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Representing the brain’s innate immune cells that interact vividly with blood-derived
immune cells and brain parenchymal cells, microglia set the stage for successful brain
remodeling and repair in the aftermath of brain damage. With the development of
pharmacological colony-stimulating factor-1 receptor inhibitors, which allow inhibiting
or depleting microglial cells, and of transgenic mice, allowing the inducible depletion of
microglial cells, experimental tools have become available for studying roles of microglia
in neurodegenerative and neurorestorative processes. These models open fundamental
insights into roles of microglia in controlling synaptic plasticity in the healthy and the
injured brain. Acting as a switch from injury to repair, microglial cells might open
opportunities for promoting neurological recovery in human patients upon brain injury.
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Immune responses play a central role in modulating brain injury and recovery postinjury
(Anrather and Iadecola, 2016; Jayaraj et al., 2019). In the injured brain, complex cellular and
molecular mechanisms are triggered, including the release of inflammatory cytokines and alarmins
by damaged cells (Bianchi, 2007; Roth et al., 2018), glial activation (Neumann et al., 2015;
Manrique-Castano et al., 2020), and the brain invasion of leukocytes belonging to the innate and
adaptive immune systems (Gelderblom et al., 2009; Neumann et al., 2015). Immune cell trafficking
across the blood–brain barrier is mediated by adhesion molecules on cerebral endothelial cells
including intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 (Lopes Pinheiro
et al., 2016). In the injured brain, both peripheral leukocytes and resident microglia have been
shown to accumulate in evolving brain lesions (Neumann et al., 2015; Perez-de-Puig et al., 2015).

Microglial cells, which are the brain’s innate immune cells, vividly interact with brain-invading
leukocytes in the injured brain (Neumann et al., 2006, 2008, 2015), controlling their brain
access and activity. Microglial cells also communicate with brain endothelial cells, maintaining the
integrity of the brain microvasculature, and, specifically, the blood–brain barrier, as well as immune
cell access to the injured brain (Dudvarski Stankovic et al., 2016). Microvascular protection by
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microglia is enabled by direct effects of microglia on endothelial
cells, e.g., by inducing their phagocytosis or stabilizing
endothelial cells by secretion of vascular endothelial growth
factor (Dudvarski Stankovic et al., 2016). In organotypic
brain slices ex vivo and experimental models of ischemic
stroke in vivo, activated microglial cells were shown to engulf
and phagocytose leukocytes (Neumann et al., 2008, 2018;
Otxoa-de-Amezaga et al., 2019).

These dynamic responses of microglial cells in the injured
brain were identified following advances in two fields, namely, in:
(a) brain imaging and image analysis; and (b) pharmacological
microglial deactivation and/or depletion. Brain imaging
techniques facilitating the analysis of microglial cells are
two-photon microscopy, which allows real-time imaging of
cell physiology and pathology in vivo in the injured brain
(Davalos et al., 2005; Neumann et al., 2015), and confocal
microscopy combined with morphological image analysis,
which via the segmentation, skeletonization, and three-
dimensional reconstruction of microglial cells allows the
evaluation of microglial activation in responses to injury and
therapy (Heindl et al., 2018; Manrique-Castano et al., 2020).
Innovations of brain imaging greatly promoted progress in our
understanding of the contribution of microglial cells to brain
recovery processes.

With the emergence of pharmacological colony-stimulating
factor-1 receptor (CSF1R) inhibitors, which allow inhibiting and
depleting microglial cells (Elmore et al., 2014; Waisman et al.,
2015; Olmos-Alonso et al., 2016) and of the CX3CR1-CreER-
R26iDTR mouse, in which microglia depletion can efficiently
be induced by diphtheria toxin delivery (Parkhurst et al., 2013;
Waisman et al., 2015), experimental tools have become available
for assessing the role of microglial cells in neurodegenerative
processes. Microglial depletion studies using a CSF1R inhibitor
revealed that reactive microglia efficiently eliminate leukocytes
from ischemic brain tissue (Otxoa-de-Amezaga et al., 2019).
Microglia deactivation and depletion by long-term treatment
with the CSF1R inhibitor increased brain leukocyte numbers, and
microglial depletion enlarged brain infarcts (Otxoa-de-Amezaga
et al., 2019). The combined evidence of these studies revealed
that upon brain injury microglia set the stage for successful brain
remodeling and repair.

Following these seminal works, our understanding of
the role of microglial cells in brain remodeling and repair
has strongly expanded in the last 2 years. Studies recently
published in Frontiers of Cellular Neuroscience revealed
how microglial cells push the balance toward remodeling

and repair upon brain injury (Bernardino et al., 2020).
Particularly noteworthy is the description of exosomes
(Vaz et al., 2019), microparticles (Grimaldi et al., 2019),
and secreted growth factors (Fuentes-Santamaría et al., 2019;
Myhre et al., 2019; Wlodarczyk et al., 2019) as mediators
of neuronal recovery induced by microglial cells. The role
of microglia in controlling neurotransmission (Fuentes-
Santamaría et al., 2019), neuronal myelination (Wlodarczyk
et al., 2019), and synaptic plasticity (Gunner et al., 2019;
Fuentes-Santamaría et al., 2019; Nguyen et al., 2020) was
outlined. Further studies evaluated age and sex factors
influencing microglial responses (Lively et al., 2018). These
findings exemplify that manipulation of a distinct cell
type allows modulating recovery processes in a clinically
meaningful way.

Many open questions remain, e.g., with respect to: (a)
bystanders of the induced degeneration of microglial cells in
the living brain; (b) side effects of microglial deactivation
or depletion on blood-derived immune cells, specifically of
monocytes, which also carry CSF1R; and (c) the rapid
repopulation of microglia following genetic or pharmacological
microglia depletion. Some aspects of effects of microglial cells
on neuronal and, specifically, synaptic plasticity still remain
unresolved. These questions include whether or to which
degree synaptic plasticity is influenced by synaptic pruning or
nonphagocytic processes (Cheadle et al., 2020). Acting as a
switch from injury to repair, microglial cells potently influence
neurological recovery processes. Whether this strategy holds its
promises in human patients still has to be shown.
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