ASD often show 
impaired motor skills.50–52 Their motor behaviour is espe-
cially characterized by impaired planning of movements, 
in particular complex movements.53 The impairments 
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frequently qualify for the diagnosis of developmental coor-
dination disorder but often this diagnosis is not provided 
due to a lack of attention to motor problems.51 A recent 
systematic review indicated that the neural correlate of 
developmental coordination disorder consists of wide-
spread alterations in the brain involving the corticospinal 
tract, basal ganglia, and frontal, parietal, and temporal 
cortices.54 The review noted that the cerebellum received 
little research attention.54 Recent studies on the neural 
substrate of motor impairments in individuals with ASD 
indicated involvement of the prefrontal50 and parietal cor-
tices,55 cerebellum,56 and corticospinal tract.57 The latter 
study indicated that the corticospinal projections from the 
primary motor cortex were not involved; only projections 
originating in the premotor and supplementary motor 
cortices were affected.57

We know that limited movement variation in infancy, 
for example, ref lected by poor repertoire general move-
ments, is on the one hand associated with damage of the 
periventricular white matter and corticospinal tract, with 
or without lesions in the basal ganglia; on the other hand, 
it is associated with cerebral palsy.58 It is conceivable that 
infants with ASD may also show a reduced motor reper-
toire. The latter may be expressed in general movements 
with a poor repertoire. In addition, altered sensory pro-
cessing may result in fidgety movements with an atypical 
quality (‘breakdance fidgety’).59 Most likely, repertoire re-
duction in infants with ASD is less pronounced than that 
in children with cerebral palsy, a suggestion that is sup-
ported by the pilot study by Wilson et al.60 Presumably, 
repertoire reduction especially occurs in infants later di-
agnosed with the combination of ASD and developmental 
coordination disorder.

During typical development, infants gradually learn to 
select from their movement repertoire those movements 
that are best adapted to the situation. This means that in-
fants shift from a feedback movement control to an efficient 
feedforward movement selection. The development of this 
adaptive motor behaviour starts to bloom in the second half 
of the first postnatal year.61 It is based on active trial-and-
error learning and its associated sensory information.61 As 
mentioned earlier, sensory feedback in children with ASD 
is less reliable, which may interfere with the process of se-
lection. This may have two consequences. First, it may 
mean that children with ASD need more trial-and-error 
experience to find their most efficient movement strategy 
and therefore need more time to develop motor skills.10,11 
Second, the altered sensory input and its possibly altered 
reference values may also result in an atypical selection of 
preferred motor behaviour, that is, the selection of repetitive 
movement sequences. This corresponds to reports of young 
people with ASD that repetitive behaviour helps to focus the 
mind, relax, and cope with overwhelming sensory informa-
tion.62 It is conceivable that the selection of atypical, repet-
itive movements is facilitated by the presence of a limited 
motor repertoire.

The putative role of the cortical subplate in ASD 
pathophysiology

The cortical subplate is a temporary structure between the 
cortical plate and the future white matter. From animal re-
search, we know that it is a hotspot of brain development 
and brain function during fetal life. By establishing transient 
connections, the cortical subplate assists the development of 
the huge number of afferent and corticocortical pathways 
characteristic of the human brain.10,11,63,64 The latter is espe-
cially true for the frontal, temporal, and parietal association 
areas, where the subplate is thickest and more prominently 
present for longer than in other cortical areas.10 The sub-
plate starts to shrink at the beginning of the third trimester 
of gestation due to programmed cell death. Other neurons 
start to populate the cortical plate, that is, the site of the per-
manent cortical networks. Around 3 months post-term, the 
transient cortical subplate has largely disappeared in the pri-
mary motor, somatosensory, and visual cortices, but it takes 
until the end of the first year before this stage is reached in 
the frontal, temporal, and parietal association areas.10,11 In 
humans, the subplate neurons do not entirely disappear; in-
terstitial neurons remain in the gyral white matter.10 These 
neurons play a role in finding the optimal balance between 
glutamatergic (excitatory) and GABAergic (inhibitory) neu-
ral activity, thus allowing for a modulation of the afferent 
input to the deep cortical layers.10 Increasing evidence sug-
gests that (1) in ASD altered subplate dissolution in the fron-
tal, temporal, and parietal areas results in an excess of white 
matter interstitial neurons,28,29 and (2) ASD is characterized 
by an altered glutamatergic–GABAergic balance.65,66 Thus, 
the following sequence of events is conceivable. Brain devel-
opment in ASD may start with an often genetically deter-
mined alteration of the glutamatergic–GABAergic balance 
and an altered dissolution of the cortical subplate resulting 
in a surplus of white matter interstitial neurons (‘first hit’).65 
Next, the resulting altered sensitivity to sensory informa-
tion may give rise to a further altered development of corti-
cocortical connectivity, especially in the frontal, temporal, 
and parietal association areas (‘second hit’).65 In addition, 
the altered development of the subplate may also affect cer-
ebellar development.10

Putative neural substrate underlying the 
emerging signs of ASD in infancy

Signs of neural impairment generally emerge when the un-
derlying neural circuitries have been developed sufficiently 
to express function. For instance, dyslexia is mostly diag-
nosed at school age, when the neural networks involved 
in reading and writing have been sufficiently established. 
The same holds true for the expression of the first specific 
signs of ASD: they arise in the second half of the first year 
(Figure 1). The emergence of signs runs parallel to the last 
phase of the dissolution of the two temporary structures in 
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the brain, that is, the dissolution of the cerebellar EGL and 
the altered dissolution of the cortical subplate in the frontal, 
temporal, and parietal association areas resulting in an ex-
cess of white matter interstitial neurons. Based on these con-
current developments, we may hypothesize that the altered 
dissolution of the temporary structures in the brain areas, 
which are clearly involved in ASD pathology, allows for the 
behavioural expression of the early signs of ASD.

Previously and similarly, it has been hypothesized that 
the dissolution of the cortical subplate in the sensorimotor 
cortex around 3 months post-term largely facilitates the pre-
dictive value of general movement assessment.58 In ASD, 
the suggested course of events is the following. The altered 
dissolution of the subplate in the fronto-temporo-parietal 
areas and the dissolution of the cerebellar EGL may facilitate 
the expression of signs of impaired social communication. 
Likewise, the dissolution of the cerebellar EGL and the al-
tered dissolution of the subplate in the parietal cortex may 
promote the expression of motor signs, that is, impaired 
adaptability giving rise to slower motor development and the 
emergence of repetitive motor sequences.32,38, 67,68

CONCLUSION

Children with ASD have an altered development of the social 
brain, with prominent atypical features in the fronto-temporo-
parietal cortex and cerebellum. The early specific signs of ASD 
emerge between 6 and 12 months. They consist of reduced so-
cial communication, slightly less advanced motor development 
(with performances that mostly fall within the typical range), 
and the emergence of repetitive behaviour. This means that 
the signs appear in the period that is typically characterized by 
rapid improvements in social communication and adaptability 

in motor behaviour. Social communication is mediated by 
the social brain with prominent roles of the fronto-temporo-
parietal cortex and cerebellum, whereas the fronto-parietal-
cerebellar networks are involved in the preprogrammed 
selection of movement sequences. The latter may not only result 
in adaptive movements, but also in repetitive behaviour. In the 
first postnatal year, these parts of the brain are characterized by 
the gradual dissolution of temporary structures, that is, major 
parts of the subplate in the fronto-temporo-parietal cortex and 
the EGL in the cerebellum. This means that in the second half 
of the first year, the brain gradually gets rid of almost all of its 
transient fetal structures. Simultaneously, the developing per-
manent circuitries get fully in charge of behavioural program-
ming. It is therefore conceivable that the altered dissolution of 
the temporary structures opens the window for the emergence 
of the early signs of ASD. This hypothesis is supported by the 
finding that screening questionnaires19 and spontaneously ut-
tered parental concerns21 in infants with high familial risk have 
predictive value from 12 months onwards, that is, from the age 
that the transient fetal structures have largely disappeared.
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F I G U R E  1   Schematic representation of the emergence of the specific signs of autism spectrum disorder and the presence and dissolution of 
transient structures during early development. The bottom line denotes age, first in weeks postmenstrual age (PMA) and after term age (40 weeks) in 
months corrected age (CA). In the three upper bars, the hatching denotes the presence of a sign of autism spectrum disorder. In the lowest two bars, the 
grey shading depicts typical development and dissolution of the transient neural structures: the cortical subplate in the frontal, temporal, and parietal 
association areas and the cerebellar external granular layer (EGL). Note that in autism spectrum disorder, dissolution of the subplate in the frontal, 
temporal, and parietal association areas is altered, resulting in an excess of white matter interstitial neurons (not depicted).
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