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Is resilience a unifying
concept for the biological sciences?

J. Michael Reed,1,* Benjamin E. Wolfe,1 and L. Michael Romero1
SUMMARY

There is increasing interest in applying resilience concepts at different scales of biological organization to
address major interdisciplinary challenges from cancer to climate change. It is unclear, however, whether
resilience can be a unifying concept consistently applied across the breadth of the biological sciences, or
whether there is limited capacity for integration. In this review, we draw on literature from molecular
biology to community ecology to ascertain commonalities and shortcomings in how resilience is measured
and interpreted. Resilience is studied at all levels of biological organization, although the term is often not
used. There is a suite of resilience mechanisms conserved across biological scales, and there are tradeoffs
that affect resilience. Resilience is conceptually useful to help diverse researchers think about how biolog-
ical systems respond to perturbations, but we need a richer lexicon to describe the diversity of perturba-
tions, and we lack widely applicable metrics of resilience.

INTRODUCTION

One of the grand challenges in biology is how to integrate knowledge from different levels of biological organization.1,2 Unifying the different

subdisciplines of biology, consequently, would be amajor step in solving this challenge. Resilience – the capacity of a system to recover from a

perturbation – is pervasive in living systems and is viewed as so widely relevant in systems thinking that it has been proposed as a unifying

concept that can integrate biology across all levels of organization, from the subcellular to the ecosystem scale.3–6

Resilience is important in a wide range of fields outside biology as well, such as economics,7 engineering,8 supply networks,9 and physical

and mental health,10 although the terms used can differ by discipline. Interestingly, resilience research in its current form across many STEM

fields arose conceptually from ecology.11 Biological fields have often inspired research in other fields, such as the use of evolutionary algo-

rithms for optimization used in engineering, datamining, and economics,12–14 and in the fields of industrial ecology and the ‘‘bio-

logicalization’’ of manufacturing.15–17

Nonetheless, resilience has not yet become a universally used concept across biology, and many important problems in biological resil-

ience remain unresolved.18–21 One major challenge is that many different models, definitions, and applications of resilience exist across

biology subdisciplines. In each of these fields, the types of perturbations and spatial and temporal scales differ, making it difficult to see com-

monalities across models of resilience.20 Additionally, the metrics used to quantify resilience in biological systems are not consistent across

biological disciplines.20,22

We drew on selected articles from all levels of biological organization that were recommended by experts in the field, as well as lectures

given as part of a graduate seminar in our department, from DNA to organisms to communities. Our goal was to look for notable common-

alities across the organizational levels, if there were any. From this review, seven observations about resilience and its research in biological

systems emerged. We acknowledge that there might be additional observations that one might include, and that our scope was constrained

to biological fields. These observations synthesize problems and challenges for using resilience across biological scales and include propo-

sitions about where we see opportunities for research on biological resilience. We also discuss the degree to which resilience could be a uni-

fying concept in biology for research.

OBSERVATION 1: ALL FIELDS OF BIOLOGY STUDY RESILIENCE, EVEN THOUGH THEY DONOT ALL USE THE TERM

Extant biological systems are, by definition, resilient to somedegree. That is, all biological systems vary over timewithin some range of what is

considered ‘‘typical,’’ they are subject to perturbations, and they recover from those perturbations – i.e., exhibit resilience – or they fail. As a

general description, therefore, when an original state is perturbed, resilience refers to the return to the original state (top of Figure 1). Note

that we limit our assessments here to recovery within the disturbed system, rather than cross-system resilience asmight occur with human limb

loss, where the limb cannot be regrown but there can be psychological resilience in the way the individual accommodates to the loss. As

examples of within-system resilience, when a region of a genome is damaged, cellular machinery must repair the DNA segment for normal

replication and transcription (resilience) to occur.23When tissue is cut from the tail of a planarian worm, resilience occurs when developmental
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Figure 1. Examples of biological resilience
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processes restore the organism to its original morphology.24 When an individual or species is lost from an ecological community, function can

be restored (resilience) through a variety of mechanisms, such as competitive release (altered community network structure, or increased

abundance), behavioral or adaptive plasticity, functional redundancy, and immigration.25 In each of these biological systems, resilience is

the capacity of the system to return to an original state after a perturbation (Figure 1).

All biological fields and their associated study systems have someworking concept of stability, or homeostasis, and how that systemmain-

tains that stability in the face of perturbations. However, confusion within and between fields sometimes occurs through inconsistent or field-

specific nomenclature. For example, when discussing aspects of stability, fields within and outside biology also refer to resistance and robust-

ness,18 and definitions of these terms and resilience are often interchanged. We view resistance as the ability of a system to not change in the

face of perturbations. Consistent use of terms across fields (even within them) is not something that can be resolved; every researcher wants

their definitions and terms to be the standard. For the most part, let us ignore the extent to which the term ‘‘resilience’’ is or is not used in

different fields of biology, and focus on the concept, which is universal. However, the importance of a particular term is relevant to the extent

that it enhances – or is a barrier to – communication.26–28 So, whether a genome is repaired following DNA damage, a body part regenerates

following amputation, an individual maintains homeostasis of hormone levels despite stressors, a population persists in the face of cata-

strophic events, or a community recovers function following the loss of a species, all of these examples constitute system resilience as defined

in this article: the capacity to return to an original state following perturbation,29 regardless of field-specific jargon.30–35 Another interesting

aspect of resilience that is not widely investigated is understanding when there is a partial, but not full return, to the original state following a

perturbation. For example, when double-strand breaks in DNA are made, the epigenetic information at the site of the break is often partially,

but not fully, restored; this is one theory behind why we age.36,37

OBSERVATION 2: IT IS IMPORTANT TO BE SUFFICIENTLY SPECIFIC IN DEFINING THE STUDY SYSTEM

Assessment of resilience in biology depends on specifically defining the system. Specifying systems is key to selecting and interpreting resil-

ience metrics. For example, defining your system as the individual is not sufficient because it could include downstream measures, such as
2 iScience 27, 109478, May 17, 2024



Figure 2. Example biological systems, perturbations, and measures of resilience, and associated scales of time and space
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individual performance following genome or organ repair; metrics within the individual itself, such as the outcome of a physiological stress

response; or upstream of the individual, such as focusing on mating success. Each of these is a system of the individual. In selecting/devel-

oping metrics, and making comparisons to other studies, it is also important to identify the focus of resilience assessment, such as specifying

identity (component), structure (trait), or function for the target system.38 To provide a simple example, many crops are pollinated by native

bees – if some of those species are lost from the community, but honeybees are imported to provide pollination, one function (crop produc-

tion) is resilient, but a component metric (particular bee species) is not resilient.39 In Figure 2, we provide examples of systems across levels of

biological organization, along with related examples of perturbations, general metrics, and scales of time and space.
OBSERVATION 3: THERE ARE RESILIENCE TRADE-OFFS WITHIN AND BETWEEN SCALES OF BIOLOGICAL

ORGANIZATION

It is a central theme in biology and evolution that compromises are common due to trade-offs, often in allocating limited resources.40,41 With

regards to resilience, trade-offs can occur proximately in resource allocation; (a) between levels of organization; (b) between systems within a

single level of organization (such as between organs within an individual); or (c) within a system between resistance to a perturbation and

resilience to it. If one’s system is a limb of an amphibian, then resilience to loss of the limb requires regeneration, which diverts resources

from other systems within an animal’s body.42 If a bird lays more eggs than it can successfully fledge based on food availability when the

eggs hatch, brood reduction is beneficial (i.e., creates resilience) at the level of the parental genome or population, but it is certainly harmful

to the individual chick that dies.43 Trade-offs also can be the result of evolved responses to that under certain circumstance that conflict with

each other, such as speed versus endurance in locomotory physiology. Examples of trade-offs between levels of organization can highlight

the importance of defining the study system. Apoptosis is a resilience mechanism for individual survival or maintaining a particular tissue or

organ, but represents failure of a system at the cellular level.44

The evolutionary trade-off between resistance and resilience is widely recognized in ecology and life-history studies. Taxa or ecosystems

that are effective at resistance to perturbations, for example, tend to be less effective at resilience. To illustrate, forest composition is changing

under climate change due to increasing droughts, and over the past half-century gymnosperms have become more resilient to drought (i.e.,

better able to bounce back when the drought ends) but less resistant (i.e., less able tomaintain typical function as drought starts and persists).

Consequently, gymnosperms are now exhibiting greater mortality andmore severe reduction in growth.45 Trade-offs related to resilience are

also well-documented by the fast-slow lifestyle continuum across species, an empirical pattern of interspecific differences in either
iScience 27, 109478, May 17, 2024 3
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physiological responses, such as metabolic rate or stress reactivity, or demographically, via vital rates and offspring size.46,47 For example,

Capdevila et al.48 found in a variety of animal species an apparent trade-off in vital rates associated with components of resilience, such

as species that resisted change in age structure fromperturbations tended to have a longer recovery time once impacted. In amore proximal,

rather than evolutionary, trade-off, resources expended to regenerate the severed limb of a stick insect cannot be allocated to other pur-

poses, such as reproduction.49
OBSERVATION4:WENEEDARICHER LEXICONTODESCRIBE PERTURBATIONSANDRECOVERY FORBIOLOGICAL

SYSTEMS

A perturbation is an external event or driver that is defined by its effect on a system, causing it to leave its state – if it recovers, it is resilient.

Perturbations should be defined and interpreted from the perspective and time frame of the species & system, not from human perspectives.

Almost every discussion of perturbations within the context of resilience categorizes perturbations as ‘‘press’’ and ‘‘pulse’’ types (or chronic/

acute, and so forth), where the former are long-termpressures froma perturbation andpulse is a short-termdisturbance e.g.,50. For controlled

laboratory experiments, this distinction might be sufficient because the perturbation is under the experimenter’s control. Even in systems in

natural or relatively natural settings, press and pulse perturbations can bemeaningful. For example, an ice storm destroying a patch of forest,

or rain washing nutrients into a lake, are typically treated as pulse perturbations. Press perturbations include occurrences such as harvest pres-

sure on a population, aging of an individual (but not ontogenetic development, i.e., evolved developmental stages), or a chronic exposure to

a pollutant. In natural settings, however, the distinctions can become less clear because perturbations occur as a continuum. Consequently,

research on resilience might benefit from treating perturbations as a time continuum from a brief pulse to those that approach a permanent

change in state (of the system). Even this, however, might be insufficient. To begin the conceptual expansion, we propose three additional

broad types of perturbations: non-stationary press, degrading pulse, and flow-kick, and others have certainly been proposed.51

Examples of non-stationary press perturbations are climate change, which includes systematic changes in temperature and climate vari-

ability over time,52 repeat expansion disease leading to worsening cellular disfunction,53 and aging.54 Stressors are non-stationary because

the existence and intensity of stressors waxes and wanes over time.55 For aging, we refer specifically to changes in resilience capacity such as

cellular senescence, increased oxidative damage, accumulation of somatic mutations, ineffective clearance of cellular debris, and low-level

chronic inflammation of the brain, and so forth.56,57

Our suggestion of a degrading pulse perturbation is also a degree-of-time issue in that once the pulsed perturbation occurs, it takes a long

time to clear a system. This applies specifically to perturbations that linger, in the sense that the effect cannot be cleared rapidly froma system.

This contrasts with a classic pulse perturbation, where there is an immediate and circumscribed disturbance from which the system either

quickly or slowly recovers. As an example, it can take decades to recover from light influx in a tropical forest following the creation of a

tree-fall gap.58 This would be a degrading pulse because the light influx continues but diminishes over time, leading to different species tak-

ing advantage of the diminishing light levels as the tree-fall gap recovers. Other examples might include the clearance over years of human

papillomavirus (HPV) infection, which can take 6–12months,59 and the long-term potentiation of synaptic strength in hippocampal neurons in

response to brief excitation, which can take hours or days to return to pre-excitation levels.60

Flow-kick systems are characterized by repeated perturbations whose immediate effects dissipate rapidly compared to the rate of pertur-

bation. These systems exhibit transient behavior when perturbed (kicked), and upon return to their original state (or original trajectory, as for

non-stationary systems), they are in the flow state. One interesting assessment of flow-kick systems studied at the population and ecosystem

levels is that resilience is overestimated by traditional approaches that consider the consequences of each disturbance separately.51 This has

been observed in ecological systems, such as fire-disturbance in savannahs,61 and has been proposed for the physiological vulnerability of

individuals facing repeated stressors that cause wear and tear.62 These dynamics might even be generated through within-system feedback,

as demonstrated by a recent model that predicts complex transient immune protection for a population due to flow-kick dynamics from the

epidemiological behavior of disease spread.63

It is also important to define perturbation type by the potential type of outcome. For example, the introduction of an exotic species to an

ecosystem could result in failure to establish, establishment but no proliferation, invasion but eventual push back, or permanent invasion

causing permanent change to the system.64 So, species introduction is a perturbation, and the type of perturbation depends on the outcome.

In this example, a species introduction that does not disrupt the community demonstrates a the community’s resistance (not resilience) to a

pulse perturbation; the introduction is a pulse perturbation if it establishes and briefly disrupts local community dynamics; a press perturba-

tion if/as it invades it puts sustained pressure on part of the community; a degrading press if it invades, then is pushed out over time; and a

kick-flowperturbation if there are serial introduction/invasion events. If the community is not resilient, invasion could cause a change of system

state if the species subsequently dominates the community.65

One final issue that touches on the problem of defining measures of recovery, is that natural systems are stochastic, so that the ‘‘baseline

state,’’ to which a system needs to return following perturbation, varies. So, natural systems have noise, leading to the question of whether

‘‘system noise’’ and ‘‘perturbations’’ are qualitatively different, or are they a continuum? And, if they are a continuum, what is the cut-off? This

question also reveals a potential philosophical difference that could be a barrier to integrating across levels of the biological organization

identified by Orzack and McLoone.66 Research at finer levels of the biological organization often works with ‘‘model systems,’’ where studies

of a limited number of species or systems are thought to represent all species or systems, and that the difference between systems is ‘‘noise.’’

That is, the presumption is that the basic principles will hold true across species, with variations between systems that add or remove

complexity being the noise. In contrast, ecological and evolutionary research involves thousands of species, research questions and solutions
4 iScience 27, 109478, May 17, 2024
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might be situation-specific,67 and there might be no universal models. Here, the differences between systems are the focus of interest, rather

than being treated as noise. Consequently, how one views perturbations and system recovery might differ fundamentally by researchers of

different levels of biological organization. We expand on the question of measuring resilience in Observation 5.
OBSERVATION 5: WE NEED TO SHARE AND IMPROVE METRICS OF RESILIENCE

At all levels of biological organization, researchers are creating and evaluating resiliencemetrics that are system specific. By ‘‘metric’’ wemean

what specifically is being measured and compared before and after a perturbation. As examples, cellular viability can be used to measure

genome resilience from DNA damage;68 allostatic load drives the body’s response to stressors.62,69 vital rates determine a population’s resil-

ience to a reduction in population size.70 With a few exceptions, such as rate of recovery, there is little apparent overlap in the use of metrics

across levels of biological organization, though all assess some type of resilience. This could be because each field of biology at each level of

organization has problems and solutions that are unique to the system, so that they are not transferable across systems. For example, DNA

secondary structures in a chromosome (an undesirable stable state) caused by excessive trinucleotide repeats71 has no apparent parallel to a

fish correcting its swimming trajectory as it passes through turbulent water72 (see Figure 2). And neither concept has an obvious role in ex-

plaining the restoration of energy flow across trophic levels in a food web after the invasion of an exotic species.73 Alternatively, the prolif-

eration of metrics with little interaction across fields could be a symptom of the siloed nature of biology. Developing and deploying universal

metrics of resilience is a largely unresolved issue in resilience studies.

There is a wide-spread need for developing appropriate performance metrics to quantify deviations caused by perturbations as well as

return to the baseline state – if you can’t measure it, you can’t understand it. Metrics of resilience need to account for inherent variation in

the baseline of a system, such that the rate of return to pre-perturbation conditions should be to a range rather than a point. There are ex-

amples in some fields of biology. For example, Ives74 presents a method to quantify population resilience in a stochastic system within the

context of interactions with other species in the community. It is predictive, rather than mechanistic, so perhaps modifications to create a

causal model75 would resolve this, or using recent statistical tools for forecasting dynamics and species interactions.76 It would be useful,

then to determine whether such an approach could be made to fit other biological systems, addressing topics such as the amount of circu-

lating hormone, biometrics of a regrown limb, initial population size, and community composition.

Advances are being made in developing metrics, but there is little or no attention paid to the possibility of having metrics, or families of

metrics, that can be applied acrossmultiple levels of biological organization. For example, from themicrobiomeworld, Sorenson and Shade77

use quantitative metrics of resistance and resilience to describe deviations from pre-perturbation communities following perturbation, but

their baseline is a fixed suite of taxa even though the baseline state has variation. In another example, Field et al.78 used a probabilistic frame-

work for quantifying population resilience relative to a population’s normal range of variation. Similar approaches are common in some fields

of civil engineering, such as water resource systems. Interestingly, resilience in that field was inspired by Holling’s11 work on ecological resil-

ience, and evaluating three features of a system is now commonpractice: reliability (the frequency of failures), resilience (the ability of a system

to recover from a failure), and vulnerability (a measure of themagnitude of potential failures).79,80 Approaches to resiliencemetrics have been

developed in other fields, such as civil engineering, that might be adopted for our needs because they incorporate variation in baseline con-

ditions, such as stream flow-duration curves,81,82 or statistical bridge signatures.83

It could also be that there are approaches for evaluating resilience where the models used for assessment are field-specific, but the metric

for evaluating recovery is generic. For example, some studies of metabolic resilience use receiver operator characteristics (ROC) curves and

compare recovery using the area under the curve (AUC).84,85We note, however, that although ROC/AUCgives ameasure of fit to amodel and

allows model comparisons (possible baseline vs. possibly recovered state), it (a) does not include variance in defining a baseline, and (b) there

is no resolution to the question of ‘‘how close do the AUC values have to be to define a system as having ‘returned’ to baseline?’’ But this is a

promising concept.
OBSERVATION 6: THERE ARE MECHANISMS OF RESILIENCE COMMON TO ALL LEVELS OF BIOLOGICAL

ORGANIZATION

In our assessment, we found mechanisms driving resilience that appear to function at all levels of biological organization. Here we highlight

five mechanisms that seem to be pervasive; we suspect that their ubiquity is a consequence of biological systems having to maintain some

degree of homeostasis to persist.
Redundancy

Each level of biological organization that we investigated exhibits multiple ways to solve the same problem. There are multiple pathways to

repair damaged DNA,23 Bacterial pathogens can be resilient to the loss of particular effector genes (=perturbation) because of apparently

duplicated genes, or to particular protein losses because of functional redundancy between two proteins, and there are examples of unre-

lated proteins compensating for loss through alternate host cellular processes, each of which restores function,86 At another level of biological

organization, ecosystems appear to be functionally redundant becausemultiple species can serve redundant functions (e.g., with themeasure

of energy flow through a community), making them resilient to rapid shifts in community composition associated with human-induced addi-

tion or loss of species to communities.87 Note that we are treating redundancy in pathways to recovery (resilience) as distinct from redundancy

that can make a system resistant to change caused by a perturbation).88
iScience 27, 109478, May 17, 2024 5
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Plasticity

Plasticity refers to any variability in individual reaction with no change in genotype, including adaptive genetic variation (e.g., epigenetics),

behaviors that allow flexible responses, evolutionary responses, and bet-hedging,89–91 Examples of behavioral plasticity from studies of in-

dividual chimpanzees include exploration for new food types, particularly when moving to a new area,92 and increased social selectivity as

they age.93 Exploring food types is a characteristic of diet generalists. In the latter example, individuals develop more-balanced friendships

(reciprocal behaviors), socialize more with important partners, and exhibit more affiliative (less agonistic) behaviors. These changes are situ-

ation-specific, rather than being genetically programmed, and changewith age. In developmental biology, plasticity can occur through up- or

down-regulating transcription to respond to a perturbation, or through a temporary physiological response.94 Phenotypic plasticity can occur

through modulating gene expression, increasing individual resilience to changing environments,95 and via different DNA polymerases used

to bypass damage on a template during DNA replication.96 Plasticity is also evident during physical and psychological development,97 and

interestingly, develops in part with two of our next mechanisms, negative feedback and system memory.

Negative feedback

Negative feedback is a pervasive regulatory mechanism in biological systems, making it a common resilience mechanism. For example, the

physiological stress response is highly conserved in vertebrates through a hypothalamic-pituitary-adrenal (HPA) cascade. An external pertur-

bation (such as a predator attack) causes first a catecholamine response (the fight-or-flight response), followed by a slower subsequent hor-

monal cascade ultimately causing the adrenal glands to release glucocorticoids. This increases blood pressure and decreases inflammation,

among other responses, and prepares the body for subsequent perturbations.98 Negative feedback is a mechanism that self-limits the phys-

iological stress response and seems to be a major target of selection.99,100 In some human pathologies, negative feedback increases meta-

bolic resilience. For example, oxidative stress can cause neurodegenerative disease, such as endoplasmic reticulum stress caused by an accu-

mulation of misfolded proteins.101,102 Resilience occurs via the production of Nrf2-regulated vitagens that regulate cellular (redox)

homeostasis.103 A very different example at the level of the individual comes from the boxfish (Ostracion meleagris), whose body shape gen-

erates passive negative feedback to stabilize swimming when a fish is perturbed by turbulence - when the body tilts, the water flow causes

vortices that push the body upright.104 In gene expression, negative feedback can counter mutagenesis through a protein that induces the

transcriptional repression of its own gene once its abundance reaches a certain level.105

Self-organization

Self-organization is pattern formation as a result of collective behavior governed by local (decentralized) rules, rather than being centrally

controlled.106 Self-organization is common in biological systems and is associated with greater resilience.107,108 At the population level, ex-

amples of self-organization include changes in social affiliations (social networks) that affect vulnerability to disease spread,109 and the dis-

tribution of individuals across space.110 One type of self-organization is collective behavior, which manifests itself in some group dynamics,

such as those exhibited by bird flocks, as well as emergent behavior in some human social systems.111 Interesting advances are beingmade in

understanding emergent behaviors in social systems in the field of graph theory, e.g.,112,113. In the development of multicellular organisms,

initially identical cells differentiate through self-organization via cell-to-cell variability and feedback loops,114 At the cellular and subcellular

levels, self-organization increases resilience through mechanisms such as organizing keratin filaments into networks to protect epithelial

cells.115 The importance of self-organization appears to be an expanding field of resilience research.

System ‘‘memory’’

Memory here refers to experience-based, or exposure-induced, changes in future responses or capacity of a system - specifically, the abilities

to minimize or recover from the effects of future perturbations, or more rapidly recovering from them. This mechanism is apparent at multiple

levels of biological organization, such as the immune response and its role in vaccine effectiveness,116 vicariously gained knowledge transfer

between individuals of the same or different species through public information,117 horizontal gene transfer,118 cellular memory in tissue

regeneration,119 and physiological habituation.55 In ecological community systems,memory can be considered to affect recovery from distur-

bance through two major pathways, information (evolved life-history responses) and material (such as seed banks).120 Memory plays a role in

the resilience of plant systems at the genetic level, through physiological and metabolic responses to stressors (perturbations) that alter, for

example, the production of secondary plant metabolites.121

OBSERVATION 7: RESILIENCE CAN BE NORMATIVE (BUT DOES NOT HAVE TO BE)

When evaluating resilience, a system’s recovery to baseline can also be to a desired state of a system.122–125 This is what we mean here by

‘‘normative’’ – that there is a value judgment in selecting the baseline as a preferred state. Swimming fish that are perturbed by waves

have a preferred state of righting themselves. For an individual as a system, even if it is not often stated explicitly, we consider ‘‘alive’’ as

the typical and preferred state. For harvested and endangered species, resourcemanagers prefer extant over extinct, both of which are stable

states (we realize that, mathematically, 0 might not be a stable population size, but biologically it is). This concept is particularly central to

synthetic biological systems, which are completely goal-oriented, and would be normative if enough people shared them as preferred

states.126 We are not sure how normative concerns might affect research and thinking about resilience in biological systems, but there is

some precedence in the literature from fields such as the philosophy of science and the societal aspects of resilience.127–129 Research into
6 iScience 27, 109478, May 17, 2024



Figure 3. A depiction of the various levels of biological organization discussed here, and the associated observations about resilience
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human psychology and development, in particular, also embraces the idea of developing resilience to achieve particular goals, such as

improving well-being and developing interventions to traumas at both the individual and community levels.130,131 Since a great deal of bio-

logical research and applications have a human-values interface, being aware of this aspect of resilience could be meaningful.

CONCLUSIONS

Resilience occurs at all levels of biological organization, and there are resiliencemechanisms that appear to be common to all levels (Figure 3).

The resilience concept is valuable as a research framework because it reinforces systems thinking, and it can be used to highlight interactions

across levels of organization, including resource trade-offs. It is clear from our assessment of resilience that it (a) is a useful heuristic framework

for understanding the dynamics of biological systems, (b) that there is work to do before it becomes a rigorous analytical tool within levels of

biological organization, and (c) it has potential as an organizing framework for the vertical integration of biological systems. We think that our

observations highlight both how challenging it can be to cross organization levels within a system, but they also identify potential for making

those cross-level and cross-system comparisons. In fact, one challenge in our field is getting students to be able to make connections across

systems and levels of biology. Resilience may be a terrific concept to unify these levels and systems to improve student learning. We

encourage researchers to work collaboratively across multiple levels of biological organization, particularly on efforts to create a more

nuanced view of perturbations, creating metrics of resilience that are strictly defined and incorporate the natural stochasticity of biological

systems, and mechanistically linking systems across levels of biological organization.

LIMITATION

A comprehensive review of all the literature related to resilience at all levels of biological organization would be a book-sized endeavor, so we

limited our review to specific examples at each organizational level. While we identified some mechanisms and tradeoffs of resilience in

different biological systems, we are certain that there are more to be revealed. We also only touched on the concept of stable states of sys-

tems. Multiple stable states, metastability, and local vs. global minima are commonly referenced in community ecology and evolution,132 but

less so in other biological fields; this might be an opportunity for cross-organizational research.We alsomerely touched on some possibilities

of statistical metrics of resilience – this needs to be explored deeply, across multiple biological systems. Future studies could expand usefully

on any aspect of this review, filling gaps in our knowledge.
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