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A B S T R A C T

Background: Recent genome-wide association studies (GWAS) of striatal volumes and bipolar disorder (BD)
indicate these traits are heritable and share common genetic architecture, however little independent work has
been conducted to help establish this relationship.
Methods: Subcortical volumes (mm3) of young, healthy offspring of BD (N=32) and major depressive disorder
(MDD) patients (N=158) were compared to larger healthy control sample (NRANGE= 925–1052) adjusting for
potential confounds, using data from the latest release (S1200) of the Human Connectome Project. Based on
recent GWAS findings, it was hypothesised that the accumbens and caudate would be smaller in offspring of BD,
but not MDD patients.
Results: After multiple comparison correction, there was a regional and BD specific relationship in the direction
expected (Accumbens: F2,1067= 6.244, PFDR-CORRECTED= 0.014).
Discussion: In line with recent GWAS, there was evidence supporting the hypothesis that reduced striatal volume
may be part of the genetic risk for BD, but not MDD.
Limitations: It cannot be concluded whether this association was specific to BD or consistent with a broader
psychosis phenotype, due to a small sample size for offspring of schizophrenia patients. Furthermore, one cannot
rule out potential shared environmental influences of parental BD.
Conclusions: The common genetic architecture of BD may confer susceptibility via inherited genetic factors that
affect striatal volume. Future work should establish how this relationship relates to specific BD symptomology.
This work may also help to dissect clinical heterogeneity and improve diagnosis nosology.

1. Introduction

While there is considerable evidence that affective disorders such as
bipolar disorder (BD) and major depressive disorder (MDD) are heri-
table, comparatively little is known about how genetic risk for these
disorders confer susceptibility. In order to establish putative mechan-
isms of pathophysiology, neuroimaging studies have explored the im-
pact of genetic risk for these disorders by scanning their unaffected
relatives/offspring. These studies present mixed evidence that un-
affected relative groups show alterations in brain structure (Ladouceur
et al., 2008; McDonald et al., 2006; McIntosh et al., 2004; Nery et al.,
2015). Furthermore, these studies are unable to determine how puta-
tive alterations in brain structure are related to genetic risk.

Genome-wide association studies (GWAS) now suggest liability for
affective disorders is partially conferred by thousands of common loci

conferring risk en masse (Stahl et al., 2017; Wray and Sullivan, 2017).
GWAS also suggest that subcortical brain volumes also have a complex
polygenic architecture (Hibar et al., 2015; Satizabal et al., 2017).
Considerable evidence suggests that subcortical brain volumes are re-
duced in BD and MDD cases compared to controls (Hibar et al., 2016;
Schmaal et al., 2016), however, less is known about the whether these
volumetric reductions are linked to the common genetic aetiology of
these disorders. These studies are critical in understanding the role of
common genetic variation in psychopathology and putative mechan-
isms of risk.

Preliminary evidence suggests that the observed volumetric sub-
cortical reductions are not due to genetic aetiology that is shared with
schizophrenia (SCZ) or MDD (Franke et al., 2016; Reus et al., 2016;
Wigmore et al., 2017). However, the genetic relationship between
subcortical brain volumes and bipolar risk is less clear. Recent GWAS
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show a negative genetic correlation between BD and subcortical brain
volumes – specifically in the ventral (accumbens) and dorsal (caudate)
striatum (Satizabal et al., 2017). This suggests genetic overlap between
the common genetic variants that confer risk to bipolar and contribute
to individual differences in striatal brain volume.

In the current study, I aim to support the negative genetic associa-
tion between bipolar genetic risk and striatal brain volumes. Using data
from the Human Connectome Project – Young Adult (HC-HCP) cohort, I
aim to explore the impact of familial risk for BD/MDD on the sub-
cortical volumes commonly explored in large genetic and case-control
imaging studies (Hibar et al., 2015, 2016). I expect to observe reduced
accumbens and caudate volume in BD offspring compared to in-
dividuals without a parental history of BD. Furthermore, one may an-
ticipate that putative reductions are specific to BD and not present for
individuals with a familial risk to MDD or SCZ. I suggest that the fa-
milial alterations in striatal volumes linked to BD may represent a di-
agnosis-specific, neural antecedent for BD that may a) be linked
common genetic variation and b) may be used to future patient strati-
fication and diagnostic strategies.

2. Methods

2.1. Participants

Data were drawn from the publicly available repository of the WU-
Minn HC-HCP (http://www.humanconnectome.org/), which includes
individuals who have parents with MDD, BD or SCZ diagnosis. The
scanning protocol was approved by Washington University in the St.
Louis's Human Research Protection Office (HRPO), IRB# 201204036.
No experimental activity with any involvement of human subjects took
place at the author's institutions. Participants were drawn from the
March 2017 public data release from the Human Connectome Project
(N= 1206). All participants were aged from 22 to 35, for all inclusion/
exclusion criteria, see Van Essen et al. (Van Essen et al., 2013). Briefly,
the study excluded individuals with a personal history of psychiatric
disorder, substance abuse, neurological or cardiovascular disease and
associated hospitalization or long–term (> 12 months) pharmacolo-
gical/behavioural treatment. For a full brief of inclusion/exclusion
criteria, please see Supplemental Table 1 in (Van Essen et al., 2013).
Participants were excluded from the current analyses if they lacked
good-quality structural magnetic resonance imaging data, or had
missing relevant interview/questionnaire data. Further information
about the HCP pedigree/kinship structure can be found at http://www.
humanconnectome.org/storage/app/media/documentation/s1200/
HCP_S1200_Release_Reference_Manual.pdf. Individuals were excluded
who had at least one parent with a diagnosis of schizophrenia (N=7).
Sample sizes for each group were: HC (F=534/M=471); MDD
(F= 95/M=57); BD (F= 22/M=15), and gender was not over-
represented in any group (χ2= 5.046, P=0.08). The BD and MDD
offspring groups were comparable in age, handedness and education
(P > 1, in all cases; Table 1). To control for potential confounding,
these variables were also all added as covariates into all models.

2.2. Data acquisition, preprocessing and quality control

Human Connectome Project sample: Images were acquired using a
customized Siemens Skyra 3-T scanner with a 32-channel head coil. For
details on data acquisition and preprocessing, see Glasser et al. (2013).
Subcortical and intracranial volume (mm3) were estimated with Free-
surfer v5.2 (Fischl, 2012), which were subsequently used for the HC-
HCP minimal processing pipeline (Glasser et al., 2013). Seven sub-
cortical volumes previously explored in genomics/psychopathology
were averaged across hemisphere and adjusted for intracranial volume
(ICV), a method previously established by ENIGMA (Franke et al., 2016;
Hibar et al., 2015, 2016; Schmaal et al., 2016). Outliers were then re-
moved from each bilateral subcortical region of interest using the IQR

outlier labelling rule (1.5× interquartile range (Q3-Q1)) as previously
described (Hoaglin and Iglewicz, 1987). Out of the total sample
(N=1206), outlier labelling removed approximately 10% of sub-
cortical volumes (NRANGE= 1083–1092; varying per volume).

2.3. Statistical inferences

Linear mixed-effects models were estimated in R (https://www.r-
project.org/) using the lmerTest package, as previously recommended
(Carlin et al., 2005; Kuznetsova et al., 2015). Familial risk (HC/MDD/
BD) was entered into the model as fixed effect (where 0=no parent
with disorder, 1=at least one parent with the disorder) with age,
gender, education level and handedness as potential confounds. To
account for kinship, family structure (Family ID) and zygosity (mono-
zygotic twins, dizygotic and unrelated individuals; coded as a percent
DNA shared; 1, 0.5, 0, respectively) were entered into each model as
random effects, which under the model assumptions, could be freely
correlated with each other (Carlin et al., 2005). Independence between
these random slopes was assumed, in order to control for potential
genetic (as assayed by the random effect of zygosity) and familial en-
vironmental (as measured by kinship) correlations. These random ef-
fects were modelled to control for potential genetic influence over the
phenotypic relationship between familial risk and subcortical brain
volumes. P-values were adjusted using the False Discovery Rate
(Benjamini and Hochberg, 1995).

3. Results

There was a significant association between familial risk and re-
duced volume (mm3) in the nucleus accumbens (F2,1067= 6.244,
PFDR-CORRECTED=0.014) and uncorrected association in the thalamus
(F2,1055= 3.169, PUNCORRECTED=0.042). Post-hoc analysis suggested
that the group –wise effects on the accumbens were driven by BD off-
spring (t911=−3.171, P= 0.0015) but not MDD offspring
(t1032=−1.054, P= 0.132), with similar, disorder-specific effects
within the thalamus (BD: t884=−2.559, P= 0.011; MDD:
t1017=−0.849, P=0.396). No other subcortical brain volumes were
associated with a familial risk for BD or MDD (P > 0.1, in all cases).
See Table 1/Fig. 1 for all estimated effects and 95% confidence inter-
vals.

4. Discussion

At present, the relationship between subcortical brain volume al-
terations and familial bipolar liability is mixed (Nery et al., 2015,
2013). However, our observations are do support early work suggesting
that bipolar relatives have reduced thalamic and accumbens volume
compared to healthy controls (McDonald et al., 2004; McIntosh et al.,
2004). Consistent with a recent observation documented a shared ge-
netic architecture between accumbens/caudate volume and BD
(Satizabal et al., 2017), there was a negative association where healthy
offspring of BD patients had reduced striatal volume (specifically,
within the accumbens) when compared to a large sample of demo-
graphically comparable individuals. One could argue that as this ob-
servation conforms to the large genetic correlation study (Satizabal
et al., 2017), the impact of bipolar risk on accumbens volume may be
partially explained by common genetic variation. This hypothesis is
also supported by a recent bivariate correlation study showing a genetic
relationship between bipolar disorder and accumbens, thalamus and
putamen (Bootsman et al., 2015). The role of familial psychiatric risk
on subcortical volumes will be further established in large collaborative
relative studies such as ENIGMA (Hibar et al., 2016) which will help to
identify neural mechanisms by which (genetic) risk increases suscept-
ibility. These studies may be able to establish common and distinct
neural antecedents that confer susceptibility across a broad spectrum of
psychopathology. Whereas the morphology of the ventral striatum been
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implicated in the pathophysiology of bipolar disorder, the mechanisms
that underpin this association remain relatively unknown. Preliminary
evidence suggest that reduced accumbens volume may be linked to
comorbid features of bipolar disorder such as stressful, independent life
events (Geller et al., 2009), emotion-based impulsivity (Muhlert and
Lawrence, 2015) and suicidality (Gifuni et al., 2016).

5. Limitations

While familial SCZ was recorded as part of the HCP, there were not
enough individuals to include in our analysis (N= 7). As BD and SCZ
have considerable genetic overlap, at present it cannot be stated whe-
ther the association between parental BD and reduced striatal volumes
is unique or a risk feature associated with a broader psychosis pheno-
type. However, including a fixed term for parental SCZ did not sig-
nificantly affect any of our observations, and SCZ was not associated
with subcortical volumes after adjusting for multiple comparisons.
Together with observations that document a lack of genetic overlap
between SCZ and brain volumes (Franke et al., 2016), striatal reduc-
tions may be a unique feature of bipolar disorder. However, caution is
advised when interpreting these observations considering the relatively

small BD offspring sample size, compared to the HC and MDD groups. A
recent study found no association between polygenic risk for bipolar
disorder and striatal volumes, however as risk profile scores (RPS) only
explain a small proportion of variance in related phenotypes
(Dudbridge, 2013), this study may have been underpowered to detect
an effect of polygenic risk. Lastly, due to the design of the present study,
one cannot rule out the possibility that shared environmental influence
may influence striatal volumes in offspring of bipolar patients. One can
also acknowledge that comparative MDD and BD diagnosis groups
would have been useful in making comparisons between genetic risk
and disease states. However, the study does benefit from limited con-
founding such as medication, co-morbidity and years with illness,
which may influence subcortical volume.

6. Conclusion

Our observations suggest that the reductions in ventral striatal vo-
lumes observed in patients with BD may be due to genetic factors that
increase susceptibility. Our results complement ongoing genomic stu-
dies showing negative genetic correlations between striatal volume and
BD, but not SCZ and MDD. The volumetric reductions in accumbens

Table 1
Mean± SD (1 standard deviation) for demographic and subcortical volumes (mm3), across the three groups.

Unadjusted Mean± SD Adjusted group effects

HC Parents MDD Parent BD Parent F¥ P qFDR

Mean ± SD Mean ± SD Mean ±SD

Age 28.78 3.69 29.18 3.68 29.35 3.82 0.675 0.509 N/A
Educ 14.92 1.78 14.76 1.91 14.19 1.98 1.963 0.141 N/A
Hand 66.17 45.07 60.76 45.41 69.73 43.28 1.462 0.232 N/A
Accum 586.63 89.25 561.60 85.16 540.79 77.78 6.245 0.002 0.014
Amyg 1601.74 199.13 1564.29 197.86 1572.56 219.59 0.421 0.656 0.656
Caud 3882.16 479.90 3825.78 460.78 3716.45 392.51 1.326 0.266 0.444
Hippo 4460.57 451.57 4426.48 462.62 4443.58 411.17 0.853 0.427 0.498
Pallid 1435.89 205.17 1391.80 180.03 1388.14 205.02 1.151 0.317 0.444
Putam 5575.09 655.94 5446.84 633.22 5331.21 715.39 1.280 0.279 0.444
Thal 7957.97 815.52 7793.94 804.93 7626.15 742.34 3.169 0.042 0.148

BD (offspring of bipolar patients), MDD (offspring of major depressive patients); HC (offspring of healthy controls with no psychiatric diagnosis). Adjusted group effects: reflect the linear-
mixed effect model regressions results. ¥ Degree of freedom estimated with Satterthwaite approximation and varying according to regression (denominator DOF range = 1055–1127).
qFDR; reflects P values, adjusted for False Discovery Rate. Age=Age_in_Yrs; Educ=SSAGA_Education; Hand; Handedness (assessed with the Edinburgh Handedness Scale).

Fig. 1. Corrected subcortical volumes (mm3) are adjusted for fixed effects (intracranial volume, age, gender, education & handedness) and random effects (kinship, zygosity). Error bars
represent 95% confidence intervals. HC=individuals with parents without psychiatric diagnosis; MDD=offspring of major depressive disorder patients; BD=offspring of bipolar disorder
patients.
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volume may be risk factor linked to bipolar specific dimensions of
psychopathology and may guide future patient stratification and no-
sology.
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