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Abstract

Background: Preclinical studies require models that recapitulate the cellular diversity of human tumors and provide
insight into the drug sensitivities of specific cellular populations. The ideal platform would enable rapid screening of
cell type-specific drug sensitivities directly in patient tumor tissue and reveal strategies to overcome intratumoral
heterogeneity.

Methods: We combine multiplexed drug perturbation in acute slice culture from freshly resected tumors with
single-cell RNA sequencing (scRNA-seq) to profile transcriptome-wide drug responses in individual patients. We
applied this approach to drug perturbations on slices derived from six glioblastoma (GBM) resections to identify
conserved drug responses and to one additional GBM resection to identify patient-specific responses.

Results: We used scRNA-seq to demonstrate that acute slice cultures recapitulate the cellular and molecular
features of the originating tumor tissue and the feasibility of drug screening from an individual tumor. Detailed
investigation of etoposide, a topoisomerase poison, and the histone deacetylase (HDAC) inhibitor panobinostat in
acute slice cultures revealed cell type-specific responses across multiple patients. Etoposide has a conserved impact
on proliferating tumor cells, while panobinostat treatment affects both tumor and non-tumor populations,
including unexpected effects on the immune microenvironment.

Conclusions: Acute slice cultures recapitulate the major cellular and molecular features of GBM at the single-cell
level. In combination with scRNA-seq, this approach enables cell type-specific analysis of sensitivity to multiple
drugs in individual tumors. We anticipate that this approach will facilitate pre-clinical studies that identify effective
therapies for solid tumors.
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Background
Inter- and intra-tumoral heterogeneity present major
challenges for cancer therapy. While scRNA-seq can
determine the cellular composition of complex tumors
and even reveal cell type-specific drug sensitivities, these
measurements are ultimately limited by models of drug
response. Acute slice cultures are an attractive approach
to modeling drug response in solid tumors because
multiple cultures can be rapidly generated from a single
surgical specimen, and they do not require extensive
culturing or manipulation, which leads to distortion of
the native composition of the tissue, selection, and loss
of heterogeneity by diluting populations that do not
proliferate rapidly [1–3]. Furthermore, drug perturbation
experiments in acute slice cultures can be carried out
rapidly, beginning on the day of surgical resection, on
timescales relevant for clinical decision-making. GBM is
an ideal setting for testing this approach because it ex-
hibits profound inter- and intratumoral heterogeneity
and is the most common and deadly primary brain
malignancy in adults. Surgical resection is part of the
standard-of-care, and robust protocols for acute slice
culture of human GBM have been established previously
[4–6]. Furthermore, GBM has been extensively charac-
terized by scRNA-seq, providing a detailed baseline for
both the transformed populations that co-occur in
individual patients and the microenvironment [7–11].
Indeed, single-cell characterization of GBM models has
highlighted the importance of the tumor microenviron-
ment in maintaining the phenotypic diversity of malig-
nant cells [12]. We obtained GBM surgical specimens
from seven patients, generated multiple 500 micron
slices, and placed them in short-term culture for drug
perturbation (Fig. 1a). Screens were completed within 24
h of surgery and analyzed immediately by scRNA-seq
using our scalable microwell platform [13, 14] to
deconvolve cell type-specific responses to multiple
drugs (Fig. 1a).

Methods
Preparation and culture of tissue slices
This work was approved by the Columbia University
Irving Medical Center Institutional Review Board before
commencing the study. All tumor specimens were
procured from surgeries at Columbia University Irving
Medical Center. Patient diagnosis information can be
found in Additional file 1: Table S1. Tumor specimens
were collected immediately after surgical removal and
kept in ice-cold artificial cerebrospinal fluid (ACSF) so-
lution containing 210 mM sucrose, 10 mM glucose, 2.5
mM KCl, 1.25 mM NaH2PO4, 0.5 mM CaCl2, 7 mM
MgCl2, and 26 mM NaHCO3 for transportation. Prepar-
ation of ex vivo tissue slices was modified from methods
described previously [5]. Briefly, the collected tumor

specimens were placed in a drop of ice-cold ACSF and
sliced using a tissue chopper (McIlwain) at a thickness
of 500 μm under sterile conditions. The slices were im-
mediately transferred to the ice-cold ACSF solution in
6-well plates using a sterile plastic Pasteur pipette half
filled with ice-cold ACSF solution followed by a 15-min
recovery in ACSF to reach room temperature. Intact and
well-shaped slices (approximately 5–10-mm diameter)
were then placed on top of a porous membrane insert
(0.4 μm, Millipore). Then the membrane inserts were
placed into 6-well plates containing 1.5 mL maintenance
medium consisting of F12/DMEM (Gibco) supplemented
with N-2 Supplement (Gibco) and 1% antibiotic-
antimycotic (ThermoFisher). To ensure proper diffusion
into the slice, culture medium was placed under the mem-
brane insert without bubbles. A drop of 10 μl of culture
medium was added directly on top of each slice to prevent
the slice surface from drying. The slices were first rested
for 6 h with the maintenance medium in a humidified in-
cubator at 37°C and 5% CO2. Then, the medium was re-
placed with pre-warmed medium containing drugs with
desired concentration (Additional file 1: Table S2) or cor-
responding volume of vehicle (DMSO). Drug dose was
chosen as the estimated IC20 as measured in TS543
patient-derived glioma neurospheres (Additional file 1:
Fig. S1) [15], which we have previously shown to harbor
both proneural and mesenchymal GBM subpopulations
[14]. Slices were then cultured with the treatment medium
in a humidified incubator at 37°C and 5% CO2 for 18 h
before being collected for dissociation.

Dissociation of tissue and slices
Collected tissue samples or tissue slices were dissociated
using the Adult Brain Dissociation kit (Miltenyi Biotec)
on gentleMACS Octo Dissociator with Heaters (Miltenyi
Biotec) according to the manufacturer’s instructions.

Microwell scRNA-seq
Dissociated cells from each slice were profiled using
microwell-based single-cell RNA-seq [14] as previously
described [9, 16] with the following modifications: once
the RNA-capture step was finished, sealing oil was
flushed out of the devices by pipetting 1 mL of wash
buffer supplemented with 0.04 U/μl RNase inhibitor
(Thermo Fisher Scientific) and then beads were
extracted from the device and resuspended in 200 μl of
reverse transcription mixture. Bead-suspensions were
divided into 50-μl aliquots and placed into PCR tubes
(Corning) followed by incubation at 25°C for 30 min
and at 42°C for 90 min in a thermocycler. Each
cDNA library was barcoded with an Illumina sample
index. Libraries with unique Illumina sample indices
were pooled for sequencing on (1) an Illumina Next-
Seq 500 with an 8-base index read, a 21-base read 1
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containing cell-identifying barcodes (CB) and unique
molecular identifiers (UMIs), and a 63-base read 2
containing the transcript sequence, or (2) an Illumina

NovaSeq 6000 with an 8-base index read, a 26-base
read 1 containing CB and UMI, and a 91-base read 2
containing the transcript sequence.

Fig. 1 a Schematic illustration of experimental and analytical methods for slice culture drug perturbation and scRNA-seq. b UMAP embedding of
scRNA-seq profiles from acutely isolated biopsies and slice cultures from different regions of the same tumor (PW032) colored by sample origin. c
Same as b but colored by the log-ratio of Chr. 7 to Chr. 10 average expression where a high ratio (red) indicates malignant transformation. d Same as
b but colored by cell type. e Heatmap of average expression of marker genes from cell types in the tumor microenvironment in each cell type and
sample from PW032. f Fractional abundance of each major cell type in each biopsy and slice culture sample from PW032. g Two-dimensional model
projecting each transformed cell from PW032 biopsies and slice into four major GBM transformed populations colored by sample origin
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scRNA-seq data preprocessing
Raw data obtained from the Illumina NextSeq 500 was
trimmed and aligned as described previously [9]. For
each read with a unique, strand-specific alignment to
exonic sequence, we constructed an address comprised
of the CB, UMI barcode, and gene identifier. Raw data
obtained from the Illumina NovaSeq 6000 was first cor-
rected for index swapping to avoid cross-talk between
sample index sequences using the algorithm described
by Griffiths et al. [17] before assigning read addresses for
each sample. For samples had been sequenced on both
Illumina NextSeq 500 and NovaSeq 6000, we combined
the addresses from the NextSeq 500 and the corrected
addresses from the NovaSeq 6000 for data processing as
described previously [9, 16]. Briefly, reads with the same
CB, UMI, and aligned gene were collapsed and sequen-
cing errors in the CB and UMI were corrected to gener-
ate a preliminary matrix of molecular counts for each
cell.
We applied the EmptyDrops algorithm to recover true

cell-identifying barcodes in the digital gene expression
matrix [18]. We then removed CBs that satisfied any of
the following criteria: (1) fractional alignment to the
mitochondrial genome greater than 1.96 standard devia-
tions above the mean; (2) a ratio of molecules aligning
to whole gene bodies (including introns) to molecules
aligning exclusively to exons greater than 1.96 standard
deviations above the mean; (3) average number of reads
per molecule or average number of molecules per gene
>2.5 standard deviations above the mean for a given
sample; or (4) more than 40% of UMI bases are T or where
the average number of T-bases per UMI is at least 4.
One important consideration, particularly with the

drug-treated slice cultures where we expect increased
cell death, is whether there are elevated levels of ambient
mRNA (i.e., higher background) in the scRNA-seq
profiles. We examined this by comparing the coverage
of cell-identifying barcodes assigned to cells to those
assigned to ambient RNA using EmptyDrops as described
above and found that drug-treatment did not result in sig-
nificantly increased background (Additional File 1: Fig. S2).

Unsupervised clustering, differential expression, and
visualization
Clustering, visualization, and identification of cluster-
specific genes were performed as described previously
(www.github.com/simslab/cluster_diffex2018) [16, 19].
We used Louvain community detection as implemented
in Phenograph for unsupervised clustering with k=20 for
all k-nearest neighbor graphs [20]. For all clustering and
visualization analyses of merged datasets, we first identi-
fied marker genes using the drop-out curve method de-
scribed in Levitin et al. [16] (www.github.com/simslab/
cluster_diffex2018) [19] for each individual sample and

took the union of the resulting marker sets to cluster
and embed the merged dataset. We projected drug-
treated cells onto vehicle-treated cells with UMAP in
Fig. 3 as described in Szabo et al. and Levitin and Sims
(code available at www.github.com/simslab/umap_
projection) [21, 22].

Whole genome sequencing and analysis
Genomic DNA was extracted from a piece of frozen tis-
sue from each tumor using the DNeasy Blood & Tissue
Kits (Qiagen) according to the manufacturer’s instruc-
tions and was submitted to the Beijing Genomics Insti-
tute (BGI) for whole genome sequencing using their
DNBseq technology. Raw sequencing data were aligned
to the human genome using bwa mem and analyzed as
described in Yuan et al. [9]. Briefly, we computed the
number of de-duplicated reads that aligned to each
chromosome for each patient and divided this by the
number of de-duplicated reads that aligned to each
chromosome for a diploid germline sample from patient
PW034 (pooled blood mononuclear cells) after normal-
izing both by total reads. We then normalized this ratio
by the median ratio across all chromosomes and multi-
plied by two to estimate the average copy number of
each chromosome.

Identification of malignant glioma cells and non-tumor
cells
Chr. 7 amplification and Chr. 10 deletion were observed
from the whole-genome sequencing results for all pa-
tients in this cohort. Therefore, we identified the trans-
formed cells and untransformed cells using a linear
combination of normalized average chromosome 7 and
10 expression in each cell as follows. We first merged
scRNA-seq data of all samples derived from the same
patient for unsupervised clustering analysis and defined
putative malignant cells and non-tumor cells using the
genes most specific to each cluster. Putative tumor-
myeloid doublet clusters were removed prior to malig-
nant analysis. Next, we computed the average gene
expression on each somatic chromosome as described in
Yuan et al. [9]. We define the malignancy score to be
the log-ratio of the average expression of Chr. 7 genes to
that of Chr. 10 genes and plotted the distribution of ma-
lignancy score. We fit a double Gaussian to the malig-
nancy score distribution and established a threshold at
1.96 standard deviations below the mean of the Gaussian
with the higher mean (i.e., 95% confidence interval).
Putative malignant cells with malignancy scores below
this threshold and putative non-tumor cells with malig-
nancy scores above this threshold were discarded as
non-malignant or potential multiplets.
For the comparison of biopsy and acute slice cultures

from PW032 shown in Fig. 1, we co-clustered all of the
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samples together using Phenograph and identified a
cluster that was statistically enriched in genes associated
with red blood cells (HBA1, HBA2, HBB), transformed
glioma cells (SAA1, GFAP), and myeloid cells (CD14,
C1QA). We discarded these cells as potential multiplets
before completing our analysis. Similarly, for the drug
screening analysis of PW030 in Fig. 3, we co-clustered
all eight samples using Phenograph and identified a
cluster that was statistically enriched in markers of
transformed glioma cells (GFAP) and myeloid cells
(CD14). We discarded these cells as potential multiplets
before completing our analysis.

Single-cell hierarchical Poisson factorization (scHPF) analysis
For the scHPF model in Fig. 4, we combined scRNA-seq
profiles from one vehicle-treated and one etoposide-
treated slice from PW029; two vehicle-treated, one
etoposide-treated, and one Panobinostat-treated slice from
PW030, PW032, PW034, and PW036; and two vehicle-
treated and one Panobinostat-treated slice from PW040
for a total of 21 samples (see Additional file 1: Table S1).
To avoid dominant factors from any one sample, we ran-
domly sub-sampled the scRNA-seq profiles such that each
of the 21 samples contributed 803 cells to the model for a
total of 16,863 cells. We then factorized the resulting
merged count matrix using scHPF with default parameters
and K = 17 (www.github.com/simslab/scHPF) [16, 23].
For all downstream analysis of the model, we removed
two nuisance factors. The first was correlated with cover-
age and highly ranked housekeeping genes and ribosomal
protein-encoding genes, and the second contained highly
ranked genes associated with cell stress and heat shock,
likely a result of dissociation artifacts in a subset of cells
and samples (Additional file 1: Fig. S7a). This resulted in a
scHPF model with 15 factors (Additional file 2: Table S4).
To visualize the scHPF model, we generated a UMAP

embedding using a Pearson correlation matrix computed
from the cell score matrix. To cluster the scRNA-seq
profiles using the Phenograph implementation of Louvain
community detection [20], we used the same Pearson
correlation matrix and k=50 to construct a k-nearest
neighbors graph. We conducted the aneuploidy analysis in
Fig. 4c from the scHPF model by first computing the cell
loading matrix Θ containing elements E[θi,k|x] for each
cell-factor pair i,k and the gene sample weight matrix Β
containing elements E[βg,k|x] for each gene-factor pair g,k
where x is the scRNA-seq count matrix. Next, we
computed the diagonal cell scaling matrix Ξ containing
elements E[ξi,i|x]*10,000 for each cell i and finally:

G ¼ log2 ΞΘΒT þ 1
� �

where G is the log-transformed scHPF-imputed ex-
pectation value matrix for the expression level of each

gene in each cell. We colored the UMAP embedding in
Fig. 4c by the difference in the average value of G for
genes in chromosome 7 and that for chromosome 10.
We scored each Phenograph cluster by the average of
this value and took all cells in clusters with an above-
average score to be malignantly transformed.
The fold-change values in the heatmaps in Fig. 4g, h

were computed by dividing the average expression of the
top 100 genes in each factor (rows) for the treated slice
by that of each vehicle-treated slice (columns) and log-
transforming. For select factors, the distribution of aver-
age expression of the top 100 genes across cells is shown
for the tumor cells, oligodendrocytes, or myeloid cells
for each slice in Fig. 4i–n.

Cell-type-specific differential expression analysis
To maximize our statistical power for the cell type-
specific differential expression analysis shown in
Additional file 1: Fig. S9, we added back all of the
scRNA-seq profiles that we had subsampled out of the
data set when we constructed the scHPF model, as de-
scribed above. To project these additional data onto our
existing scHPF model, we held the variational distribu-
tions for global, gene-specific variables fixed while
updating the variational distributions for cell-specific
local variables as when the model was originally trained.
We used the “prep-like” command in scHPF to select
the same genes that were used in the original model,
and then projected the data with the “project” command
in scHPF with the “—recalc-bp” option and default pa-
rameters. This results in variational approximations for
the cell budgets ξi and weights θi,k for the additional,
projected data, but does not alter the gene budgets ηg or
weights βg,k, nor does it alter the cell budgets or weights
for the cells used to train the original model. To associ-
ate the projected cells with the originally defined Pheno-
graph clusters, we used the “classify” command in
Phenograph [20] with a Pearson correlation matrix de-
rived from the cell score matrix computed by scHPF
projection. This allowed us to assign the additional cells
as transformed, myeloid, etc.
To identify differentially expressed genes for drug- vs.

vehicle-treated tumor and myeloid cells, we first ran-
domly sub-sampled the condition with a greater number
of cells in each comparison to have the same number of
cells as the condition with fewer cells. Next, we subsam-
pled the count matrices for the two conditions such that
they had the same average number of molecules per cell
and normalized the resulting count matrix using scran
[24]. We then conducted differential expression analysis
for protein-coding genes using the two-sided Mann-
Whitney U-test as implemented by the “mannwhitneyu”
command in the Python module “scipy”. The resulting
p-values were corrected for false discovery using the
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Benjamini-Hochberg procedure as implemented in the
“mutlipletests” command in the Python module “stats-
models”. We note that this same approach was used for
the differential expression analysis shown in Fig. 3b, c.

In situ hybridization, immunohistochemistry, and
microscopy
To detect changes in situ of TOP2A, SOX2, CD163,
MT2A, and CCL3 mRNA upon etoposide and panobi-
nostat treatment, we performed RNAscope on vehicle-
or drug-treated slices from three separate cohorts that
were not processed for scRNA-seq. Treated slices were
fixed in 4% PFA overnight at 4oC, paraffin-embedded,
and cut into 5 mm sections. Probes against the above-
mentioned mRNAs were obtained from ACDBio
(Additional file 1: Table S3). In situ hybridization (ISH)
was performed according to the manufacturer’s protocol
for the RNAScope® Multiplex Fluorescent V2 Assay
(ACDBio). Briefly, serial sections were baked at 60 °C for
1 h before being deparaffinized in xylene and 100% etha-
nol. After drying the slides for 5 min at 60 °C, H2O2 was
added for 10 min at RT. For antigen accessibility, slides
were incubated in boiling 1X Target Retrieval reagents
(~98 °C) for 15 min, washed in water, dehydrated in
100% ethanol, and finally treated with Protease Plus for
30 min at 40 °C. The C3 probes were diluted in C1
probes at a 1:50 ratio and incubated on the slides for 2 h
at 40 °C. C1 probes were detected with TSA-Cy3 (Perkin
Elmer, NEL744001KT) and C3 probes were detected
with TSA-Cy5 (Perkin Elmer, NEL745001KT). DAPI
was added to label the nuclei, and slides were mounted
using Fluoromount. After drying at room temperature,
the mounted slices were stored in the dark at 4 °C.
Immunohistochemistry was performed on 4%

paraformaldehyde-fixed paraffin-embedded tissue sec-
tions (5 μm thick) to analyze γH2AX induction in
etoposide-treated slice cultures. Sections were de-
paraffinized in xylene (3 × 5 min), followed by rehydra-
tion in 100% ethanol (2 × 5 min), 95% ethanol (2 × 5
min), and 75% ethanol (1 × 5 min). Slides were washed
in water and antigen retrieval was performed in 10 mM
Citrate buffer (pH 6) in a pressure cooker for 10 min.
After cooling for 30 min, slides were washed in
phosphate-buffered saline (PBS; pH 7.4) and blocked in
10 % normal goat serum for 30 min. Primary antibody
incubation was performed overnight at 4 °C using a
mouse monoclonal anti-SOX2 antibody (clone 20G5;
Thermo Scientific, MA1-014, 10 μg/mL) and a rabbit
monoclonal anti-phospho-Histone H2A.X (Ser139)
(clone 20E3; Cell Signaling Technology, #9718, 1:100
dilution). Following three washes in PBS, slides were
incubated with goat anti-rabbit Alexa Fluor 647 and goat
anti-mouse Alexa Fluor 568 secondary antibodies
(Thermo Scientific; A21244 and A11031 respectively, 1:

500 dilution) for 1 h. Slides were washed three times in
PBS, incubated for 10 min with DAPI (Thermo Scien-
tific, D1306, 0.5 μg/mL), and mounted using Fluoro-Gel
with TES buffer (Electron Microscopy Sciences)
Images were acquired on a Zeiss LSM 800 confocal

microscope with a 40×/1.3 NA oil immersion objective,
using 405-nm, 561-nm, and 639-nm excitation. Five to
six fields per probe were selected based on high SOX2
expression in serial sections, a pervasive marker of trans-
formed glioma cells [9]. Confocal stacks were acquired
with a 1 Airy pinhole and at 0.58-μm steps. Images were
exported to ImageJ for further analysis.
To estimate cell counts, confocal images were first seg-

mented into individual nuclei based on DAPI staining in
ImageJ. First, we converted the DAPI channel into a bin-
ary image using the Huang intensity threshold followed
by a watershed filter. Next, nuclear masks were gener-
ated using the “Analyze Particles” function. For each
RNAscope or immunofluorescence image, we applied
rolling ball background subtraction (50 pixel radius)
followed by quantification of the average fluorescence
intensity in each nuclear mask. To identify positive and
negative nuclei for a given probe, we fit the resulting in-
tensity distribution for all masks with an area greater
than 6 square-microns to a Gaussian mixture model and
used a threshold of two standard deviations above the
mean intensity of the lowest intensity mode (represent-
ing the fluorescence background).

Results
Acute slice culture preserves tumor cell states and
microenvironment in GBM at the single-cell level
We first demonstrated that acute slice culture preserves
the cellular heterogeneity of GBM using scRNA-seq data
from three uncultured biopsy specimens and three cul-
tured slices obtained from the same patient (PW032).
To identify subpopulations, we performed unsupervised
clustering as previously reported [16, 20] on the entire
data set containing 10,480 cells (4358 from uncultured
biopsies; 6122 from cultured slices) and embedded the
profiles in two dimensions using Uniform Manifold
Approximation and Projection (UMAP, Fig. 1b–d) [25].
Transformed and untransformed subpopulations or clus-
ters were distinguished by chromosome 7 amplification
and chromosome 10 deletion, which were supported by
both the scRNA-seq and whole genome sequencing
(WGS) data (Fig. 1c, Additional file 1: Fig. S3a; see the
“Methods” section). By identifying highly enriched
marker genes for each cluster, the non-malignant cells
were further classified into myeloid cells (CD14, AIF1,
TYROBP, CD163), oligodendrocytes (PLP1, MBP, MAG,
SOX10), T cells (TRAC, TRBC1, TRBC2, CD3D), endo-
thelial cells (ESM1, ITM2A, VWF, CLDN5), and pericytes
(PDGFRB, DCN, COL3A1, RGS5) (Fig. 1d, e, Additional
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file 1: Fig. S3b-d). We observed transformed cells and all
untransformed cell types with similar fractional compos-
ition (Fig. 1f) along with expression of their marker genes
(Fig. 1e) in both uncultured biopsy samples and the
cultured slices. Although the biopsies and slice cultures
are similar, they are not identical, and systematic shifts in
gene expression are evident in the embedding in Fig. 1b
and Additional file 1: Fig. S3e. Cell type-specific analysis
in Additional file 1: Fig. S3b-d highlights the major gene
expression differences between the biopsies and slice cul-
tures which could result from both spatial heterogeneity
and culture conditions.
In previous studies, we used scRNA-seq to show that

transformed cells in high-grade gliomas resemble oligo-
dendrocyte lineage cells (including progenitors or
OPCs), astrocytes, neuronal precursors, and mesenchy-
mal cells at the level of gene expression [9], consistent
with earlier work using bulk analysis [26–28]. More re-
cently, Neftel et al. developed an elegant model based on
gene signatures of these four major states to classify
scRNA-seq profiles of glioma cells [11]. We used this
model to examine the transformed cells in the biopsies
and slice cultures in detail and found that all four states
were well-represented in both the biopsy and slice
cultures and that most cells classified as astrocyte-like or
mesenchymal in this particular tumor (Fig. 1g, h,
Additional file 1: Fig. S3f). However, the slice cultures
contained more mesenchymal cells whereas the biopsy
cells were more astrocyte-like (Fig. 1g, h, Additional file
1: Fig. S3f). While this could be due, in part, to culture
conditions, we expect this level of variation based on
previous studies of spatial heterogeneity since the slice
cultures and biopsies were obtained from different re-
gions of the tumor [8, 16, 27, 29].
We conducted a similar analysis of slice cultures from

six patients (including PW032) and found representation
of transformed cells (Additional file 1: Fig. S4) and the
same major cell types with similar relative abundances
after 24 h of culture (Fig. 2a). We also analyzed their
transformed populations using the Neftel et al. model
(Fig. 2b, Additional file 1: Fig. S5) [11] and found good
representation of all four major GBM states with some
tumors appearing more proneural (OPC/NPC – PW034)
and others more astrocytic (PW029), mesenchymal
(PW030, PW040), or both (PW032, PW036) as quanti-
fied in Additional file 1: Fig. S4d. Finally, to analyze
spatial effects across slice cultures within a single resec-
tion, we profiled five slice cultures such that each was
500-μm thick and the interval between the two most ad-
jacent slices was also 500 μm (maximum spatial distance
of 3.5 mm). scRNA-seq profiles of the five slices co-clus-
tered well based on UMAP embedding (Fig. 2c,
Additional file 1: Fig. S6a-e) and the four-state model of
the transformed cells (Fig. 2d, Additional file 1: Fig. S6f)

and showed good representation of major cell types
(Additional file 1: Fig. S6). Taken together, these data
suggest that cultured slices preserve the major cellular
and molecular features of the tumor microenvironment
and represent the well-established inter- and intra-
tumoral heterogeneity observed in gliomas.

Acute slice culture and scRNA-seq for personalized drug
screening
To test the feasibility of drug screening with patient-
derived slice cultures and scRNA-seq, we perturbed
slices derived from one GBM resection (PW030) with
six different drugs chosen for diverse mechanisms of
action and included two vehicle controls (Fig. 3a and
Additional file 1: Table S1, S2). We profiled 48,404 cells
from eight slices and identified transformed and un-
transformed populations as described above. To identify
drug-induced transcriptional changes, we performed dif-
ferential expression analysis for the tumor, myeloid, and
oligodendrocyte populations (Fig. 3b, c). Treatment with
the histone deacetylase (HDAC) inhibitor panobinostat
resulted in the strongest response with 9632, 4228, and
3183 significantly differentially expressed genes (p<0.01)
in the tumor, myeloid, and oligodendrocyte populations
(Fig. 3b), respectively, with similar results when we re-
stricted our analysis to fold-changes >2 (Fig. 3c). To
identify drugs with highly specific effects on subpopula-
tions of tumor cells, we first computed a UMAP embed-
ding for the transformed cells from the control slices
(Fig. 3d), which we use as a reference for comparison to
treated cells. The majority of control tumor cells appear
mesenchymal (Fig. 2b) with pervasive expression of
CD44 and VIM and an astrocytic subpopulation express-
ing GFAP at high levels (Fig. 3d). However, there is a
small subpopulation of proliferating cells marked by
TOP2A and MKI67 (Fig. 3d). Next, we projected the
profiles of transformed cells from each treated slice into
this embedding (Fig. 3e). Consistent with the differential
expression analysis, we observed that panobinostat had a
dramatic compositional effect on the transformed cells.
We also noticed that etoposide selectively eliminated the
small, proliferative subpopulation, consistent with its
mechanism-of-action as a topoisomerase poison [30].
Given the disparate effects of these two drugs in PW030,
we made them the focus of our subsequent analysis.

Conserved, cell type-specific responses to etoposide and
panobinostat in GBM across six patients
To identify cell type-specific responses to etoposide and
panobinostat that are conserved across patients, we con-
ducted slice culture drug-perturbations across six GBM
patients followed by scRNA-seq. Additional file 1: Table
S1 contains a summary of all the slice culture samples
used for this analysis. After subsampling the scRNA-seq

Zhao et al. Genome Medicine           (2021) 13:82 Page 7 of 15



profiles from each vehicle- and drug-treated slice culture
from all six patients to the same number of cells, we
generated a low-dimensional representation of the merged
data using single-cell hierarchical Poisson factorization
(scHPF) [16]. This Bayesian algorithm operates directly on
the count matrix and identifies latent factors correspond-
ing to the major gene expression programs that define the
population. We identified 15 factors associated with ca-
nonical markers of neural cell types, GBM subpopulations,
biological processes (e.g., proliferation), and drug response
(Additional file 1: Fig. S7, Additional file 2: Table S4). Two
nuisance factors were associated with coverage (enriched
in ribosomal and other housekeeping genes) and cell
stress (e.g.. heat shock—likely a dissociation artifact) and
removed from the model (Additional file 1: Fig. S7a,
Additional file 2: Table S4).

To visualize the model, we created a UMAP embed-
ding of the scHPF cell score matrix (Fig. 4a–f,
Additional file 1: Fig. S8; see the “Methods” section).
Based on aneuploidy analysis of chromosomes 7 and 10,
the transformed cells from each patient separate into es-
sentially non-overlapping clusters (Fig. 4a, c). In contrast,
untransformed oligodendrocytes, myeloid cells, and T
cells overlap significantly across the six patients (Fig. 4a,
d–f), consistent with previous studies of fresh resections
[9]. We also observed that panobinostat- and vehicle-
treated cells generally showed little overlap across all cell
types, while etoposide-treated cells tended to co-cluster
with the controls (Fig. 4b). This is consistent with our
screening results above which suggest that panobinostat
significantly alters gene expression, whereas etoposide
primarily impacts genes involved in proliferation.

Fig. 2 a Fractional abundance of each major cell type in all untreated slice culture scRNA-seq data sets from the six patients in the study. b Two-
dimensional model projecting each transformed cell from all untreated slice culture scRNA-seq data sets from the six patients in the study. c
UMAP embedding of scRNA-seq profiles from five untreated slice cultures taken within 3.5 mm of each other from PW040 colored by sample of
origin. d Same as b but for the transformed cells from the five untreated slice cultures from PW040
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To identify conserved drug responses, we compared
the expression of top genes in each factor between the
drug- and vehicle-treated slices from each patient. As
expected, the most conserved response to etoposide was
a decrease in expression of the proliferation factor in the
tumor compartment (Fig. 4g, i). This occurred in all but
one patient, PW034, despite its high levels of cells ex-
pressing proliferation markers (Fig. 4i). Etoposide did
not show consistent effects on other factors and had
limited impact overall on oligodendrocytes and myeloid
cells (Fig. 4g). We validated the loss of TOP2A+ tumor
cells, which we also observed by conventional differential
expression analysis (Additional file 1: Fig. S9a), using in
situ hybridization analysis of etoposide-treated slice cul-
tures from a separate cohort (Additional file 1: Fig. S10).
These results suggest that the alterations in transformed
glioma cell-specific gene expression results from an
etoposide-mediated change in cellular composition. We
also show the expected DNA damage response of trans-
formed glioma cells to etoposide treatment using double
immunofluorescence staining of slice cultures with
γH2AX and SOX2 (Additional file 1: Fig. S11). γH2AX
is an established marker of DNA damage and repair that
is known to respond to etoposide [31]. We previously

showed the SOX2 is a pervasively expressed marker of
transformed glioma cells in GBM using scRNA-seq and
immunohistochemistry [9]. In contrast to etoposide,
panobinostat affected multiple factors for both tumor
and non-tumor cells (Fig. 4h). We observed a modest
decrease in expression for the proliferation factor across
all patients except for PW040 (Fig. 4h). Interestingly,
panobinostat induced expression of LEFTY1, BEX5, and
SAXO2 as part of the Panobinostat3/Oligo factor, which
was predominantly oligodendrocyte-specific (Fig. 4h,
Additional file 1: Fig. S7b). However, the most notable
effect was upregulation of metallothionein family genes
(Panobinostat1/MT factor) across all cell types (Fig. 4h,
j), consistent with previous reports that HDAC inhibi-
tors can perturb this highly inducible gene cluster [32,
33]. Interestingly, cell type-specific differential expres-
sion analysis not only confirmed metallothionein induc-
tion but also revealed upregulation of mature neuronal
genes (e.g., SNAP25, SLC17A7, KCNB1, RAB3A), a
component of the same factor, specifically in tumor cells
(Additional file 1: Fig. S9c). Because we observed metal-
lothionein induction in all six patients and the three
major cell populations analyzed here, it is a potentially
useful biomarker of panobinostat response.

Fig. 3 a Experimental schematic for slice culture drug screening (6 drugs, 2 controls) from a single patient (PW030). b Heatmap showing the
number of differentially expressed genes (FDR<0.01) in the tumor, myeloid, and oligodendrocyte populations between treated and control slices
for each drug in the screen illustrated in a. c Same as b but showing only differentially expressed genes with FDR<0.01 and fold-change
amplitude greater than two (both up- and downregulated genes). d UMAP embedding of scRNA-seq profiles of transformed cells from the
control slices colored by expression of two proliferation markers (TOP2A, MKI67), two mesenchymal markers (CD44, VIM), and an astrocyte marker
(GFAP). e Same as d but with UMAP projection density of scRNA-seq profiles of transformed cell from the treated slice cultures for each drug.
Note that there is negligible projection density for the etoposide-treated cells onto the control cells for the small proliferative population
expressing TOP2A and MKI67

Zhao et al. Genome Medicine           (2021) 13:82 Page 9 of 15



Fig. 4 (See legend on next page.)
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Panobinostat treatment significantly impacted gene
expression in myeloid cells. In slice cultures from 3/5
patients, we observed a modest decrease in a factor
marked by pro-inflammatory cytokines (Fig. 4h, m),
which have been shown to be predominantly expressed
by microglia in the glioma microenvironment [9, 34].
We observed a more consistent effect on a myeloid fac-
tor marked by CD163, which is likely expressed by mac-
rophages which are thought to be immunosuppressive in
GBM (Fig. 4h, n) [34]. We verified that CD163 exhibited
significant, myeloid-specific differential expression
(Additional file 1: Fig. S9d) and the loss of CD163+

macrophages in general and relative to CCL3+ pro-
inflammatory myeloid cells by in situ hybridization ana-
lysis of vehicle and panobinostat-treated slice cultures
from a separate group of patients (Additional file 1: Fig.
S12). In addition, we validated the widespread induction
of metallothionein by panobinostat using in situ
hybridization of MT2A (Additional file 1: Fig. S13).

Cell type-specific responses to etoposide and
panobinostat within an individual patient
In the experimental design above, the majority of repli-
cates occur across patients. While this enables analysis
of conserved drug responses, we cannot assess the
consistency of a cell type-specific response within an
individual patient. Figure 5 shows the results from an al-
ternative experimental design in which we perturb mul-
tiple slice cultures for each drug with spatially adjacent
vehicle control replicates so that we can assess the re-
producibility of cell type-specific drug response within
an individual resection. We tested this approach on eto-
poside- and panobinostat-treated slice cultures gener-
ated from a single GBM patient with three replicate
slices for each drug and four vehicle-treated slices. We
observed a significant reduction in cell viability in the
etoposide- and panobinostat-treated slice cultures com-
pared to vehicle controls (Additional file 1: Fig. S14).
Figure 5a shows a UMAP embedding of the correspond-
ing scRNA-seq data. As in the above experiments, we

can use aneuploidies in chromosomes 7 and 10 to iden-
tify malignantly transformed glioma cells (Fig. 5b) and
other markers to identify myeloid cells, T cells, and oli-
godendrocytes in the microenvironment (Fig. 5c,
Additional file 1: Fig. S15). Unlike the primary tumors
described above, these slice cultures were generated
from a surgical resection of a recurrent tumor and
showed typical features of recurrent GBM including high
levels of myeloid infiltration [9, 27]. We first performed
differential expression analysis between the transformed
tumor cells from all of the etoposide- and vehicle-
treated slices (Fig. 5d). Consistent with our previous ana-
lysis of conserved drug responses, we find the etoposide
significantly reduces the expression of proliferation
markers (Fig. 5d), suggesting a robust cell type-specific
response in this specific patient sample. We repeated
this analysis for the transformed GBM cells in the
panobinostat-treated slices and found consistent induc-
tion of metallothioneins and neuronal markers as
expected (Fig. 5e). We also analyzed the effects of pano-
binostat on myeloid cells, and just as in the above ana-
lysis, we found expression changes that are consistent
with a loss of CD163+ macrophages (Fig. 5f). Finally, to
assess reproducibility across replicates, we performed
gene set enrichment analysis (GSEA) with gene sets
taken from the top 100 scoring genes in each of the
scHPF factors from our analysis in Fig. 4 on the differen-
tially expressed genes from independent comparisons of
etoposide- (Fig. 5g) and panobinostat-treated (Fig. 5h)
slice cultures to adjacent control slices. For the etoposide-
treated slices, we found that the proliferation signature in
the transformed glioma cells was the only factor with sig-
nificant reduction across all three replicates (FDR<0.05).
For panobinostat, the CD163+ macrophage signature was
reduced in myeloid cells in all three replicates with FDR<
0.05 in two out of three, while the metallothionein signa-
ture was increased in both myeloid and tumor cells for all
three replicates. with FDR<0.05 in two out of three. These
results suggest that our conserved findings from primary
GBM are applicable to recurrent GBM and demonstrate

(See figure on previous page.)
Fig. 4 a UMAP embedding of scRNA-seq profiles from slice cultures of six patients generated using the cell score matrix from joint scHPF analysis
of the entire data set colored by patient. b Same as a but colored by treatment condition. c Same as a but colored by the scHPF-imputed log-
ratio of Chr. 7 to Chr. 10 average expression where a high ratio (red) indicates malignant transformation. d Same as a but colored by expression
of the oligodendrocyte marker PLP1. e Same as a but colored by expression of the myeloid marker CD14. f Same as a but colored by the total
expression of the T cell receptor constant regions (TRAC, TRBC1, TRBC2). g Heatmap showing the log-ratio of the average expression of the top
100 genes in each eptoposide-treated to each control slice for each scHPF factor and each of three cell types—transformed (tumor),
oligodendrocyte (oligo), and myeloid. h Same as g for panobinostat-treated slices. i Violin plots showing the distributions of the average
expression of the top 100 genes in the Proliferation scHPF factor for each vehicle- and etoposide-treated slice for each patient in tumor cells. All
within-patient, vehicle-treatment comparisons have p<0.05 (Mann-Whitney U-test) unless otherwise indicated (N.S. or not significant). j Same as i
for the Panobinostat1/MT scHPF factor for each vehicle- and panobinostat-treated slice in tumor cells. k Same as j for the Panobinostat2/
Chemokine scHPF factor in tumor cells. l Same as j for the Panobinostat3/Oligo scHPF factor in oligodendrocytes. m Same as j for the Myeloid2/
Pro-Inflammatory scHPF factor in myeloid cells. n Same as j for the Myeloid3/CD163 scHPF factor in myeloid cells

Zhao et al. Genome Medicine           (2021) 13:82 Page 11 of 15



Fig. 5 (See legend on next page.)
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that we can use our approach to identify robust, cell type-
specific drug responses within an individual patient.

Discussion
Collectively, this work establishes a multiplexed experi-
mental and analytical pipeline for deconvolving cell
type-specific drug responses in GBM tissue from indi-
vidual patients. Acute slices generated from fresh tumor
tissues preserve the key molecular and cellular features
of the original tissue and provide a setting for drug re-
sponse to be evaluated on multiple tumor cell subpopu-
lations and cell types in the tumor microenvironment.
We further demonstrated the feasibility of conducting
drug screens using this approach with a turnaround time
of less than 1 week after surgery. Focused analysis of
etoposide and panobinostat across six patients (five for
each drug) revealed drug-induced responses in specific
populations of transformed and microenvironmental
cells, patient-specific drug sensitivities, and drug effects
conserved across patients. Etoposide consistently down-
regulated cell cycle genes in proliferating tumor cells
with minimal conserved effects on untransformed or less
proliferative transformed cells. The HDAC inhibitor
panobinostat induced the expression of metallothionein
family genes and mature neuronal genes in tumor cells
and significantly re-modeled the myeloid population in
the tumor microenvironment.
We note that drug delivery across the blood brain

barrier is a major challenge in the treatment of GBM,
and that local delivery may be necessary for many drugs
to be effective. Our slice culture experiments are only in-
formative of how a given therapy might impact malig-
nantly transformed GBM cells and cells in the brain
microenvironment once it has been effectively delivered
to the tumor.

Conclusions
Acute slice cultures recapitulate the major cellular and mo-
lecular features of both transformed and untransformed

cells in GBM. In combination with scRNA-seq, we
can conduct drug screens directly on intact human
surgical specimens and deconvolve cell type-specific
drug responses. Overall, we hope that this approach
will find broad utility for pre-clinical studies and the
development of cellular and molecular enrollment
criteria for clinical trials.
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