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Abstract
Background: Non-alcoholic fatty liver (NAFL) can progress to the severe subtype
non-alcoholic steatohepatitis (NASH) and/or fibrosis, which are associated with
increased morbidity, mortality, and healthcare costs. Current machine learning studies
detect NASH; however, this study is unique in predicting the progression of NAFL
patients to NASH or fibrosis.
Aim: To utilize clinical information from NAFL-diagnosed patients to predict the
likelihood of progression to NASH or fibrosis.
Methods: Data were collected from electronic health records of patients receiving a
first-time NAFL diagnosis. A gradient boosted machine learning algorithm
(XGBoost) as well as logistic regression (LR) and multi-layer perceptron (MLP)
models were developed. A five-fold cross-validation grid search was utilized for
hyperparameter optimization of variables, including maximum tree depth, learning
rate, and number of estimators. Predictions of patients likely to progress to NASH or
fibrosis within 4 years of initial NAFL diagnosis were made using demographic fea-
tures, vital signs, and laboratory measurements.
Results: The XGBoost algorithm achieved area under the receiver operating charac-
teristic (AUROC) values of 0.79 for prediction of progression to NASH and 0.87 for
fibrosis on both hold-out and external validation test sets. The XGBoost algorithm
outperformed the LR and MLP models for both NASH and fibrosis prediction on all
metrics.
Conclusion: It is possible to accurately identify newly diagnosed NAFL patients at
high risk of progression to NASH or fibrosis. Early identification of these patients
may allow for increased clinical monitoring, more aggressive preventative measures
to slow the progression of NAFL and fibrosis, and efficient clinical trial enrollment.

Introduction
Non-alcoholic fatty liver (NAFL) disease consists of a spectrum
of liver disorders from isolated steatosis, termed NAFL, to non-
alcoholic steatohepatitis (NASH). NASH is considered to be pro-
gressive and is a more severe form of NAFL. While a minority
(10–20%) of NAFL patients develop NASH, they are at
increased risk for progression to fibrosis, cirrhosis, hepatocellular
carcinoma (HCC), and liver-related mortality.1 Although previ-
ously under-recognized, NAFL patients may also progress to
advanced fibrosis.2,3 NAFL and NASH have a large economic
impact on health care use.4,5 Estimates of total NAFL-associated
costs in the United States are approximately 103 billion dollars
per year.6 The prevalence of risk factors for NAFL, such as diet
westernization, sedentary lifestyle, obesity, and type 2 diabetes
(T2D) mellitus has increased, resulting in increased prevalence
of NAFL. It is estimated that up to 34% of the United States and

25.2% of the worldwide population may have NAFL.7–9 Simi-
larly, increasing global rates of T2D and obesity are expected to
lead to an increase in the burden of NASH and associated
complications.4

Currently, there are insufficient fully validated noninvasive
diagnostic tests for NAFL.10 The gold standard for NASH diag-
nosis and staging is liver biopsy, which is invasive, costly, and
incurs procedure-related risk for patients.11 Noninvasive diagnos-
tic procedures using ultrasound and MRI have been developed.
However, these methods remain costly and time-consuming,
require expert use and interpretation, cannot capture all histopath-
ological features assessed during evaluation for NASH, and are
not fully validated for diagnosis of NASH. Serum biomarkers
and biomarker-based indexes have also been explored as diag-
nostic aids, but are not widely in use, as they are not perceived
to provide additional actionable information relative to standard
clinical evaluation.12,13 Disease activity scores, such as the
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NAFL Activity Score (NAS) utilize liver biopsies yet lack utility
in predicting disease progression and are not considered a clinical
standard at this time.9 An urgent need remains for tools to predict
specific clinical outcomes in NAFL.9

Early detection is a significant challenge in NASH and
fibrosis diagnosis and management.14,15 Improved screening
methods for patients at high risk of progression will enable clini-
cians to identify high-risk NAFL patients requiring early inten-
sive intervention. These methods may also assist investigators
and sponsors of clinical trials in identifying appropriate patients
for NAFL, NASH, and fibrosis drug clinical trials.16,17 This
study utilized clinical information from NAFL-diagnosed patients
to predict the likelihood of progression to NASH or fibrosis.

Methods

Data sources. Data were collected from a proprietary national
longitudinal electronic health record (EHR) repository that incorporates
clinical, claims, and other medical administrative data obtained from
over 700 inpatient and ambulatory care sites. The data were extracted
from January 2016 to June 2020, and resulted from aggregation across
several different EHR systems. All data were de-identified in compli-
ance with the Health Insurance Portability and Accountability Act
(HIPAA) and thus, this study did not require institutional review board
approval as per 45 Code of Federal Regulations 46.102. The dataset
included lab results, vital sign measurements, medication orders,
patient diagnoses, and demographic information, as well as natural lan-
guage processing (NLP)-extracted features derived from clinicians’
notes (Table S1, Supporting information).

Gold standard. NAFL, NASH, and fibrosis were defined
using International Classification of Disease, Tenth Revision
(ICD-10) codes (Table S2, Supporting information). To meet the
gold standard definition of the study, progression to NASH or
fibrosis from NAFL had to occur within 4 years—but no earlier
than 14 days—from the first diagnosis of NAFL. The majority of
patients in the dataset developed NASH or fibrosis within this
period (Fig. 1).

Patient measurements and inclusion criteria.
Minimal inclusion criteria were applied in order to increase the
likelihood of our studied population having sufficient data. Only
patients that had at least one of their vital signs measured at the

index encounter in which they were diagnosed with NAFL were
included in the study. Further, patients were required to have had
data available in the database for at least 2 years after their first
NAFL diagnosis to be included, with at least one additional
healthcare encounter within 2 years from their index encoun-
ter (Fig. 2).

Inputs for the machine learning algorithm (MLA) included
demographic features, vital signs, and laboratory results that were
reported in encounters 1 year prior to the index encounter when a
patient was diagnosed with NAFL (Table 1). Vital signs and labo-
ratory results were first classified into measurements taken at the
current or from any previous hospital encounter. A previous hospi-
tal encounter was defined as any visit, outpatient or inpatient, that
happened >24 h prior to the current encounter. The measurements
for each included feature were then summarized by their mean,
standard deviation, minimum, maximum, and total number of
observations. As a result, there were distinct summary statistics for
prior and current measurements for every lab or vital sign feature
included in the model. This method of incorporating clinical obser-
vations was chosen because their distributions across an encounter
and over time may indicate underlying health and illness severity,
and are therefore helpful to the model. Including all measurements
taken over a patient’s current or previous encounter would allow
for a more direct time-series analysis. However, that representation
is generally more valuable for the inpatient setting, as acute condi-
tions can change rapidly. Because NASH and fibrosis develop at a
slower rate, the use of a more explicit feature set was chosen in
order to represent the data more simply and with greater
explainability.

Machine learning model. XGBoost (XGB) was the pri-
mary model architecture employed in this study. XGB is a gradi-
ent boosting algorithm implemented in Python.18 The XGB
algorithm combined results from various decision trees to give
prediction scores. Within each decision tree, the patient popula-
tion was split into successively smaller groups, as each tree
branch divided patients who entered it into one of two groups
according to the variable value and a predetermined threshold.
NASH and fibrosis patient encounters were represented at the
end of the decision tree, which was a set of leaf nodes. As the
XGB model was trained, successive trees were developed in
order to improve the accuracy of the model. Successive iterations

Figure 1 Study design timeline. At time 0, the patient was diagnosed with NAFL using ICD-10 codes. EHR data were collected 365 days prior to
NAFL diagnosis. The prediction window for risk of progression to either NASH or fibrosis was from 14 days post NAFL diagnosis and spanned up to
�4 years (1350 days).
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of trees used gradient descent on the prior trees in order to mini-
mize the error of the next tree that is formed.

XGB model performance was compared to that of logistic
regression (LR) and multi-layer perceptron (MLP) models.
Because LR and MLP models are unable to incorporate missing
data, the median observation was used for imputation of that fea-
ture. Data were standardized for both the LR and MLP models to
a standard Gaussian distribution. The XGB model was trained
using the same 139 inputs as the MLP and LR models.

The dataset was partitioned into a train: hold-out test ratio of
80:20 with stratified sampling, because the positive class was rela-
tively small with respect to the negative class. As our dataset com-
prises multiple distinct facilities from throughout the United States,
a second external validation experiment was performed in which
the dataset was partitioned into a training set composed of many
separate sites and a validation set composed of one distinct facility
not seen by the algorithm during training (see Table S3, Supporting

information for demographic information). Inputs for the LR and
MLP models were standardized, and missing data were imputed
within the training and test datasets independently. All of the
models underwent hyperparameter selection with a five-fold cross-
validated grid search. The optimization of the hyperparameters was
confirmed by evaluating the area under the receiver operating char-
acteristic (AUROC) for different combinations of hyperparameters
included in the grid search. For XGB, optimization parameters
included maximum tree depth, regularization term (lambda), scale
positive weight, learning rate, and number of estimators. Similarly,
for LR, optimization parameters included penalty term, optimiza-
tion problem solver, and inverse of regularization strength (C). For
MLP, optimization parameters included maximum iteration, hidden
layer size, and learning rate. Performance was assessed against the
hold-out test set and external validation cohort with respect to the
AUROC curve, sensitivity, and specificity. Confidence intervals for
these metrics were constructed using 1000 bootstrapped resamples.
A SHAP (SHapley Additive exPlanations)19 analysis was per-
formed to evaluate how important different features were to the
performance of each model.

Results
In total, 141,293 patients were included in the experiments, 4384
and 4472 of whom were eventually diagnosed with NASH or
fibrosis, respectively (Table 2). P-values were calculated using
an exact binomial test for noncontinuous observations and
Welch’s t-test for continuous observations (such as age) to han-
dle the unequal variance associated with our positive and nega-
tive classes. Median time to NASH or fibrosis diagnosis was
272 and 341 days after NAFL diagnosis, respectively, with a
range of 15 to 1250 days (Fig. 3).

For the three models trained using 139 features, con-
structed as outlined above through the use of summary statistics

Figure 2 Patient encounter inclusion diagram. EHR, electronic health record; NAFL, non-alcoholic fatty liver; NASH, non-alcoholic steatohepatitis.

Table 1 Best features as measured by an XGB model

Demographics Laboratory measures
Age
Sex
Race–ethnicity

Alanine transaminase (ALT)
Aspartate aminotransferase (AST)
Bilirubin (direct)
Ferritin
Platelets
Body mass index (BMI)
Prothrombin time or international normalized

ratio (INR)
Gamma-glutamyl transferase (GGT)

Vital signs
Diastolic blood

pressure
Heart rate
Respiratory rate
Systolic blood

pressure
Temperature

These features were then used to train the final XGBoost (XGB), logis-
tic regression (LR), and multi-layered perceptron (MLP) models.
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Table 2 Characteristics of the study sample

Characteristic

Non-NASH
patients (%)

NASH
patients (%)

P-value

Nonfibrosis
patients (%)

Fibrosis
patients (%)

P-valuen = 136 909 n = 4384 n = 136 821 n = 4472

Age
<30 9690 (7.08) 343 (7.82) 0.0583 9825 (7.18) 207 (4.55) <0.001
30–49 44 044 (32.17) 1444 (32.94) 0.2842 44 253 (32.33) 1235 (27.24) <0.001
50–59 38 997 (28.48) 1345 (30.68) 0.0015 38 876 (28.44) 1466 (32.83) <0.001
60–69 29 935 (21.86) 946 (21.58) 0.6515 29 749 (21.75) 1132 (25.90) <0.001
70–79 12 271 (8.96) 276 (6.30) <0.001 12 169 (8.89) 378 (8.38) 0.3071
80+ 1971 (1.44) 30 (0.68) <0.001 1948 (1.42) 53 (1.10) 0.1839

Sex
Male 60 978 (44.53) 1692 (38.59) <0.001 60 595 (44.31) 2075 (45.91) 0.0054
Female 75 885 (55.42) 2689 (61.34) <0.001 76 178 (55.65) 2396 (54.05) 0.0054

Ethnicity
Hispanic 11 821 (8.63) 459 (10.47) <0.001 11 842 (8.66) 438 (9.66) 0.0078
Not Hispanic 114 805 (83.85) 3651 (83.30) 0.3088 114 735 (83.84) 3721 (83.59) 0.2444
Unknown 10 283 (7.51) 274 (6.25) 0.0018 10 244 (7.49) 313 (6.74) 0.2444

Race
Caucasian 112 602 (82.24) 3658 (83.45) 0.0415 112 632 (82.31) 3628 (81.32) 0.0397
African American 9898 (7.22) 212 (4.83) <0.001 9787 (7.15) 323 (7.17) 0.8590
Asian 2717 (1.98) 98 (2.23) 0.2419 2716 (1.98) 99 (2.19) 0.2815
Other/unknown 11 692 (8.54) 416 (9.48) 0.0271 11 686 (8.55) 422 (9.31) 0.0353

Comorbidities
Obesity 21 612 (15.78) 848 (19.34) <0.001 21 781 (15.92) 679 (15.12) 0.1853
Hypertension 61 145 (44.66) 2042 (46.57) 0.120 61 122 (44.68) 2065 (46.32) 0.0466
Dyslipidemia 45 034 (32.89) 1596 (36.40) <0.001 45 231 (33.05) 1399 (31.30) 0.0130
Obstructive sleep

apnea
15 287 (11.16) 645 (14.71) <0.001 15 430 (11.27) 502 (11.39) 0.9137

Figure 3 Distribution of patients diagnosed with either NASH or fibrosis over time (the positive class). (a) the number of patients diagnosed with
NASH, indicating the progression from NAFL to NASH and (b) the number of patients diagnosed with fibrosis (Fib) over time, indicating the progres-
sion from NAFL to fibrosis.
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for observations collected during current and previous encoun-
ters, the XGB model demonstrated the highest performance with
an AUROC of 0.792 (95% CI [0.777–0.808]) for prediction of
progression to NASH and of 0.871 (95% CI [0.859–0.882]) for
prediction of progression to fibrosis within 4 years on the hold-
out test set. The performance of the XGB model on the external
validation cohort was similar with AUROC values of 0.795
(95% CI [0.770–0.817]) for progression to NASH and 0.871
(95% CI [0.843–0.897]) for progression to fibrosis (Fig. S1,
Supporting information). The LR and MLP models demonstrated
AUROC values on the hold-out test set of 0.689 (95% CI
[0.669–0.731]) and 0.737 (95% CI [0.720–0.755]), respectively,

for prediction of progression to NASH and of 0.753 (95% CI
[0.735–0.771]) and 0.784 (95% CI [0.768–0.799]), respectively,
for prediction of progression to fibrosis (Fig. 4). Similarly, the
AUROC values for the LR and MLP models on the external vali-
dation set for prediction of progression to NASH were 0.680
(95% CI [0.653–0.706]) and 0.740 (95% CI [0.716–0.765]),
respectively, and for progression to fibrosis were 0.795 (95% CI
[0.762–0.828]) and 0.829 (95% CI [0.801–0.859]), respectively.

Using 139 features for training, the XGB model demon-
strated similar performance in both the hold-out test set (results
shown) and external validation cohort (Fig. S2, Supporting infor-
mation) in determining the risk of progression from NAFL to

Figure 4 Receiver operating characteristic curves for the prediction of progression to NASH (a) and fibrosis (b) within 4 years using models trained
on 139 features on the hold-out test set. AUROC, area under the receiver operating characteristic; MLP, multi-layer perceptron; XGB, XGBoost.

Figure 5 Receiver operating characteristic curves for prediction of progression to NASH (a) and fibrosis (b) on male and female populations within
4 years using XGBoost models trained on 139 features on the hold-out test set. AUROC, area under the receiver operator characteristic.
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NASH for males and females with AUROCs of 0.797 and 0.800,
respectively, and progression from NAFL to fibrosis of 0.851
and 0.846, respectively (Fig. 5).

Feature importance plots for the XGB model trained to pre-
dict the progression of NAFL to NASH show the top three most
important features on the hold-out test set were prior max and
mean aspartate aminotransferase (AST) and sex. For the XGB
model trained to predict the progression of NAFL to fibrosis, the
three most important features were prior mean and standard devia-
tion of prothrombin time or international normalized ratio (INR)
and prior mean AST (Fig. 6). Similar results for the external vali-
dation cohort are presented in Figure S3, Supporting information.

Discussion
In this study, we retrospectively validated an MLA to predict pro-
gression to NASH or fibrosis in newly NAFL-diagnosed patients.
The XGB algorithm demonstrated an AUROC of 0.79 and 0.87 for
prediction of progression to NASH and fibrosis, respectively, and
outperformed LR and MLP models in both the hold-out test set
and external validation cohort. The results indicate that the XBG
algorithm is capable of accurately identifying newly diagnosed
NAFL patients at high risk of progression to NASH or fibrosis.

An exploration of feature importance for the 139 feature
XGB model revealed that lab values collected at previous visits
were the most important features, with previous mean and maxi-
mum values of AST and sex forming the three most important
features for prediction of NASH development (Fig. 6). In

addition to previous mean AST values, the previous mean and
standard INR values were the top three features for the prediction
of the development of fibrosis. AST and alanine aminotransferase
(ALT, were important features in both sets. Although both may
be elevated in NAFL, ALT elevations are generally greater and
the AST:ALT ratio is typically less than 1.20 The importance of
historical AST measurements for predicting NAFL progression
to NASH in the XGB model, therefore, suggests that historical
trends in AST levels may be an important indicator for likely
progression at the time of NAFL diagnosis. This is consistent
with the observation that AST increases as hepatic steatosis and
fibrosis occurs.21 The role of prothrombin time–INR as an indi-
rect marker of liver fibrosis is well studied,22,23 and the predic-
tive importance of INR for progression of fibrosis in the feature
sets is well correlated with its diagnostic accuracy. INR has also
been identified as significantly associated with histologically
proven NASH24 and thus it is congruent that it is an important
feature in both feature sets of the model.

Several additional features were also identified as ranking
high in predictive value for risk progression in both sets.
The importance of these features is consistent with previous studies
and literature. Ferritin expression, which can be elevated due to sys-
temic inflammation as well as increased iron stores, often shows ele-
vated levels in patients with NAFL disease.25 Ferritin stores iron,
which is a putative element that interacts with oxygen radicals.26

Increased iron stores are associated with increased liver damage in
patients with NASH.26 It is also associated with an increased risk of
fibrosis.27 Serum ferritin has been identified as a predictor in

Figure 6 Feature correlations and distribution of feature importance for each patient for the XGBoost model on the hold-out test set. (a) Feature
importance plots for model predicting risk progression from NAFL to NASH and (b) NAFL to fibrosis. Features are ranked in descending order of
importance as measured by SHAP values. Red indicates a high feature value; blue indicates a low feature value. Dots to the right resulted in a higher
score; dots to the left resulted in a lower score. Min, max, mean, count, and std. represent minimum, maximum, average, number of data points for
a certain measurement, and standard deviation, respectively. ALT, alanine transaminase; AST, aspartate aminotransferase; BMI, body mass index;
DBP, diastolic blood pressure; GGT, gamma-glutamyl transferase; INR, international normalized ratio; SBP, systolic blood pressure
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NASH,28,29 although some studies have disputed the veracity of its
predictive value.30 Other studies have found value in the use of fer-
ritin as part of a diagnostic panel in evaluating individual patients,
but not as an independent predictor.31 Our analysis showed previous
mean and maximum levels of ferritin were highly valuable for
predicting risk of progression in both feature sets. Platelet count is
another important feature identified in both risk prediction models.
Peripheral platelet production is regulated via a hormone primarily
produced in the liver; decreased stimulation of platelet production
and increased platelet destruction due to liver-disease associated
hypersplenism can result in decreased platelet counts, or thrombo-
cytopenia.32,33 Low platelet count has been documented in subsets
of patients with NAFL34 and was found to be an important predictor
in determining risk of progression to NASH and fibrosis.35

There is a need to separately study risk of progression to
NASH and fibrosis for men and women diagnosed with NAFL.36

Sex differences in the prevalence, risk factors, fibrosis, and clini-
cal outcomes of NAFLD36–39 should be included when analyzing
disease progression. The National Institutes of Health recom-
mend that experiments address sex differences in preclinical
studies,40 as well as studies involving algorithm development
and interpretation.41 The XGB model demonstrated an AUROC
of 0.797 and 0.800 for the risk of progression from NAFL to
NASH and 0.851 and 0.846 for the risk of progression to fibrosis
for males and females, respectively, on the hold-out test set and
similar results on the external validation cohort. This indicates
that the algorithm predicts the risk development of NASH and
fibrosis equally well in both males and females.

Despite the significant disease burden posed by NAFL,
effective targeted treatments for NAFL, NASH, and fibrosis are
limited.10,17 Newly diagnosed NAFL patients are encouraged to
make a number of lifestyle modifications, including weight loss,
dietary modifications, decreased alcohol consumption, and
increased exercise.42 In addition, pharmacological therapies,
including pioglitazone and omega-3 polyunsaturated fatty acids,
have been investigated for off-label use in treating NASH in cer-
tain patient populations, though their use is generally rec-
ommended only for those with advanced stages or at high risk of
disease progression.43 While such treatments are not rec-
ommended for the general NAFL population, their use could be
appropriate for those at high risk of progression to NASH, as
could more aggressive weight-loss interventions such as bariatric
surgery.44 Although pharmacologic efforts to treat fibrosis due to
NASH have recently been set back with the rejection of
obeticholic acid by the Food and Drug Administration (FDA),45

there are currently more than 20 agents in investigational trials
for treatment of various etiologies of fibrosis.46

Despite the potential clinical benefits of accurately identi-
fying NAFL patients most at risk of progression to advanced
NASH, few methods exist to readily identify these individuals.
The majority of research into machine learning (ML) methods
for NASH has explored ways to assist in diagnosis via detecting
existing NASH using various features, for example, biopsy speci-
mens and biochemical parameters in peripheral blood.47–49 One
study also demonstrated the superior performance of the XGB
algorithm for NAFL and NASH detection, where it outperformed
other ML approaches, including LR, decision tree, and random
forest.49 While these studies provide context and demonstrate
comparably superior performance of the XGB model as seen in

this study, it is notable that the prediction tasks, input features,
and population cohorts differed from out study. To the authors’
knowledge, only one study to date has explicitly used ML to
assist in prognosis, specifically to identify predictors of NASH
among a hypertensive patient population.50 However, this study
analyzed features in a specific subpopulation and so algorithm
performance is not directly comparable. This research adds to the
literature by demonstrating that an MLA can be trained to accu-
rately predict progression to NASH or fibrosis in a general
NAFL patient population with no other filtering of the patient
population by the presence of other comorbidities.

In addition to improving prognostic predictions, our methods
may also help identify and enrich clinical trial populations. The
algorithm developed in this study could improve study power by
enrolling NAFL patients most likely to experience rapid disease
progression, increasing study efficiency. Slow disease progression
has been noted as a major barrier to clinical trials of NAFL, given
the long follow-up required for most patients to see endpoints of
disease progression and mortality.51 As such, researchers have rec-
ommended focusing enrollment on patients most likely to benefit
from the trial protocol.35 Researchers have also noted difficulties in
enrolling NASH patients in clinical trials due to low detection and
diagnosis rates, a lack of formal diagnosis, and/or discrepancies
between initial pathological readings of liver biopsies and pathol-
ogy readings performed by study clinicians.16,52,53 These difficul-
ties have prompted suggestions that other methods of screening
patients may improve trial enrollment by reducing screening fail-
ures. The algorithm presented in this study is capable of defining a
population at high risk of progression to NASH, potentially
enabling prevention as well as treatment trials.

There are several limitations to this study. First, the timing
of NAFL, NASH, and fibrosis onset was determined by the first
application of ICD codes. NAFL may be clinically silent for a
prolonged period prior to diagnosis, therefore the observed onset
may differ from the pathophysiological onset of disease. Second,
although the gold standard for diagnosis of NASH and fibrosis is
liver biopsy, in the absence of these data we instead used clini-
cian diagnosis via ICD codes as a proxy. Third, the retrospective
nature of this study means that we cannot make inferences about
the impact this algorithm may have on clinical care or patient
outcomes. Future prospective research will be critical in elucidat-
ing the role that prognostic MLAs may play in treatment plan-
ning and clinical trial design for NASH.

Conclusion
In this study, we have developed an MLA capable of accurately
identifying newly diagnosed NAFL patients at high risk of pro-
gression to NASH or fibrosis. Identification of patients at high
risk of progression to NASH or fibrosis may serve to improve
patient outcomes through increased patient monitoring and
aggressive preventative measures.
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