
Contents lists available at ScienceDirect

NeuroImage: Clinical

journal homepage: www.elsevier.com/locate/ynicl

Functional connectivity markers of depression in advanced Parkinson's
disease

Hai Lina,b,c,1, Xiaodong Caia,c,1, Doudou Zhanga,c, Jiali Liua,c, Peng Naa,b,c, Weiping Lib,c,⁎

a Department of Functional Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
b Brain Centre, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong,
China
c School of Medicine, Shenzhen University, Shenzhen, Guangdong, China

A R T I C L E I N F O

Keywords:
Parkinson's disease
Depression
Resting-state fMRI
Intrinsic connectivity network
Functional connectivity

A B S T R A C T

Background: Depression is a common comorbid condition in Parkinson's disease and a major contributor to poor
quality of life. Despite this, depression in PD is under-diagnosed due to overlapping symptoms and difficulties in
the assessment of depression in cognitively impaired old patients.
Objectives: This study is to explore functional connectivity markers of depression in PD patients using resting-
state fMRI and help diagnose whether patients have depression or not.
Methods: We reviewed 156 advanced PD patients (duration > 5 years; 59 depressed ones) and 45 healthy
control subjects who underwent a resting-state fMRI scanning. Functional connectivity analysis was employed to
characterize intrinsic connectivity networks using group independent component analysis and extract con-
nectivity features. Features were put into an all-relevant feature selection procedure within cross-validation
loops, to identify features with significant discriminative power for classification. Random forest classifiers were
built for depression diagnosis, on the basis of identified features.
Results: 42 intrinsic connectivity networks were identified and arranged into subcortical, auditory, somato-
motor, visual, cognitive control, default-mode and cerebellar networks. Six features were significantly relevant
to classification. They were connectivity within posterior cingulate cortex, within insula, between posterior
cingulate cortex and insula/hippocampus+amygdala, between insula and precuneus, and between superior
parietal lobule and medial prefrontal cortex. The mean accuracy achieved with classifiers to discriminate de-
pressed patients from the non-depressed was 82.4%.
Conclusions: Our findings provide preliminary evidence that resting-state functional connectivity can char-
acterize depressed PD patients and help distinguish them from non-depressed ones.

1. Introduction

Parkinson's disease (PD) is the second most common neurodegen-
erative disorder characterized by the clinical tetrad of motor dysfunc-
tion, including resting tremor, rigidity, akinesia (bradykinesia) and
postural instability (Jankovic, 2008). Besides predominant motor
symptoms, a wide range of non-motor symptoms (NMS) is highly pre-
valent in PD patients. Depression is one of the most common NMS,
occurring in around 35% of patients (Reijnders et al., 2008). Although
depression is also a common symptom of other illnesses and often oc-
curs in elderly population without PD, it's suggested by some evidence
that depression is more frequent in PD patients than in general persons

with the same age or patients with other chronic and disabling diseases,
such as diabetes (Nilsson et al., 2002). Along with the progression of
PD, depression has been associated with reduced functioning, cognitive
impairment and increased stress, which greatly contribute to the poor
quality of life for PD patients (Wang et al., 2013). Despite of its great
impact, the neural basis of depression in PD is still not well understood
and research is underway to investigate brain abnormalities underlying
depressive symptoms as well as to assist clinical diagnosis on the basis
of identified markers.

Modern imaging methods, including PET and MRI, have provided
useful tools to explore brain differences between PD patients with and
without depression. Within the last few years, neuroimaging reports
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have provided evidence that depression was the result of regional ab-
normalities in the prefrontal cortex, the basal ganglia and the limbic
system (including the thalamus, ventral striatum, amygdala, insula and
cingulate cortex), which were modulated by the neurotransmitter sys-
tems of dopaminergic, serotoninergic, cholinergic and noradrenergic
(Remy et al., 2005; Etkin et al., 2011; Ballanger et al., 2012). Specifi-
cally in a PET study investigating depression in PD, the decrease of
serotonin 1A receptor availability was exhibited in the right insula, left
hippocampus, left superior temporal cortex and orbitofrontal cortex of
patients with depression, compared to those without depression
(Ballanger et al., 2012). Moreover, increased gray matter volume in
bilateral mediodorsal thalamic nuclei was found in depressed PD pa-
tients by voxel-based morphometry (Cardoso et al., 2009).

In addition to the regional abnormalities, depression in PD was also
related to network differences (Sheng et al., 2014; Luo et al., 2014;
Lou et al., 2015; Hu et al., 2015). Resting-state functional MRI (rs-fMRI)
can characterize spontaneous brain activity and identify brain networks
with co-varied patterns, which make it a powerful technique to examine
network abnormalities associated with depression in PD patients
without performing any specific task. In a rs-fMRI study analyzing the
amplitude of low-frequency fluctuations and functional connectivity
(FC) in the whole brain, depressed PD patients were characterized by
increased regional spontaneous neural activity in the orbitofrontal area
and decreased functional integration within the prefrontal-limbic net-
work, compared to non-depressed patients and healthy controls
(Luo et al., 2014). Lou et al. (2015) showed that depressed PD patients
had decreased FC in the left dorsolateral prefrontal cortex and right
superior temporal gyrus, and increased FC in the right posterior cin-
gulate cortex (PCC), in comparison to non-depressed patients. In ad-
dition, the FC in the PCC was negatively correlated with depression
scores. However, these regional and network abnormalities were found
in PD patients from a small cohort. With sufficient number of patients,
classifiers can be constructed to distinguish between depressed and
non-depressed patients, which potentially help depression diagnosis in
PD patients.

In this study, we collected rs-fMRI data from advanced PD patients
(PD duration > 5 years) and healthy control subjects in our cohort. To
investigate the relationship between the whole-brain functional con-
nectivity and depression, we extracted FC features based on the patient-
specific intrinsic connectivity networks, and identified all the features
with significant discriminative power for depression diagnosis under
the combination of random forest model and cross validation, which

might advance our understanding for the neural substrates of depres-
sion in PD.

2. Materials and methods

2.1. Participants and clinical assessment

According to the UK Parkinson's Disease Brain Bank criteria
(Hughes et al., 1992), advanced idiopathic PD patients (PD duration >
5 years) were consecutively recruited from the Department of Func-
tional Neurosurgery, Shenzhen Second People's Hospital between
March 2014 and October 2018. Participants were excluded if they were:
(a) having cerebrovascular disorders, including a history of head injury,
a previous stroke, a history of seizure, intracranial mass, hydro-
cephalus, previous neurological surgery and other neurological dis-
eases; (b) having psychiatric diseases other than depression; (c) treated
with antidepressants or other psychiatric therapy; (d) having excessive
head movement (mean absolute displacement > 3.5 mm) during MRI
scanning. After screening, a total of 156 PD patients were enrolled into
the study. 59 of them were diagnosed to have depression according to
the Diagnostic and Statistical Manual of Mental Disorders, 4th edition
(DSM-IV) criteria (Starkstein et al., 2011) by an experienced psychia-
trist. 45 healthy, age- and sex-matched participants who did not have
any neurological or psychiatric disorders were included as healthy
controls. This study was approved by the local ethics committee of our
hospital for human research. All participants were fully informed about
the purpose and procedures of the study, and provided written in-
formed consent before enrollment.

The motor and non-motor symptoms of patients were assessed by an
experienced clinical neurologist using multiple rating scales when
medication off, including the Unified Parkinson's Disease Rating Scale
part III (UPDRS-III), the 24-item Hamilton Depression Rating Scale
(HDRS), the Beck Depression Inventory (BDI), the Montreal Cognitive
Assessment Scale (MoCA), the Mini-Mental State Examination (MMSE)
and the Pittsburgh Sleep Quality Index (PSQI).

2.2. MRI dataset acquisition and preprocessing

Scanning was performed on a 3T MRI system (Prisma, Siemens,
Erlangen, Germany) using a 32-channel head coil. Patients were
scanned more than 12 h after the withdrawal of their dopaminergic
medications in a clinically defined “off-state”. The protocol included

Table 1
The demographic and clinical information of all participants.

D-PD (n = 59) ND-PD (n = 97) HC (n = 45) P value
Age (years) 57.6 ± 10.7 (41 - 75) 61.2 ± 9.5 (44 - 79) 59.4 ± 10.0 (45 - 75) 0.092*,a

Sex (M/FM) 28/31 51/46 24/21 0.77†

PD duration (years) 9.5 ± 2.9 (5 - 14) 7.8 ± 2.4 (5 - 12) NA 0.001‡

LEDD 1056.4 ± 483.6 (250 - 1750) 1004.8 ± 452.9 (250 - 1750) NA 0.43‡

UPDRS III 46.4 ± 15.2 (30 - 81) 44.6 ± 13.5 (23.5 - 76) NA 0.48‡

HDRS 24.1 ± 10.5 (12 - 54) 13.9 ± 6.7 (2 - 24) 6.7 ± 4.6 (0 - 15) < 0.001*,b

BDI 21.5 ± 11.1 (9 - 48) 8.1 ± 6.2 (2 - 20) 4.9 ± 3.5 (0 - 12) < 0.001*,b

PSQI 15.7 ± 8.4 (4 - 34) 14.2 ± 7.6 (2 - 32) 12.7 ± 6.7 (1 - 26) 0.14*,a

MoCA 23.1 ± 5.4 (14 - 30) 24.2 ± 4.6 (15 - 30) 26.9 ± 2.4 (26 - 30) < 0.001*,c

MMSE 26.9 ± 3.1 (20 - 30) 27.6 ± 2.8 (22 - 30) 28.2 ± 2.1 (26 - 30) 0.065*,a

BDI = Beck Depression Inventory, D-PD = depressed PD, FM = female, HC = healthy controls, HDRS = Hamilton Depression Rating Scale, LEDD = levodopa
equivalent daily dose, M = male, MMSE = Mini-Mental State Examination, MoCA = Montreal Cognitive Assessment Scale, NA = not applicable, ND-PD = non-
depressed PD, PSQI = Pittsburgh Sleep Quality Index, UPDRS III = Unified Parkinson's Disease Rating Scale part III.
Values are represented as the mean± standard deviation with the range in parentheses, except for the gender distribution. For comparisons of demographic and
clinical characteristics:.

⁎ P values were calculated with One-way ANOVA tests.
† P value was obtained using a chi-squared test.
‡ P values were calculated with two-tailed t tests.
a Post-hoc paired comparisons showed no significant differences between each two of the three groups.
b Post-hoc paired comparisons showed significant differences between each two of the three groups.
c Post-hoc paired comparisons showed significant differences between D-PD and HC, and between ND-PD and HC. P < 0.05 was considered significant.
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high-resolution T1-weighted MR images and rs-fMRI images (EPI, re-
solution 3 × 3× 3.5 mm3, TE/TR = 28 ms/2000 ms, 240 vol in 8 min,
eyes closed).

The preprocessing of rs-fMRI data as performed in FSL
(Jenkinson et al., 2012), included brain extraction, slice timing cor-
rection, rigid-body motion correction, spatial smoothing using a Gaus-
sian kernel of FWHM of 6 mm, and high-pass temporal filtering of
150 s. 24 motion parameters of each participant, derived from the six
rigid-body parameter time series, were extracted for subsequent motion
artifact removal. They consisted of the six rigid-body parameter time
series, the backward-looking temporal derivatives, and the squares of

the twelve resulting regressors. Using the MELODIC tool in FSL, Single-
subject probabilistic independent component analysis (ICA) was per-
formed with automated dimensionality estimation for ICA-based arti-
fact removal (Beckmann and Smith, 2004).

To remove the effects of motion, non-neural physiology, scanner
artifacts and other confounds, we used the tool of FMRIB's ICA-based
Xnoiserfier – FIX (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014)
for noise cleaning. The FIX employed machine learning approaches to
classify the single-subject ICA results of rs-fMRI data into ‘good’ and
‘bad’ components, respectively. First, the FIX was trained on the ran-
domly chosen sample of 50 participants in our cohort by an experienced
imaging expert, which obtained an accuracy of 95.6% true-positive
ratio and 88.1% true-negative ratio at a leave-one-out test. After
training, FIX automatically classified the ICA output of all the partici-
pants into ‘good’ and ‘bad’ components. 53.2 ± 14.9% of components
were classified as ‘bad’ components and removed for all participants
(49.5 ± 11.8% of the total variance). And then, the bad components
and motion confounds with 24 motion parameters were regressed out
from the preprocessed rs-fMRI data. After noise cleaning, the level of
motion-related noise in term of the mean absolute displacement was
significantly reduced in rs-fMRI data (p values < 0.001 for both PD
patients and healthy controls). However, the mean absolute displace-
ment of PD patients still significantly differed from that of healthy
controls (p < 0.01). No difference was revealed between depressed and
non-depressed patients (p > 0.1).

2.3. The creation of patient-specific ICN template

A patient-specific template of intrinsic connectivity network (ICN)
was created by group-ICA from temporally concatenating data of all the
patients. The group-ICA was performed using the MELODIC tool, with
the number of components set to 100. By visual inspection, an in-
dependent component was categorized as an artifact when it had the
following characteristics: 1) low spatial overlap with gray matter or
high spatial overlap with the sagittal sinus, white matter, cerebrospinal
fluid or brain's boundary in structural templates, 2) a large number of
small clusters, 3) large high-frequency (> 0.1 Hz) power in the time-
course spectrum, and 4) the time series was bimodal or had sharp peaks
or large jumps (Smith et al., 2013; Salimi-Khorshidi et al., 2014).
Moreover, the component was not categorized as signal if it was driven
by a single outlier subject (Pyka et al., 2009). With the template, the
approach of dual regression (Filippini et al., 2009) was used to identify
individual time courses and the associated spatial maps of all the ICNs
for all participants.

2.4. The extraction of depression-related FC features

After dual regression, FC features including within-ICN and be-
tween-ICN connectivity strength were extracted for each participant.
The within-ICN connectivity strength was computed to be the average
value of the spatial map with z-score for each ICN. The between-ICN
connectivity strength was estimated from the covariance matrix with
the individual time courses of all the ICNs. The covariance was calcu-
lated from the regularized precision matrix using the graphical LASSO
method (Friedman et al., 2008), placing a penalty on the L1 norm of the
precision matrix to promote sparsity with the regularization parameter
λ set to 0.1. After Fisher transformation, a between-network con-
nectivity matrix was obtained for each participant.

To identify features with significant discriminative power for de-
pression diagnosis, FC features were put into an all-relevant feature
selection procedure within cross-validation loops using the random
forest algorithm (Supplementary Fig. 1), as described in a previous
study (Sun et al., 2017). All PD patients were divided into two groups:
patients with and without depression. The selection procedure was
embedded in a repeated 10-fold cross-validation framework (repeated
100 times) to obtain unbiased estimates of classification error. For each

Fig. 1. Spatial maps of the 42 ICNs in the patient-specific template and FC
features including within-ICN and between-ICN connectivity strength. (A) 42
ICNs being arranged into subcortical (SC), auditory (AUD), somatomotor (SM),
visual (VIS), cognitive control (CC), default-mode (DM) and cerebellar (CB)
networks. Each color in a sub-network represents a different ICN. (B) The dis-
tribution of within-ICN connectivity strength (z-score) among patients. Each
colored line corresponds to a different patient. (C) The FC strength between
each two ICNs, averaged over patients and inverse Fisher transformed for dis-
play.
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iteration, a random forest classifier was constructed on the training set
using the randomForest package (Svetnik et al., 2003) in Matlab
(MathWorks, Natick, Massachusetts, USA). The performance of the
classifier was evaluated on the validation set. Among all iterations,
different subsets of features were selected on the basis of different folds.
The selection frequency of each feature was defined as the number of
iterations in which the feature was selected divided by the total number
of iterations. Features with significantly higher selection frequency than
random values defined by permutation test (permuted 1000 times;
Sun et al., 2017) were identified as depression-related selections, with p
value < 0.05 after false discovery rate (FDR) correction for multiple
comparisons (Benjamini and Hochberg, 1995).

3. Results

3.1. Demographic characteristics and clinical assessment

The demographic characteristics and clinical assessment of all par-
ticipants were listed in Table 1. There were no significant differences in
age, sex, PDQI or MMSE among depressed patients, non-depressed pa-
tients and healthy controls (one-way ANOVA tests, p values > 0.05).
Depressed and non-depressed patients showed significant differences
only in PD duration, HDRS and BDI scores (two-tailed t tests, p values
< 0.05), which implied that we could identify functional connectivity
markers for depression and ignore some other factors including motor
symptoms (UPDRS-III), sleep disorders (PSQI) and cognition

Fig. 2. Six identified FC features using the all-
relevant feature selection algorithm. These
features were FC within insula (A), within PCC
(B), between insula and precuneus (C), be-
tween PCC and hippocampus+amygdala (D),
between insula and PCC (E), and between SPL
and mPFC (F). They showed significant differ-
ences between depressed and non-depressed
patients. Compared to the healthy controls,
these six features were significantly different in
depressed patients and three of them (FC
within PCC, between PCC and hippocampus
+amygdala, and between SPL and mPFC) were
significantly different in non-depressed pa-
tients, after regarding the mean absolute dis-
placement and MoCA score as covariates.
Statistical significance is indicated by asterisks
(***, p < 0.001; **, p < 0.01). D-PD: de-
pressed PD, HC: healthy controls, ND-PD: non-
depressed PD.

Table 2
Significantly relevant FC features to discriminate depressed and non-depressed PD patients.

Selection Frequency (%)* Feature Description D-PD ND-PD HC
91.1 FC within PCC (ICN14) 2.63 ± 0.03 2.31 ± 0.02 2.22 ± 0.02
90.3 FC between insula (ICN17) and PCC (ICN14) −0.25 ± 0.16 −0.56 ± 0.31 −0.46 ± 0.28
88.4 FC between insula (ICN17) and precuneus (ICN35) −0.27 ± 0.23 −0.47 ± 0.33 −0.42 ± 0.31
86.1 FC within insula (ICN17) 2.25 ± 0.02 2.56 ± 0.02 2.64 ± 0.03
82.1 FC between PCC (ICN14) and hippocampus+amygdala (ICN47) −0.39 ± 0.23 −0.24 ± 0.22 −0.11 ± 0.10
80.7 FC between SPL (ICN15) and mPFC (ICN27) 0.34 ± 0.21 0.22 ± 0.16 0.11 ± 0.09

D-PD = depressed PD, FC = functional connectivity, HC = healthy controls, mPFC = medial prefrontal cortex, ND-PD = non-depressed PD, PCC = posterior
cingulate cortex, SPL = superior parietal lobule.
Values are represented as the mean± standard deviation, except for the selection frequency.

⁎ Defined as the number of iterations in which the feature was selected divided by the total number of iterations performed.
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impairment (MoCA and MMSE).

3.2. Patient-specific ICN template and FC features

42 ICNs in the patient-specific template were identified and ar-
ranged into subcortical (SC; 3 ICNs), auditory (AUD; 2 ICNs), somato-
motor (SM; 6 ICNs), visual (VIS; 8 ICNs), cognitive control (CC; 11
ICNs), default-mode (DM; 9 ICNs) and cerebellar (CB; 3 ICNs) networks,
on the basis of their anatomical and presumed functional properties
(Fig. 1A). FC features consisted of within-ICN and between-ICN con-
nectivity strength. Fig. 1B displays the distribution of within-ICN con-
nectivity strength among patients and Fig. 1C shows the FC strength
between each two ICNs, averaged over patients and inverse Fisher
transformed. The arrangement of ICNs was manually reordered based
on network categories to optimize modularity and diagonal structure in
Fig. 1C, using the Brain Connectivity Toolbox (http://www.brain-
connectivity-toolbox.net/).

3.3. The performance of random forest classifiers

In constructing and evaluating the classifiers to discriminate de-
pressed patients from the non-depressed, we repeated 100 times of 10-
fold cross validation, which resulted in a total of 1000 training-testing
cycles. The accuracy and Cohen's kappa coefficient of the random forest

classifiers were 82.4 ± 5.1% and 0.61 ± 0.17, with features from the
all-relevant feature selection procedure. The corresponding sensitivity
and specificity were 78.5 ± 6.3% and 86.1 ± 7.2%, respectively.

3.4. Significantly relevant FC features

After the feature selection was embedded into the 10-fold cross-
validation procedure, a total of 1000 feature subsets were created for
each random forest classifier. In the construction of the classifier dis-
criminating between PD patients with and without depression, the
mean number of features in each subset was 9.8 (range from 5 to 14;
0.55%−1.55% of all features). Six features (Fig. 2) were identified to
be significantly relevant to classification by the permutation test
(Table 2). These six features were FC within PCC, within insula, be-
tween insula and PCC, between insula and precuneus, between PCC and
hippocampus+amygdala, and between superior parietal lobule (SPL)
and medial prefrontal cortex (mPFC). Moreover, They showed sig-
nificant differences between depressed and non-depressed patients (all
p values < 0.01, after FDR correction; Fig. 2 and Table 2). And sig-
nificant correlations were revealed between these features and de-
pression scores (HDRS and BDI) in all patients (all p values < 0.001,
after FDR correction; Fig. 3).

Compared to the healthy controls, these six features were sig-
nificantly different in depressed patients and three of them (FC within

Fig. 3. Correlations between depression-related features and depression scores in all patients. Significant correlations were revealed between six identified FC
features and depression scores (HDRS, in green, and BDI, in blue; all p values < 0.001, after FDR correction). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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PCC, between PCC and hippocampus+amygdala, and between SPL and
mPFC) were significantly different in non-depressed patients (ANCOVA
tests, p values < 0.05; Fig. 2), after regarding the mean absolute dis-
placement and MoCA score as covariates to consider the difference in
the level of head motion during MRI scanning.

4. Discussion

In brief, our study indicated that resting-state functional con-
nectivity, based on the patient-specific template, could characterize
depression in PD and help diagnose whether advanced PD patients had
depression or not. Six functional connectivity markers of depression
were identified and listed as follows: FC within PCC, within insula,
between insula and PCC, between insula and precuneus, between PCC
and hippocampus+amygdala, and between SPL and mPFC. The mean
accuracy of random forest classifiers to discriminate depressed patients
from the non-depressed was 82.4%.

In this study, we focused on depression in advanced PD patients
(duration > 5 years). Previous studies showed that the duration of PD
was a risk factor for incident depression in PD patients (Ravina et al.,
2009; Becker et al., 2011). In our cohort, the PD duration of depressed
patients was significantly longer than that of non-depressed ones. And
the incidence of depression in a total of 156 patients was 37.8%, rela-
tively higher than that in early PD patients reported in some studies
(Ravina et al., 2009; Aarsland et al., 2011), which was helpful to the
direct comparison of functional connectivity patterns between de-
pressed and non-depressed patients. On account of the high incidence of
depression in advanced PD and its great effect on patients’ quality of
life, the neural basis of depression in PD had been investigated through
resting-state functional connectivity analysis in some fMRI studies
(Sheng et al., 2014; Luo et al., 2014; Lou et al., 2015; Hu et al., 2015).
In our study, we extracted FC features including the whole-brain with-
ICN and between-ICN connectivity strength on the basis of the patient-
specific ICN template from a large number of PD patients. The specific
template created by group-ICA and the direct comparison between
depressed and non-depressed patients were to identity FC markers only
for depression rather than PD. Next, FC features were put into an all-
relevant feature selection procedure. In comparison with the commonly
used feature selection methods such as t-test or Pearson's correlation
analysis, the all-relevant feature selection algorithm could identify all
features that significantly contributed to group discrimination. More-
over, there were no significant differences in patients’ age, sex, dopa-
minergic medications (levodopa equivalent daily dose, LEDD), motor
symptoms (UPDRS III), cognitive level (MoCA and MMSE) or sleep si-
tuation (PSQI) between depressed and non-depressed groups. Thus, it
was valid to identify functional connectivity markers of depression in
advanced PD patients through the mentioned analyses.

On the basis of identified features, our random forest classifiers
achieved the mean accuracy of 82.4% to discriminate between patients
with and without depression. Depression is a major factor in health-
related quality of life in PD patients (Wang et al., 2013).
Menon et al. (2015) even revealed that the most important predictor for
poor quality of life is not the severity of the motor symptoms or the
duration of the illness but the presence of depression. However, de-
pression in PD is under-diagnosed and under-treated due to overlapping
symptoms and difficulties in the assessment of depression in old pa-
tients (Shulman et al., 2002; Jacob et al., 2010). Depression diagnosis in
PD is not straightforward when several clinical presentations of de-
pression and PD overlap (McDonald et al., 2006). Physicians tend to
concentrate on physical complaints and thus ignore emotional states in
old PD patients, and many old patients are unwilling to share their
feelings or deny being depressed (Murray et al., 2006). Moreover, many
of depression-related symptoms, such as feelings of worthlessness, so-
cial withdrawal and isolation, may be dismissed by the clinicians as the
natural consequence of physical mobility reduction and speech im-
pairment in PD (Menon et al., 2015). In this situation, the classifier in

our study was derived from patients’ rs-fMRI data without performing
any specific task, which revealed its potential clinical value for de-
pression diagnosis in PD patients.

In our study, six FC features were identified to be relevant to group
classification. All of these features not only showed group differences
between depressed and non-depressed patients, but also significantly
correlated with depression scores. Among all the involved ICNs, the
PCC, mPFC and precuneus are the key nodes of the DMN, which has
been proved to be associated with depression in previous studies
(Zhu et al., 2012; Belzung et al., 2014). The DMN is activated during
the resting state while deactivated during certain goal-oriented tasks in
normal persons (Smith et al., 2009), whereas it failed to deactivate in
depressed patients (Belzung et al., 2014). Specifically, the PCC was
involved in internally directed cognition including self-referential pro-
cessing and rumination. Depressed patients tend to process negative
information with regard to the self (self-referential processing) and fall
into a persistent, repetitive and self-critical state (rumination), which
can explain our findings about the increased FC within the PCC. Fur-
thermore, we found that depressed patients had abnormal FC between
the PCC and insula/hippocampus+amygdala, compared to non-de-
pressed patients. And Bluhm et al. (2009) showed reduced FC between
the PCC and bilateral caudate for the comparison between depressed
patients and healthy controls. These findings suggested that the FC
within the PCC should be a contributing factor for depression, which
was in accord with its important role in the group classification.

The insula, a cortical region beneath the frontal, temporal and
parietal lobes, is an important part of the limbic system and has a well-
established role in processing affect and emotion.
Sprengelmeyer et al. (2011) found that the gray matter volume in the
insula was correlated with the severity of depression measured by the
scores of clinical scales in patients with depression. In a rs-fMRI study,
decreased regional homogeneity was revealed in the right insula in
participants with depression (Liu et al., 2010), which was consistent
with our results about the decreased FC within the insula and the neural
correlate of depression in PD. Moreover, we found that depressed pa-
tients had abnormal FC between insula and PCC/precuneus, and be-
tween hippocampus+amygdala and PCC. These results indicated that
the interaction between the limbic system and DMN was closely asso-
ciated with depression in PD patients.

We acknowledge a few limitations to our study. First, we did not
recruit patients only with depression in this study. We identified six FC
markers relevant to depression diagnosis in PD, but we did not know
whether these markers also acted for the discrimination between gen-
eral depressed patients and healthy controls. Second, the mean HDRS
and BDI scores of non-depressed patients were 13.9 and 8.1 respec-
tively, which meant some of them might have mild depression. All
patients were diagnosed to have depression or not according to the
DSM-IV criteria by an experienced psychiatrist. HDRS and BDI could be
less accurate than DSM as the diagnostic criteria for depression in PD,
due to overlapping mental symptoms such as apathy and anxiety. If we
excluded non-depressed patients with a BDI score > 14 or HDRS score
> 20 (18 patients in total) and performed the feature selection pro-
cedure again, the subset of depression-related features did not change
while the mean accuracy of the classifiers was 86.7%, a bit higher than
the original one. However, one of our aims in the study was to help
clinical diagnosis of depression in PD and we tried to make the classi-
fiers target as general PD patients as possible. Thus we preferred to
include these non-depressed patients.

In conclusion, compared to advanced PD patients without depres-
sion and healthy control subjects, we found abnormal functional con-
nectivity within and between the limbic system and default mode
network in patients with depression, which significantly contributed to
group classification. On the basis of identified FC markers of depres-
sion, moderately successful discrimination was achieved for clinical
diagnosis of depression in advanced PD patients.
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