
sensors

Article

Intelligent Trajectory Tracking Behavior of a Multi-Joint
Robotic Arm via Genetic–Swarm Optimization for the Inverse
Kinematic Solution

Mohammad Soleimani Amiri and Rizauddin Ramli *

����������
�������

Citation: Soleimani Amiri, M.;

Ramli, R. Intelligent Trajectory

Tracking Behavior of a Multi-Joint

Robotic Arm via Genetic–Swarm

Optimization for the Inverse

Kinematic Solution. Sensors 2021, 21,

3171. https://doi.org/10.3390/

s21093171

Received: 28 March 2021

Accepted: 29 April 2021

Published: 3 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Mechanical and Manufacturing Engineering, Faculty of Engineering and Built Environment,
Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; msa0911@gmail.com
* Correspondence: rizauddin@ukm.edu.my

Abstract: It is necessary to control the movement of a complex multi-joint structure such as a
robotic arm in order to reach a target position accurately in various applications. In this paper, a
hybrid optimal Genetic–Swarm solution for the Inverse Kinematic (IK) solution of a robotic arm is
presented. Each joint is controlled by Proportional–Integral–Derivative (PID) controller optimized
with the Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), called Genetic–Swarm
Optimization (GSO). GSO solves the IK of each joint while the dynamic model is determined by
the Lagrangian. The tuning of the PID is defined as an optimization problem and is solved by PSO
for the simulated model in a virtual environment. A Graphical User Interface has been developed
as a front-end application. Based on the combination of hybrid optimal GSO and PID control, it
is ascertained that the system works efficiently. Finally, we compare the hybrid optimal GSO with
conventional optimization methods by statistic analysis.

Keywords: robotic arm; Genetic Algorithm; Particle Swarm Optimization; PID control

1. Introduction

With the advancements in robotic technology, numerous types of robots have become
involved in our daily life and help humans in many different areas. As one of the most com-
mon robots, the multi-joint manipulator robotic arm plays an important role in automotive,
agriculture and bio-medical sectors due to its flexibility, robustness and accuracy [1–3].

The identification of the Inverse Kinematic (IK) plays an important role in the precision
control of trajectory tracking [4,5]. Various IK solutions have been carried out for robotic
arms [6,7]. For instance, Xu et al. [8] presented a combination brain of a computer interface
and computer vision to move a robotic arm end-effector to a desired point by using a depth
camera. A six degree of freedom (6DoF) robot with initialized commands from a user’s
brain signals combined with a point clouds model was verified with five healthy candidates
without specific user training, showing acceptable accomplishment for complex tasks.
Fang et al. [9] established a visual communication method using deep neural networks, in
which the movements of a human arm were monitored and determined by the Denavit–
Hartenberg (D-H) technique. Narayan et al. [10] presented a 5DoF robotic arm with a
three-finger gripper and validated the IK in a simulation platform. Ye et al. [11] dealt with
5DoF manipulator forward-IK problems using Ferrari’s and redundant Euler methods and
validated them in a simulation model. Wei at al. [12] applied a neural network to a robotic
arm and used environment feedback to reach a specific target point inspired by animal
and human biological neural networks. They validated their approach using the penalty
function to avoid the robot from reaching specific points. The results show the end-effector
reached the target successfully. Ren et al. [13] developed generative neural networks to
solve the IK for a robotic arm. They determined the IK by the D-H technique and Moveit,
which is an application of a Robot Operating System (ROS) to control and monitor a robot.

Sensors 2021, 21, 3171. https://doi.org/10.3390/s21093171 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6364-6392
https://orcid.org/0000-0002-5907-3736
https://doi.org/10.3390/s21093171
https://doi.org/10.3390/s21093171
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21093171
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21093171?type=check_update&version=1


Sensors 2021, 21, 3171 2 of 18

Traditionally, the IK has been utilized to establish joint configurations of manipulators
based on the end-effector position. However, the traditional IK methods cannot consider
the continuity of configurations, collision avoidance and kinematic singularities that arises
when attempting to follow the end-effector path [14]. In addition, solving IK problems
is a difficult challenge because manipulators with more than 5DoF result in an infinite
number of possible solutions for joint trajectories that determine the same position in the
Cartesian space [15]. Traditional analytical solutions cannot directly calculate the one-to-
many possible relationships in the Cartesian space. Therefore, evolutionary algorithms such
as optimization methods are used to solve IK problems quantitatively [11,16]. For instance,
Starke et al. [17] studied a mimetic evolutionary algorithm, which was a combination
of the Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and gradient-based
optimization to address the IK solution for various industrial and anthropomorphic robots.

One of the approaches used in this paper is to combine GA and PSO in order to
develop an optimal solution for the IK and Proportional–Integral–Derivative controller
(PID) controller tuning. This optimization method has been presented in several works for
various applications [18–20]. For instance, Dziwinski, et al. [21] presented a fuzzy-logic
controller in which a combination of PSO and GA was used in parallel to improve PSO
performance by adding crossover and mutation to the GA to avoid becoming trapped
in local optima. Farand et al. [22] developed a combination of GA and PSO to reduce
computational time and accuracy in comparison with other known methods such as GA
and PSO for high-dimensional and complex functions.

The PID controller is one of the most common used classical control systems in differ-
ent industries because of its flexibility, satisfactory results [23,24], ease of implementation in
a control system and wide usage in industries [25,26]. In order to enhance the accuracy and
robustness of classical PID control, one of the techniques is to combine it with optimization
methods [27,28]. Belkadi et al. [29] worked on PSO with a random initial value to tune the
parameters of the PID controller by minimizing the trajectory error. They verified their
controller in a simulation model and compared it with conventional methods by numerical
analysis. Phu et al. [30] used optimization with sliding mode control based on the Bolza–
Meyer criterion to minimize the vibration effect. In another work, Suhaimin et al. [31] used
a PID controller for a 5DoF robotic arm and controlled its joints for the point-to-point
trajectory tracking of end-effectors.

The contribution of this paper is the development of an optimal hybrid IK and PID
controller for joint trajectory tracking, using the Genetic–Swarm Optimization technique.
The applicability of the proposed technique for the IK solution of end-effectors and steady-
state error for control is compared with conventional optimization approaches such as
the GA and PSO. In addition, a 5DoF robotic arm is selected for analysis due to its simple
structure, flexible action, small volume, convenient operation and so on; this device is
widely used in many fields and industries [32].

The rest of the paper is organized as follows: first, the kinematic and dynamic models
of the 5DoF robotic arm are established using the D-H and Lagrangian method. Subse-
quently, an IK solution is determined by hybrid Genetic–Swarm Optimization (GSO) for
angular trajectories of each joint reaching the target position. The joint angles determined
by the IK are implemented in a closed-loop system using a PID controller, and the gains are
tuned by the GA and PSO. The 3D models of the robotic arm are simulated in the Gazebo
environment. Finally, a Graphical User Interface (GUI) is created to interact with the 3D
model in the ROS environment.

2. Dynamic and Kinematic Model

The robotic arm consists of a base, four links, a wrist and gripper that are connected
to each other by joints in series. Figure 1 represents a 5DoF robotic arm, in which the
coordinate systems of joints and global frames are presented.



Sensors 2021, 21, 3171 3 of 18

O
x0

z0

y0

z1

x1

y1

x2

y2

z2

x3

y3

z3

x4

y4

z4
O5

z5

x5

y5

Figure 1. Configuration of the robotic arm, where x0, y0 and z0 are axes of the reference frame.

There are various methods used to determine the dynamic equation of robot manipula-
tors, such as Newton–Euler, Kane and Hamilton approaches. In this work, an energy-based
Lagrangian method has been adopted to determine the relation between the torque and
angle of joints; one of the advantages of the Lagrangian method is that, unlike the Newton–
Euler method, it is not necessary to determine internal forces between joints; therefore, it is
quicker and easier to obtain the equation of motion [33]. The Lagrangian equation is given
as follows:

L = Ek − Ep (1)

τi =
d
dt
( ∂L

∂θ̇i

)
−
( ∂L

∂θi

)
+ Bi(θ̇i) (2)

where Bi is the joint friction coefficient; L is the Lagrangian function; Ti is the torque of
each link, with i = 1, 2, 3, 4, 5; θi and θ̇i are the angular trajectory and velocity; and Ep and
Ek are the total potential and kinetic energies, respectively. From [34], the equations of Ep
and Ek are determined as follows:

Ep =
5

∑
i=1

migzdi (3)

Ek =
5

∑
i=1

[
1
2

mi(ẋ2
di + ẏ2

di + ż2
di) +

1
2

Ixi θ̇
2
i +

1
2

Ii] (4)

where mi and Ii are the mass and inertia of each link; g is the gravity acceleration; and
(ẋdi, ẏdi, żdi) is the time derivative of the centroid position of each joint, where i = 1, 2, 3, 4, 5.
According to the geometric relation, the centroid position (xdi, ydi, zdi) of every linkage is
written as

Xdi
=

i−1

∑
j=1

(Rzj .
jX) + Rzi .

iXd (5)

where jX ∈ <3×1 is the position of joint (i− 1)th according to the reference frame; Xdi
∈ <3×1

is the position of the centroid point of link ith relative to the reference frame; Rzi ∈ <3 is
the rotation matrix around z-axes according to the coordinate system placed in the ith joint;
and iXd ∈ <3×1 represents the centroid position of the link ith regarding the coordinate
system located in the joint ith. By substituting Ek and Ep in the Lagrangian function, the
state space dynamic is determined in range of motion condition where while one joint is
moving, the other ones are fixed, which is shown as follows:

τ = Mθ̈ + V θ̇ + G(θ) (6)



Sensors 2021, 21, 3171 4 of 18

where θ ∈ <5×1 and θ̈ ∈ <5×1 are the angular rotation and acceleration; τ ∈ <5×1 is the
torque vector; and M ∈ <5 is a matrix containing mass and inertia elements, which is
shown as follows:

M =


em1 0 0 0 0
0 em2 0 0 0
0 0 em3 0 0
0 0 0 em4 0
0 0 0 0 em5

 (7)

where emi i = 1, 2, 3, 4, 5 represents the mass and inertia elements, expressed as follows:

em1 = Ix1; emi = l2
i

5

∑
i=i+1

(mi) + Ii + mil2
ci

(8)

where lci is the length of the centroid position for each link and li is the length of every link.
V ∈ <5 is the centrifugal, coriolis and friction matrix and G(θ) ∈ <5 represents the gravity
matrix, expressed as follows:

V(θ̇, θ) = Bi · I5×5 G(θ) = egi · I5×5 (9)

where I5 ∈ <5 is the identity matrix and egi shows the elements of mass and gravity
matrices, represented as follows:

egi = (li
5

∑
i=i+i

(mi) + lci mi)gsin(θi) (10)

where g represents gravitational acceleration. Table 1 illustrates the physical features of the
robotic arm’s links.

Table 1. Physical features of the robotic arm.

link li(m) lci(m) mi(Kg) Ii Bi

i = 1 0.3 0.15 0.748 0.0013 0.72
i = 2 0.19 0.095 0.8020 0.0043 0.83
i = 3 0.14 0.07 0.792 0.0023 0.95
i = 4 0.15 0.075 0.691 0.0015 1.88
i = 5 0.04 0.02 0.2562 0.00012 0.83

In the next stage, the forward kinematic based on modified D-H (mD-H) algorithms
has been developed to establish the relative position of the 5DoF robotic arm end-effector
to its reference frame O [35]. Table 2 represents the parameters of the mD-H.

In Table 2, αi−1, θi, di and ai−1 represent the twist angle, joint angle, link offset and
link length, respectively. The mD-H homogeneous transformation is expressed as follows:

i−1
i T =


cosθi −sinθi 0 ai−1

sinθicosθi−1 cosθicosθi−1 −sinαi−1 −disinαi−1
sinθisinαi−1 cosθisinαi−1 cosαi−1 dicosαi−1

0 0 0 1

 (11)

The transformation matrix of the end-effector is the transformation matrix from the
reference frame to the last frame, which is shown as follows:

0
5T =0

1 T ·12 T ·23 T ·34 T ·45 T (12)

where 0
1T, 1

2T, 2
3T, 3

4T and 4
5T are the transformation matrices of each joint to its previous

joint. The transformation matrix from the reference frame to end-effector is as follows:



Sensors 2021, 21, 3171 5 of 18

0
5T =


t1,1 t1,2 t1,3 t1,4
t2,1 t2,2 t2,3 t2,4
t3,1 t3,2 t3,3 t3,4
t4,1 t4,2 t4,3 t4,4

 (13)

where t1,4, t2,4 and t3,4 express the end-effector position relative to the reference frame,
which is shown as follows:

x = t1,4 = −1
2
(l4sin(θ4 + θ3 + θ2 + θ1)− l4 sin(θ4 + θ3 + θ2 − θ1) + l3cos(θ3 + θ2 + θ1)+

l3cos(θ3 + θ2 − θ1) + l2cos(θ2 + θ1) + l2cos(θ2 − θ1)) (14)

y = t2,4 =
1
2
(l4cos(θ4 + θ3 + θ2 + θ1)− l4cos(θ4 + θ3 + θ2 − θ1) + l3sin(θ3 + θ2 + θ1)−

l3sin(θ3 + θ2 − θ1) + l2sin(θ2 + θ1)− l2sin(θ2 − θ1)) (15)

z = t3,4 = l4cos(θ4 + θ3 + θ2) + l3sin(θ3 + θ2) + l2sin(θ2) (16)

Table 2. mD-H parameters for the 5DoF robotic arm.

Joints θi di αi−1 ai−1

One θ1 0 0 0
Two θ2 0 π

2 l2
Three θ3 0 0 l3
Four θ4 0 0 l4
Five θ5 0 −π

2 l5

3. Optimal Inverse Kinematic

Since the number of variables is greater than the number of equations and the end-
effector position is non-linear, the usage of traditional methods such as Gaussian elimi-
nation are not practical [36]. Thus, in this paper, the IK is defined as a mono-objective
optimization problem. The desired position of the end-effector is set to be achieved by
minimizing the objective function. In this study, the hybrid version of the GA and PSO,
named GSO, is adopted to solve the IK problem, because GA is developed initially by
random values due to its reliability and robust performance [37] and PSO is sufficient to
find accurate results in a few iterations with low computational time. Subsequently, PSO is
initialized by the results of the GA. In the GSO algorithm, the GA provides searching space
and initial values for PSO to avoid becoming trapped in local optima.

The summation of squared error (SSE), which is a well-known statistic in multiple
regression analyses [38], is chosen as an objective function because it shows the squared
sum of residuals, which is the error between the measured and desired trajectory of the
end-effector, and illustrates how close a regression line is to a set of residuals. The squaring
is necessary to remove any negative signs. The objective function is given as follows:

fobj =
√
(ex)2 + (ey)2 + (ez)2 (17)

where ex, ey and ez are the errors, represented as follows:

ex = x− xdes (18)

ey = y− ydes (19)

ez = z− zdes (20)

where xdes, ydes and zdes are the desired positions of the endpoint regarding the reference
frame. x, y and z express the position of the endpoint, which are determined by the gene of



Sensors 2021, 21, 3171 6 of 18

the GA from Equations (18)–(20). The population structure of an iteration is represented
in Figure 2.

x1(1)
x1(2)
x1(3)
x1(4)

x2(1)
x2(2)
x2(3)
x2(4)

xith(1)
xith(2)
xith(3)
xith(4)

1st 2nd ith

Figure 2. Structure of population for an iteration.

In each population, there is a gene which consists of each joint angle of the robotic
arm, represented as x1, x2, x3 and x4, which are θ1, θ2, θ3 and θ4, respectively. In the robotic
arm model, there are limitations for the angular trajectory of each joint, which create the
searching space for the GA, which is as follows:

− 3.02(rad) ≤ θ1 ≤ 2.89(rad) (21)

− 0.13(rad) ≤ θ2 ≤ 2.16(rad) (22)

− 2.22(rad) ≤ θ3 ≤ 2.05(rad) (23)

− 2.03(rad) ≤ θ4 ≤ 1.87(rad) (24)

θ5 = 1.57(rad) (25)

θ5 is set as 90 degrees and is not included in the design variables because it is assumed that
the gripper is located at last link point down to grab the objects. The first iterations of the
GA are set randomly within the searching space, as demonstrated in Equations (21)–(24).
After the initialization, the objective function is calculated for each gene of the population
for evaluation and sorted in ascending order. The next iterations are created by crossover
and mutation. The crossover enhances the possibilities of finding the most optimum results
by blending the previous iterations as children and parents using the uniform crossover
operator. In addition, mutation is performed to maintain the diversity of the GA [39–41].
The algorithm is continued by the evaluation of each gene by determining the objective
function followed by sorting in ascending order. This trend continues until the maximum
iterations are reached. In the last iteration, because of the ascending sorting, the first gene
is the result of GA and represents the optimum angles of joints which are needed to lead
the endpoint to reach the desired position.

xga = [θ1, θ2, θ3, θ4] (26)

xga is the output of GA which is used to create the range for the initial population of the
PSO, which is shown as follows:

x1,j = rand[xmin, xmax] (27)

where j stands for the number of particles in the first population and rand is the function
used to generate a random value between xmin and xmax, which are the lower and higher
bounds, given as follows [42]:

xmin = xga − r (28)

xmax = xga + r (29)

where r ∈ <1×4 is a random vector between zero and one. After creating the particles
of the first population, the objective function is determined for each particle to evaluate
and sort in descending order. The particles of population for the next iteration are created
as follows:

xi+1,j = xi,j + vi+1,j (30)



Sensors 2021, 21, 3171 7 of 18

where xi+1,j is the particle of the next iteration. vi+1,j ∈ <1×4 is a vector that represents the
velocity and direction of each particle through the particle of the next iteration, which is
shown as follows:

vi+1,j = ωivi,j + c1r(pbest − xi,j)− c2r(gbest − xi,j) (31)

where pbest,i is called the best position, containing the particles that have the minimum
objective function. gbest is the global best, including the particles which are the minimum
of the pbest, which is shown as follows:

gbest = min{pbesti
} i = 1, 2, . . . , imax (32)

where i and imax are the current and maximum number of iterations, respectively. In the
first iteration, after evaluation, the minimum particle is saved as pbest and gbest, and the
velocity is a zero vector.

v1,j = [0, 0, 0, 0] (33)

In Equation (31), ωi is the inertia weight, where its adjustable value for each iteration
is given by the following equation:

ωi+1 = ωdampωi (34)

where ωdamp is the damping value for ω, set as 0.05, and c1 and c2 are coefficients of self
and social recognition, respectively. The value of c1 is greater than c2, and their summation
should remain at 4 in all iterations [43].

c1 = 1.8b + 2.1 (35)

c2 = 1.8a + 0.1 (36)

where, a and b are the ascending and descending gains between zero and one, represented
as follows:

a =
i

imax
i = 1, 2, . . . , imax (37)

b = 1− a (38)

Figure 3 represents the changes of parameters of PSO during all iterations. The initial
values for c1, c2 and ω are 3.9, 0.1 and 1.2, respectively [44].

0 50 100 150 200
0

1

2

3

Iteration

A
m

pl
it

ud
e

c2
c1
ω

Figure 3. Changes in parameters of modified PSO.



Sensors 2021, 21, 3171 8 of 18

After generating each population, the evaluation and sorting of its particles is devel-
oped. This trend is followed until the number of iterations is equal to imax. In this paper,
the size of the population for GA and PSO is 40 and imax is 200 for each. Algorithm 1 and
Figure 4 show the pseudo-code and flow chart of GSO.

Algorithm 1 Pseudo code of GSO

1: Start;
2:
3: Set the target position of the endpoint;
4:
5: Start GA;
6:
7: Initialize the first population randomly;
8:
9: Evaluate initial population;

10:
11: while Number of iterations equal to maximum iteration of GA do;
12:
13: Create new iteration using crossover and mutation;
14:
15: Evaluate the population by determining the objective function;
16:
17: Sort the genes in ascending order;
18:
19: end while
20:
21: Select the first gene of the last iteration as the result;
22:
23: End GA;
24:
25: Start PSO;
26:
27: Initialize particles of the first population of PSO based on GA results;
28:
29: Evaluate the first population;
30:
31: while Number of iterations equal to maximum iteration of PSO do;
32:
33: Create new population;
34:
35: Evaluate the particles of population;
36:
37: Set the minimum particle as the Pbest;
38:
39: Set the minimum Pbest as gbest;
40:
41: end while
42:
43: Establish particle of the gbest as the results;
44:
45: End.



Sensors 2021, 21, 3171 9 of 18

Start

Set the target position

Random initialization
for gene, [θ1, θ2, θ3, θ4]

Evaluation

Sorting

i = iga

No

Creation of
next iteration

Yes

Optimal joint trajectory,
xga

Initialization of PSO
particles, [θ1, θ2, θ3, θ4]

Evaluation

Determination of
pbest & gbest

pbesti
=min{ fobj}

gbest=min{pbesti
}

i = imax

Optimal joint trajectory

as final result

Yes

No

End

Creation of
next iteration

Figure 4. Flow chart of GSO.

4. Control System and Tuning

A closed-loop control system is developed for each joint, and its parameters are
adjusted by GSO to converge by adjusting the required torque toward each joint. The
desired angular trajectory is determined by the IK. Figure 5 demonstrates the control
system of the robotic arm.

In Figure 5, J1(t), J2(t), J3(t) and J4(t) are plants of each joint; (xt, yt, zt) is the desired
position; θd1 , θd2 , θd3 and θd4 are the desired angular trajectory determined by the IK; θa1 ,
θa2 , θa3 and θa4 are the actual angular trajectory for each joint; and e1, e2, e3 and e4 are the
trajectory errors that are the difference between the desired and actual angular trajectory,
given as follows:

ei = θdi
− θai i = 1, 2, 3, 4 (39)



Sensors 2021, 21, 3171 10 of 18

The PID controllers C1(s)-C4(s) for each joint are given as follows:

Ci(t) = KPei(t) + KI

∫
eidt + KD

dei
dt

(40)

The tuning of the PID controller is assumed to be an optimization problem, and its
parameters are defined as design variables. The tuning processes are carried out by the
GSO algorithm, in which the GA starts to optimize the design variables based on random
initial parameters, and subsequently the algorithm is continued by PSO based on the
output of the GA. Initial parameters of the first population are randomly chosen between 0
and 1, given as follows:

x1,j = rand[0, 1] j = 1, ..., jmax (41)

where x is the particle of the PSO and gene of the GA in each population and j and jmax
are the current and maximum number of populations. After setting the initial values for
particles, an evaluation is carried out based on the objective function of tuning, which is
the absolute steady-state error:

f = |θact − θdes| (42)

where θact and θdes are the actual and desired joint trajectory, respectively. θact is measured
from a simulation model in real-time, and θdes is developed by the optimal IK. After
evaluation and sorting in descending order, the particles of the population for next iteration
are generated by mutation and crossover. Whenever the number of iterations meets half of
the maximum iterations, the algorithm is switched to PSO. The searching space of PSO is
limited around the results of the GA to lead the algorithm toward global optima, as follows:

xi,j = [xga −
xga

2
, xga +

xga

2
] (43)

The next populations of PSO are created by the particles of the next iteration. The
algorithm continues until the number of iterations reaches the maximum. The output is an
optimal set for PID parameters.

(xt, yt, zt)
IK

θd1
e1+− C1(t)

T1 J1(t)
θa1

θd2

e2+− C2(t)
T2 J2(t)

θa2

θd3

e3+− C3(t)
T3 J3(t)

θa3

θd4

e4+− C4(t)
T4 J4(t)

θa4

Figure 5. Block diagram of control system for each joint.

5. Results and Discussion

The optimal IK and PSO tuning of controllers was applied in the 3D simulation of a
robotic arm in a 3D environment to simulate robots integrated with ROS [45]. A GUI was
programmed by using Python to run the algorithms and communicate with the simulation



Sensors 2021, 21, 3171 11 of 18

model. In addition, by providing a camera in the Gazebo environment, it was possible to
monitor the results visually and numerically, as shown in Figure 6.

PID parameters

PID tuning box

End-effector postion indicator

IK results indicatorSetting target postion of End-effector

IK solution items

Figure 6. GUI for simulation model.

The desired position for the three different algorithms—i.e., GA, PSO and GSO—could
be selected according to the IK method, and the actual position of end-effector, error of
the actual trajectory and desired trajectory of each joint could be monitored. In addition,
the controller parameters could be tuned in real time and observed. Table 3 compares the
optimal results for GA, PSO and GSO for the IK solution, while fobj is the SSE for various
sets of optimization parameters.

Various sets of parameters were defined to observe the influences of changes in parameters
on the optimization algorithms.

• For GA, set1
ga: crossover = 0.9, mutation = 0.1, population = 40 and generation = 400; set2

ga:
crossover = 0.8, mutation = 0.2, population = 40, and generation = 400; set3

ga: crossover =
0.7, mutation = 0.3, population = 40 and generation = 400;

• For PSO, set1
pso: particles = 20, and generation = 200; set2

pso: particles = 30 and
generation = 300; set3

pso: particles = 40 and generation = 400;
• For GSO, set1

gso: crossover = 0.9, mutation = 0.1, population of GA and particles of
PSO = 40, generation of GA = 300 iteration of PSO = 100, set2

gso: crossover = 0.8, mu-
tation = 0.2, population of GA and particles of PSO = 40, generation of GA = 200
iteration of PSO = 200, set3

gso: crossover = 0.7, mutation = 0.3, population of GA and
particles of PSO = 40, generation of GA = 100 and iteration of PSO = 300.

The mean of fobj for GSO in set3
gso has the lowest fobj of 7.9×10−15, and the maximum

of fobj is 4.99×10−14, which is the nearest value to its mean compared to other results. This
causes the lowest variance of all tests. The mean of the PSO results is lower than GA,
while GSO shows the minimum results, which represents a significant improvement for
the results obtained by the GSO algorithm. This is due to the hybrid of the GA and PSO
algorithms in series; creating the initial values of PSO based on results of the GA increases
accuracy compared to using each algorithm individually. In addition, by increasing the
number of iterations and particles of PSO, GSO and PSO algorithms show improvements
in their results.



Sensors 2021, 21, 3171 12 of 18

Table 3. Numerical analysis for the fobj of GA, PSO and GSO for various sets of parameters.

Runs set1
ga set2

ga set3
ga

GA

1 4.33 × 10−5 1.87 × 10−5 6.12 × 10−7

2 0.0013 4.43 × 10−5 1.6 × 10−5

3 1.24 × 10−5 1.99 × 10−4 5.23 × 10−8

4 1.7 × 10−5 2.05 × 10−5 2.96 × 10−7

5 4.25 × 10−5 2.0 × 10−5 1.76 × 10−5

6 2.43 × 10−5 6.38 × 10−4 3.6 × 10−5

7 3.913 × 10−5 8.19 × 10−5 7.5 × 10−5

8 3.74 × 10−5 6.27 × 10−5 6.65 × 10−5

9 3.95 × 10−5 3.95 × 10−5 1.75 × 10−6

10 1.13 × 10−5 1.13 × 10−5 6.96 × 10−5

Mean 1.54 × 10−4 3.83 × 10−5 2.83 × 10−5

Max 1.3 × 10−3 8.19 × 10−5 7.5 × 10−5

variance 1.61 × 10−7 5.87 × 10−10 9.69 × 10−10

H-value 0.03

Runs set1
pso set2

pso set3
pso

PSO

1 1.14 × 10−6 1.45 × 10−11 6.20 × 10−17

2 5.43 × 10−8 2.2 × 10−6 9.41 × 10−14

3 0.14 × 10−3 6.79 × 10−17 6.79 × 10−17

4 8.57 × 10−5 2.44 × 10−14 1.99 × 10−14

5 2.63 × 10−3 6.2 × 10−17 6.2 × 10−17

6 2.5 × 10−5 1.01 × 10−11 6.2 × 10−17

7 3.33 × 10−6 9.9 × 10−12 1.0 × 10−16

8 7.28 × 10−13 6.24 × 10−10 5.66 × 10−13

9 3.79 × 10−7 5.42 × 10−16 6.2 × 10−17

10 3.68 × 10−8 2.81 × 10−11 6.2 × 10−17

Mean 2.89 × 10−4 2.2 × 10−7 6.8 × 10−14

Max 2.63 × 10−3 2.2 × 10−6 5.66 × 10−13

Variance 6.79 × 10−7 4.83 × 10−13 3.14 × 10−26

H-value 16.07

Runs set1
gso set2

gso set3
gso

GSO

1 8.34 × 10−8 6.2 × 10−17 6.2 × 10−17

2 1.74 × 10−7 3.03 × 10−13 2.37 × 10−16

3 2.7 × 10−13 2.45 × 10−11 1.54 × 10−15

4 1.71 × 10−5 1 × 10−16 6.2 × 10−17

5 7.59 × 10−11 7.85 × 10−17 2.02 × 10−16

6 7.19 × 10−6 6.79 × 10−17 6.2 × 10−17

7 8.1 × 10−4 5.43 × 10−15 2.02 × 10−16

8 6.2 × 10−5 7.76 × 10−16 5.49 × 10−17

9 3.14 × 10−7 6.2 × 10−17 2.67 × 10−14

10 2.87 × 10−12 7.63 × 10−14 4.99 × 10−14

Mean 9.97 × 10−5 2.94 × 10−12 7.9 × 10−15

Max 8.1 × 10−4 2.45 × 10−11 4.99 × 10−14

Variance 7.13 × 10−8 5.98 × 10−23 2.86 × 10−28

H-value 15.84

The H-values were measured by the Kruskal–Wallis method and were 0.03, 16.07 and
15.84 for the GA, PSO and GSO respectively. The test was calculated with the assumption



Sensors 2021, 21, 3171 13 of 18

of α = 0.05; therefore, the critical value for this test was 5.99. Since PSO and GSO had
greater H-values than critical points, there were significant differences among the groups
of fobg calculated by PSO and GSO.

Table 4 represents the computational time in seconds for GA, PSO and GSO, while the
parameters are determined as set3

ga, set3
pso and set3

gso, respectively.

Table 4. Computational time for GA, PSO and GSO in seconds.

Runs GA PSO GSO

1 8.35 (s) 2.46 (s) 3.87 (s)
2 8.18 (s) 2.41 (s) 3.81 (s)
3 8.01 (s) 2.35 (s) 3.83 (s)
4 8.11 (s) 2.40 (s) 3.77 (s)
5 8.09(s) 2.41 (s) 3.45 (s)
6 8.33 (s) 2.36 (s) 3.80 (s)
7 8.26 (s) 2.39 (s) 3.86 (s)
8 8.26 (s) 2.35 (s) 3.54 (s)
9 8.13 (s) 2.37 (s) 3.88 (s)
10 8.38 (s) 2.43 (s) 3.84 (s)

Mean 8.21 (s) 2.39 (s) 3.76 (s)

The mean computational time of PSO was less than GA and GSO by 5.82 s and 1.37 s,
respectively. Although the computational time of PSO was the lowest, the combination of
GA and PSO reduced the computational time consumption significantly compared to GA
by 4.45 s. By considering the value of fobj of GSO in Table 3 and the computational time,
the usage of GSO for IK solution can be seen to have resulted in significant improvements
in accuracy and computational time consumption.

In order to test the IK results solved by GSO in the robotic arm model in the Gazebo
environment, nine desired position coordinates were expressed. Table 5 illustrates the
coordinates of the nine target positions and the angles for each joint.

Table 5. Coordinates and angles of the target points.

Positions Angles

Points Coordinates θ θ2 θ3 θ4

A (0.11,0.25,0.14) 2.41 1.26 1.705 −0.83
B (0.21,0.32,0.22) 2.35 1.37 0.63 −0.029
C (0.12,0.14,0.12) 2.11 1.17 1.21 0.75
D (0.19,0.14,0.05) 2.08 1.58 1.36 −0.95
E (0.19,−0.1,0.5) 1.25 0.3 0.59 1.04
F (0.21,−0.16,0.7) 1.13 0.72 0.07 −1.17
G (0.15,0.1,0.3) 1.94 0.45 1.35 0.93
H (0.14,−0.11,0.14) 1.16 1.49 0.34 1.67
I (0.12,0.15,0.05) 2.15 1.44 1.49 −0.17

Figure 7 shows the objective function fobj for three ways of tuning PID parameters
with 400 iterations, and the parameters of GSO were the same as set3

gso in Table 3.
From the results, it can be observed that GSO converges faster than GA and PSO,

because by establishing the angle of joints for the desired points, the angular trajectories are
exported to the control system and then tuned by GSO. The performance of the closed-loop
control system is validated for each joint, in which the angular trajectories solved by the IK
are set as desired (θdi

). Table 6 represents the tuned PID parameters.



Sensors 2021, 21, 3171 14 of 18

Iteration

f o
bj

(a) Point A

Iteration

f o
bj

(b) Point B

Iteration

f o
bj

(c) Point C

Iteration

f o
bj

(d) Point D
Figure 7. The objective functions over iterations.

Table 6. PID parameters tuned by PSO.

PSO GA GSO
Kp Ki Kd Kp Ki Kd Kp Ki Kd

Joint 1 15.35 34.3233 2.8305 51.2684 175.3676 0.2106 36.2147 295.5165 0.2556
Joint 2 26.8257 25.2366 7.8637 59.9833 173.4063 8.6907 39.5278 242.1184 8.4769
Joint 3 13.3082 15.4017 3.3305 76.2230 160.6402 3.0397 83.4758 175.8795 3.3379
Joint 4 5.4971 6.4876 3.4602 83.6052 189.7420 7.7188 68.0942 183.7764 4.1200

Figure 8 and Table 7 compare the angular trajectories and average errors tuned by
the GA, PSO and GSO while the end-effector moved to the desired positions and its PID
parameters were tuned by the GA, PSO and GSO. Figures 9 and 10 show the error and
angular velocity for each joint while the end-effector tracked points A, B, C, and D.

Table 7. Angular trajectory average error for optimal tuned controllers.

AEGA AEPSO AEGSO

Joint 1 0.0561 0.05871 0.5407
Joint 2 0.0348 0.0313 0.0304
Joint 3 0.0728 0.0794 0.0675
Joint 4 0.0621 0.0605 0.0488

In Figures 8 and 9, overshoot can be observed when the joints are changing trajectories.
In Figure 10, there are fluctuations when there is a change in position of the joints and they
are tracking each point. The rest of the graph levels off at zero. This shows the stability of
the control system, because while joints do not move and are in a stable situation, the joints
do not shake. In Table 7, AEGA, AEPSO and AEGSO are averages of the SSE for GA, PSO
and GSO. The actual trajectory of each joint shows the significant effects of GSO compared



Sensors 2021, 21, 3171 15 of 18

to PSO and the GA due to the initialization of PSO by results of the GA for GSO, which
allows the algorithm to find the global optima more accurately. From AEGA, AEPSO and
AEGSO, it can be concluded that the GSO resulted in a lower value because of its efficiency
in finding precise results and lower chance of becoming trapped in local optima.

(a) Joint 1 (b) Joint 2

(c) Joint 3

−

−

(d) Joint 4
Figure 8. Angular trajectory of each joint.

(a) Joint 1 (b) Joint 2

(c) Joint 3 (d) Joint 4

Figure 9. Angular trajectory error of each joint.



Sensors 2021, 21, 3171 16 of 18

−

−

(a) Joint 1

−

−

(b) Joint 2

−

−

(c) Joint 3

−

−

(d) Joint 4
Figure 10. Angular velocity of each joint.

6. Conclusions

This paper presented a hybrid optimal IK solution of a 5DoF robotic arm to determine
the joint trajectories based on its end-effector position. The Denavit–Hartenberg method
was used to establish the kinematic and was solved by GSO, which is a combination of the
GA and PSO. The trajectories were implemented with PID control as desired trajectories
for each joint. The tuning of PID parameters was presented as optimization problem
and carried out by GSO. A GUI was created to operate and visualize the performance
of the robotic arm in a virtual environment. This method addresses the issue of finding
one-to-many possible solutions of IK for a 5DoF robotic arm to control each joint efficiently
and precisely to determine end-effector positions in Cartesian space.

The results show that GSO has a lower average error for each joint than PSO and GA.
For instance, for joint 4, the average error for one specific path for GSO is 19.33% and 22.7%
less than PSO and the GA, respectively. These results show that initialization particles
for PSO by using the GA can give more accurate results and avoid algorithms becoming
trapped in local optima. In addition, the mean computational time for GSO is lower than
the GA by 4.45 s and higher than PSO by 1.37 s. Therefore, GSO is a sufficient algorithm
for IK solution for robotic arms.

This method can be used for any robotic arms to control their end-effector. The
limitation of this work is that we did not apply the hybrid proposed method to a real
robotic arm. In addition, the target position of the end-effector was chosen by the user.
Therefore, in future work, this position can be issued by sensors such as depth camera or
tag marker measurement algorithms. Furthermore, the proposed IK and control system
developed by the GSO algorithm was validated in the 3D simulation environment of
Gazebo, and the effect of sensor noises was not considered; this can be covered in the
future work. In addition, the proposed method can be tested for applications in which
the accurate position of end-effectors is needed, such as welding, material handling and
thermal spraying or any other industrial applications.

Author Contributions: Conceptualization, M.S.A. and R.R.; methodology, M.S.A. and R.R.; software,
M.S.A.; validation, M.S.A. and R.R.; formal analysis, M.S.A. and R.R.; investigation, M.S.A. and



Sensors 2021, 21, 3171 17 of 18

R.R.; resources, M.S.A.; data curation, M.S.A. and R.R.; writing—original draft preparation, M.S.A.;
writing—review and editing, M.S.A. and R.R.; visualization, M.S.A.; supervision, R.R.; project
administration, R.R.; funding acquisition, R.R.; All authors have read and agreed to the published
version of the manuscript.

Funding: The authors would like to thank Universiti Kebangsaan Malaysia (UKM) and the Ministry
of Higher Education Malaysia for the financial support received under research grants KK-2020-014
and DPK-2020-015.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank Universiti Kebangsaan Malaysia (UKM) and
the Ministry of Higher Education Malaysia for the financial support received under research grants
KK-2020-014 and DPK-2020-015.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jahnavi, K.; Sivraj, P. Teaching and Learning Robotic Arm Model. In Proceedings of the International Conference on Intelligent

Computing, Instrumentation and Control Technologies, Kerala, India, 6–7 July 2017; pp. 1570–1575. [CrossRef]
2. Quiros, A.R.F.; Abad, A.C.; Dadios, E.P. Object Locator and Collector Robotic Arm using Artificial Neural Networks. In

Proceedings of the International Conference on Humanoid, Nanotechnology, Information Technology, Communication and
Control, Environment and Management, HNICEM, Cebu, Philippines, 9–12 December 2016; pp. 200–203. [CrossRef]

3. Pavlovčič, U.; Arko, P.; Jezeršek, M. Simultaneous hand–eye and intrinsic calibration of a laser profilometer mounted on a robot
arm. Sensors 2021, 21, 1037. [CrossRef]

4. Shah, S.K.; Mishra, R.; Ray, L.S. Solution and Validation of Inverse Kinematics using Deep Artificial Neural Network. Mater.
Today Proc. 2020, 26, 1250–1254. [CrossRef]

5. Shirafuji, S.; Ota, J. Kinematic Synthesis of a Serial Robotic Manipulator by Using Generalized Differential Inverse Kinematics.
IEEE Trans. Robot. 2019, 35, 1047–1054. [CrossRef]

6. Sun, P.; Li, Y.B.; Wang, Z.; Chen, K.; Chen, B.; Zeng, X.; Zhao, J.; Yue, Y. Inverse displacement analysis of a novel hybrid humanoid
robotic arm. Mech. Mach. Theory 2020, 147, 103743. [CrossRef]

7. Megalingam, R.K.; Boddupalli, S.; Apuroop, K.G.S. Robotic Arm Control through Mimicking of Miniature Robotic Arm. In
Proceedings of the 4th International Conference on Advanced Computing and Communication Systems, ICACCS, Coimbatore,
India, 6–7 January 2017; pp. 4–10. [CrossRef]

8. Xu, Y.; Ding, C.; Shu, X.; Gui, K.; Bezsudnova, Y.; Sheng, X.; Zhang, D. Shared control of a robotic arm using non-invasive
brain–computer interface and computer vision guidance. Robot. Auton. Syst. 2019, 115, 121–129. [CrossRef]

9. Fang, B.; Ma, X.; Wang, J.; Sun, F. Vision-based posture-consistent teleoperation of robotic arm using multi-stage deep neural
network. Robot. Auton. Syst. 2020, 131, 103592. [CrossRef]

10. Narayan, J.; Mishra, S.; Jaiswal, G.; Dwivedy, S.K. Novel design and kinematic analysis of a 5-DOFs robotic arm with three-
fingered gripper for physical therapy. Mater. Today Proc. 2020, 28, 2121–2132. [CrossRef]

11. Ye, H.; Wang, D.; Wu, J.; Yue, Y.; Zhou, Y. Forward and inverse kinematics of a 5-DOF hybrid robot for composite material
machining. Robot. Comput. Integr. Manuf. 2020, 65, 101961. [CrossRef]

12. Wei, H.; Bu, Y.; Zhu, Z. Robotic arm controlling based on a spiking neural circuit and synaptic plasticity. Biomed. Signal Process.
Control 2020, 55, 101640. [CrossRef]

13. Ren, H.; Ben-Tzvi, P. Learning Inverse Kinematics and Dynamics of a Robotic Manipulator using Generative Adversarial
Networks. Robot. Auton. Syst. 2020, 124, 103386. [CrossRef]

14. Kang, M.; Shin, H.; Kim, D.; Yoon, S.E. TORM: Fast and accurate trajectory optimization of redundant manipulator given an
end-effector path. IEEE Int. Conf. Intell. Robot. Syst. 2020. [CrossRef]

15. Jin, M.; Liu, Q.; Wang, B.; Liu, H. An Efficient and Accurate Inverse Kinematics for 7-DOF Redundant Manipulators Based on a
Hybrid of Analytical and Numerical Method. IEEE Access 2020, 8, 16316–16330. [CrossRef]

16. Cao, Y.; Gan, Y.; Dai, X. Kinematic Optimization of Redundant Manipulators to Improve the Fault-Tolerant Control. In
Proceedings of the 31st Chinese Control and Decision Conference, Nanchang, China, 3–5 June 2019, [CrossRef]

17. Starke, S.; Hendrich, N.; Zhang, J. Memetic Evolution for Generic Full-Body Inverse Kinematics in Robotics and Animation. IEEE
Trans. Evol. Comput. 2019, 23, 406–420. [CrossRef]

18. Jamali, B.; Rasekh, M.; Jamadi, F.; Gandomkar, R.; Makiabadi, F. Using PSO-GA algorithm for training artificial neural network to
forecast solar space heating system parameters. Appl. Therm. Eng. 2019, 147, 647–660. [CrossRef]

19. Chen, Q.; Chen, Y.; Jiang, W. Genetic particle swarm optimization–based feature selection for very-high-resolution remotely
sensed imagery object change detection. Sensors 2016, 16, 1024. [CrossRef]

http://doi.org/10.1109/ICICICT1.2017.8342804
http://dx.doi.org/10.1109/HNICEM.2015.7393209
http://dx.doi.org/10.3390/s21041037
http://dx.doi.org/10.1016/j.matpr.2020.02.250
http://dx.doi.org/10.1109/TRO.2019.2907810
http://dx.doi.org/10.1016/j.mechmachtheory.2019.103743
http://dx.doi.org/10.1109/ICACCS.2017.8014622
http://dx.doi.org/10.1016/j.robot.2019.02.014
http://dx.doi.org/10.1016/j.robot.2020.103592
http://dx.doi.org/10.1016/j.matpr.2020.04.017
http://dx.doi.org/10.1016/j.rcim.2020.101961
http://dx.doi.org/10.1016/j.bspc.2019.101640
http://dx.doi.org/10.1016/j.robot.2019.103386
http://dx.doi.org/10.1109/IROS45743.2020.9341358
http://dx.doi.org/10.1109/ACCESS.2020.2966768
http://dx.doi.org/10.1109/CCDC.2019.8833321
http://dx.doi.org/10.1109/TEVC.2018.2867601
http://dx.doi.org/10.1016/j.applthermaleng.2018.10.070
http://dx.doi.org/10.3390/s16081204


Sensors 2021, 21, 3171 18 of 18

20. Ajmi, N.; Helali, A.; Lorenz, P.; Mghaieth, R. MWCSGA—Multi Weight Chicken Swarm Based Genetic Algorithm for Energy
Efficient Clustered Wireless Sensor Network. Sensors 2021, 21, 791. [CrossRef]

21. Dziwinski, P.; Bartczuk, L. A New Hybrid Particle Swarm Optimization and Genetic Algorithm Method Controlled by Fuzzy
Logic. IEEE Trans. Fuzzy Syst. 2020, 28, 1140–1154. [CrossRef]

22. Farnad, B.; Jafarian, A.; Baleanu, D. A new hybrid algorithm for continuous optimization problem. Appl. Math. Model. 2018,
55, 652–673. [CrossRef]

23. Mahmud, M.; Motakabber, S.; Zahirul Alam, A.H.; Nordin, A.N. Adaptive PID Controller Using for Speed Control of the
BLDC Motor. In Proceedings of the IEEE International Conference on Semiconductor Electronics, Kuala Lumpur, Malaysia,
28–29 July 2020; pp. 168–171. [CrossRef]

24. Misaghi, M.; Yaghoobi, M. Improved invasive weed optimization algorithm (IWO) based on chaos theory for optimal design of
PID controller. J. Comput. Des. Eng. 2019, 6, 284–295. [CrossRef]

25. Amiri, M.S.; Ramli, R.; Ibrahim, M.F. Initialized Model Reference Adaptive Control for Lower Limb Exoskeleton. IEEE Access
2019, 7, 167210–167220. [CrossRef]

26. Castillo-Zamora, J.J.; Camarillo-GóMez, K.A.; Perez-Soto, G.I.; Rodriguez-Resendiz, J. Comparison of PD, PID and Sliding-Mode
Position Controllers for V-Tail Quadcopter Stability. IEEE Access 2018, 6, 38086–38096. [CrossRef]

27. Demirel, B.; Ghadimi, E.; Quevedo, D.Q.; Johansson, M. Optimal Control of Linear Systems with Limited Control Actions:
Threshold-Based Event-Triggered Control. IEEE Trans. Control. Netw. Syst. 2018, 5, 1275–1286. [CrossRef]

28. Ma, Z.; Yan, Z.; Shaltout, M.L.; Chen, D. Optimal Real-Time Control of Wind Turbine During Partial Load Operation. IEEE Trans.
Control. Syst. Technol. 2015, 23, 2216–2226. [CrossRef]

29. Belkadi, A.; Oulhadj, H.; Touati, Y.; Khan, S.A.; Daachi, B. On the robust PID adaptive controller for exoskeletons: A particle
swarm optimization based approach. Appl. Soft Comput. 2017, 60, 87–100. [CrossRef]

30. Phu, D.X.; Mien, V.; Tu, P.H.T.; Nguyen, N.P.; Choi, S.B. A New Optimal Sliding Mode Controller with Adjustable Gains based on
Bolza-Meyer Criterion for Vibration Control. J. Sound Vib. 2020, 485, 115542. [CrossRef]

31. Suhaimin, S.C.; Azmi, N.L.; Rahman, M.M.; Yusof, H.M. Analysis of Point-to-Point Robotic Arm Control using PID Controller. In
Proceedings of the 7th International Conference on Mechatronics Engineering, ICOM, Putrajaya, Malaysia, 30–31 October 2019;
pp. 5–10. [CrossRef]

32. Kang, S.; Chou, W. Kinematic Analysis, Simulation and Manipulating of a 5-DOF Robotic Manipulator for Service Robot. In
Proceedings of the 2019 IEEE International Conference on Mechatronics and Automation, Tianjin, China, 4–7 August 2019;
pp. 643–649. [CrossRef]

33. Mukherjee, S.; Goswami, D.; Chatterjee, S. A Lagrangian Approach to Modeling and Analysis of a Crowd Dynamics. IEEE Trans.
Syst. Man Cybern. Syst. 2015, 45, 865–876. [CrossRef]

34. Wu, J.; Gao, J.; Song, R.; Li, R.; Li, Y.; Jiang, L. The design and control of a 3DOF lower limb rehabilitation robot. Mechatronics
2016, 33, 13–22. [CrossRef]

35. Sun, J.D.; Cao, G.Z.; Li, W.B.; Liang, Y.X.; Huang, S.D. Analytical inverse kinematic solution using the D-H method for a
6-DOF robot. In Proceedings of the 14th International Conference on Ubiquitous Robots and Ambient Intelligence, Jeju, Korea,
28 June–1 July 2017; pp. 714–716. [CrossRef]

36. Al-Oqaily, A.T.; Shakah, G. Solving Non-Linear Optimization Problems Using Parallel Genetic Algorithm. In Proceedings of the
8th International Conference on Computer Science and Information Technology, Amman, Jordan, 11–12 July 2018; pp. 103–106.
[CrossRef]

37. Amiri, M.S.; Ramli, R.; Ibrahim, M.F. Optimal parameter estimation for a DC motor using genetic algorithm. Int. J. Power Electron.
Drive Syst. (IJPEDS) 2020, 11, 1047–1054. [CrossRef]

38. Xu, S. Predicted Residual Error Sum of Squares of Mixed Models: An Application for Genomic Prediction. G3 Genes Genomes
Genet. 2017, 7, 895–909. [CrossRef]

39. Rayno, J.; Iskander, M.F.; Kobayashi, M.H. Hybrid Genetic Programming with Accelerating Genetic Algorithm Optimizer for 3-D
Metamaterial Design. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1743–1746. [CrossRef]

40. Cheng, Y.F.; Shao, W.; Zhang, S.J.; Li, Y.P. An Improved Multi-Objective Genetic Algorithm for Large Planar Array Thinning.
IEEE Trans. Magn. 2016, 52, 1–4. [CrossRef]

41. Amiri, M.S.; Ramli, R.; Ibrahim, M.F. Genetically optimized parameter estimation of mathematical model for multi-joints
hip–knee exoskeleton. Robot. Auton. Syst. 2020, 125, 103425. [CrossRef]

42. Amiri, M.S.; Ramli, R.; Ibrahim, M.F. Hybrid design of PID controller for four DoF lower limb exoskeleton. Appl. Math. Model.
2019, 72, 17–27. [CrossRef]

43. Sumathi, S.; Paneerselvam, S. Computational Intelligence Paradigms Theory and Applications, 1st ed.; CRC Press: Boca Raton, FL,
USA, 2010. [CrossRef]

44. Amiri, M.S.; Ramli, R.; Ibrahim, M.F.; Wahab, D.A.; Aliman, N. Adaptive Particle Swarm Optimization of PID Gain Tuning for
Lower-Limb Human Exoskeleton in Virtual Environment. Mathematics 2020, 8, 2040. [CrossRef]

45. Amiri, M.S.; Ramli, R.; Tarmizi, M.A.A.; Ibrahim, M.F.; Danesh Narooei, K. Simulation and Control of a Six Degree of Freedom
Lower Limb Exoskeleton. J. Kejuruter. 2020, 32, 197–204. [CrossRef]

http://dx.doi.org/10.3390/s21030791
http://dx.doi.org/10.1109/TFUZZ.2019.2957263
http://dx.doi.org/10.1016/j.apm.2017.10.001
http://dx.doi.org/10.1109/ICSE49846.2020.9166883
http://dx.doi.org/10.1016/j.jcde.2019.01.001
http://dx.doi.org/10.1109/ACCESS.2019.2954110
http://dx.doi.org/10.1109/ACCESS.2018.2851223
http://dx.doi.org/10.1109/TCNS.2017.2701003
http://dx.doi.org/10.1109/TCST.2015.2410735
http://dx.doi.org/10.1016/j.asoc.2017.06.012
http://dx.doi.org/10.1016/j.jsv.2020.115542
http://dx.doi.org/10.1109/ICOM47790.2019.8952036
http://dx.doi.org/10.1109/ICMA.2019.8816413
http://dx.doi.org/10.1109/TSMC.2015.2389763
http://dx.doi.org/10.1016/j.mechatronics.2015.11.010
http://dx.doi.org/10.1109/URAI.2017.7992807
http://dx.doi.org/10.1109/CSIT.2018.8486176
http://dx.doi.org/10.11591/ijpeds.v11.i2.pp1047-1054
http://dx.doi.org/10.1534/g3.116.038059
http://dx.doi.org/10.1109/LAWP.2016.2531721
http://dx.doi.org/10.1109/TMAG.2015.2481883
http://dx.doi.org/10.1016/j.robot.2020.103425
http://dx.doi.org/10.1016/j.apm.2019.03.002
http://dx.doi.org/10.1201/9781439809037
http://dx.doi.org/10.3390/math8112040
http://dx.doi.org/10.17576/jkukm-2020-32(2)-03

	Introduction
	Dynamic and Kinematic Model
	Optimal Inverse Kinematic
	Control System and Tuning
	Results and Discussion
	Conclusions
	References

