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Abstract

Gesture–speech synchrony re-stabilizes when hand movement or speech is disrupted by a delayed

feedback manipulation, suggesting strong bidirectional coupling between gesture and speech. Yet it

has also been argued from case studies in perceptual–motor pathology that hand gestures are a spe-

cial kind of action that does not require closed-loop re-afferent feedback to maintain synchrony with

speech. In the current pre-registered within-subject study, we used motion tracking to conceptually

replicate McNeill’s (1992) classic study on gesture–speech synchrony under normal and 150 ms

delayed auditory feedback of speech conditions (NO DAF vs. DAF). Consistent with, and extending

McNeill’s original results, we obtain evidence that (a) gesture-speech synchrony is more stable

under DAF versus NO DAF (i.e., increased coupling effect), (b) that gesture and speech variably

entrain to the external auditory delay as indicated by a consistent shift in gesture-speech synchrony

offsets (i.e., entrainment effect), and (c) that the coupling effect and the entrainment effect are co-

dependent. We suggest, therefore, that gesture–speech synchrony provides a way for the cognitive

system to stabilize rhythmic activity under interfering conditions.
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1. Introduction

Speech and hand gesture are seamlessly coordinated. This coordination is found on the

semantic level, where gesture can mirror or augment with iconic reference what is said in
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speech. This coordination is also observed on a prosody level, such that the intensity

changes of gesture and speech covary. Indeed, research combining motion-tracking method-

ology and speech analysis is beginning to confirm that the energetic patterns of gesture and

speech are flexibly and tightly synchronized (Chu & Hagoort, 2014; Danner, 2017; Danner,

Barbosa, & Goldstein, 2018; Krivokapi�c, Tiede, & Tyrone, 2017; Krivokapi�c, Tiede, Tyr-
one, & Goldenberg, 2016; Leonard & Cummins, 2010; Parrell, Goldstein, Lee, & Byrd,

2014; Rochet-Capellan, Laboissiere, Galvan, & Schwartz, 2008; Rusiewicz, Shaiman, Iver-

son, & Szuminsky, 2014; Treffner & Peter, 2002; Zelic, Kim, & Davis, 2015). The general

finding from these studies is that energetic contrasts in gesture (e.g., gesture end-point; peak

velocity) are structurally related to prosodic contrasts (e.g., peak pitch; stressed syllable),

which are the energetic contrasts in speech. Although evidence for entrained gesture–speech
rhythms is largely based on repetitive pointing-, beat-tapping, or finger-tapping gestures,

where speech and gesture are scripted and produced on command (but see Danner et al.,

2018), the findings appear generalizable to more spontaneous and semantically rich gestures

on the basis of careful (but subjective) analysis of video recordings (e.g., McClave, 1994;

McNeill, 1992, 2005; Loehr, 2004, 2012; for an overview see Wagner, Malisz, & Kopp,

2014). Given this growing evidence for the entrainment of gesture–speech rhythms, the

question arises of how and why gestures are so closely controlled with respect to the rhythm

of speech (Esteve-Gibert & Guella€ı, 2018; Iverson & Thelen, 1999; Rusiewicz, 2011; Rusie-

wicz & Esteve-Gibert, 2018; Wagner et al., 2014).

A remarkable case study that has left a lasting theoretical imprint on how gesture

researchers think about the perceptual-motor control of hand gestures is the gesturing

ability of Ian Waterman (IW) (Gallagher, 2005; McNeill, 2005; McNeill, Quaeghebeur,

& Duncan, 2010; ). Since early adulthood, IW has suffered from the absence of proprio-

ception from the neck down, which makes instrumental actions (e.g., picking up objects)

practically impossible without continuous visual feedback. Without visual control, IW

simply does not know where his limbs are located, let alone whether a grasp is success-

fully unfolding. Yet, IW produces typical looking gestures when his view of his body is

blocked, sometimes without any intention or awareness of doing so. Researchers studying

IW have concluded that his non-visually guided gestures are impaired when topokinetic

accuracy is required (e.g., tracing out an imagined triangle in the air), but they are other-

wise largely unaffected (but see McNeill et al., 2010 and Gallagher, 2005 for a more

detailed description). Most important, these researchers also concluded that IW’s gestures

are produced in synchrony with his speech (see Dawson & Cole, 2010 for a video exam-

ple of IW’s gesticulation). This finding has led these researchers to conclude that gestures

must be controlled in a different way than instrumental actions (Gallagher, 2005;

McNeill, 2005), which invokes the idea that gesture does not require the so-called closed-

loop control; it does not require continuous causal influences from perception (where are

my hands now/what effects do my actions have) and action (where do my hands go) to

maintain gesture–speech synchrony. The idea that gestures are somehow different from

instrumental actions has further been argued for on the basis of research showing that

pantomimes are sensitive to visual illusions but instrumental actions are not (e.g.,

Westwood, Heath, & Roy, 2000), as well as by case studies of subjects with congenital
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phantom limbs who report gesturing with otherwise passive phantom limbs (e.g., phantom

arms do not swing during walking; Ramachandran, Blakeslee, & Shah, 1998).

Yet it has also been shown that gesture–speech synchrony remains relatively stable

under perturbations of hand movements or speech production, suggesting continuous bidi-
rectional coupling of gesture and speech (Chu & Hagoort, 2014; McNeill, 1992;

Rusiewicz et al., 2014). Chu and Hagoort (2014) found that when visual feedback of a

pointing gesture is disrupted, speech will halt so as to synchronize with the perturbed

(and therefore delayed) pointing movement. More specifically, Chu and Hagoort (2014)

found that in a virtual environment, when the visual feedback of the pointing gesture was

delayed with 117 or 417 ms (Experiment 1), or when visual feedback was suddenly hori-

zontally displaced, removed, or put to a halt while the real gesture was ongoing (Experi-

ments 3 and 4), gesture execution time was delayed and so was speech onset time.

Gesture–speech synchronization was thus maintained. Importantly, perturbing the gestures

affected speech even in the very late phases right before the onset of speech (as short as

an estimated 99 ms), suggesting that interaction between speech and gesture does not

become impossible while the gesture is in its execution; that is, gesture and speech do

not become “ballistic” at some point (Levelt, Richardson, & La Heij, 1985).

In the final fifth experiment, instead of a gesture perturbation, speech was perturbed by

changing the color of the to-be-referenced light when a gesture was already initiated. Par-

ticipants then needed to change their speech intention, for example, from saying “this

blue light” to saying “this yellow light.” As in the previous experiments, the perturbation

was administered at early and late phases in the gesture execution. This way the speech

intention needed be readjusted while a gesture was already underway. Such speech pertur-

bation indeed leads to speech onset delays. Importantly, delaying speech in this way also

delayed gesture execution times in early and late phases. This study shows that, at least

for these pointing gestures, continuous bidirectional feedback is utilized to maintain ges-

ture–speech synchrony. In a recent extension of this virtual reality (VR) paradigm, it was

shown that visual feedback of gestures is utilized for maintaining gesture–speech
synchrony even when gestures reserve degrees of freedom for iconic expression (M. Chu

& P. Hagoort, unpublished data). For example, delayed visual feedback led to speech

readjustments when pointing gestures traced the outline of a visually presented object.

Speech was also affected by visual feedback disruptions when gestures mimed grabbing

an object that was presented in VR. This suggests that even when externally controlled

gestures are iconic (i.e., pantomime, iconic tracing), visual feedback affects gesture exe-

cution. In sum, the meticulous experiments by Chu and Hagoort weaken the case that

gesture–speech synchrony is not regulated by perceptual feedback of actions in typical

populations (in contrast to IW’s case).

McNeill’s (1992) classic studies assessed whether participants’ gesture–speech
synchrony was affected when speech was disrupted by a delayed auditory feedback

manipulation (DAF). When auditory feedback from speech is delayed by about 75–
200 ms, speech becomes noticeably disfluent and slurred, and more frequent speech

errors (e.g., repetition of phonemes) and slower speech rates are observed (Sasisekaran,

2012; Stuart, Kalinowski, Rastatter, & Lynch, 2002; see demonstration of the DAF effect
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from our previous exploratory study https://osf.io/5h3bx/). However, despite obtaining a

classic DAF effect when participants retold a cartoon they had just watched, McNeill

(1992) reported that gesture–speech synchrony was completely unaffected. In a second

experiment, however, McNeill noted that gesture–speech synchrony was noticeably

affected when participants had to recite memorized sentences and gesture movements.

This suggests that there might be an important role for spontaneity in gesture–speech
synchrony (cf., Chu & Hagoort, 2014). McNeill’s (1992) findings on the robustness of

gesture–speech synchrony is further supported by comparable classic research, showing

that gestures are suspended, halted or lengthened when involuntary speech disfluencies

occur (e.g., fillers like “uh”; stuttering; word repetitions; e.g., De Ruiter, 1998;

Seyfeddinipur, 2006).

Detailed investigation of the kinematics of gesticulation under DAF obtained mixed

results, however. Rusiewicz et al. (2014) used a task in which participants pointed and

verbally labeled targets. In the DAF condition (half of the trials), participants heard their

own speech with a 200 ms delay, which resulted in elongated spoken responses. In con-

trast to McNeill’s (1992) original DAF study, increased gesture–speech asynchrony was

found for DAF vs. NO DAF by Rusiewicz et al. (2014). That is, the time difference of

the gesture–launch midpoint and the vowel-to-vowel midpoint of the referenced target

word increased under DAF. Although there were more attempts at resynchronization as

gestures were lengthened under the DAF condition, these results were not statistically

reliable. However, in a recent experiment by Chu and Hagoort (unpublished data; Experi-

ment 3), inducing a 100 ms DAF did lead to reliable slowing down of pointing and trac-

ing gestures, although differences in gesture–speech synchrony were not assessed as such.

To sum up, these detailed kinematic studies on externally directed pointing gestures sug-

gest that such gestures are indeed reactive to DAF, but also leave unclear whether ges-

tures completely resynchronize with perturbed elongated speech under DAF (cf., Kelso,

Tuller, Vatikiotis-Bateson, & Fowler, 1984).

1.1. Open research questions

There are still several key open questions about the stability of gesture–speech
synchrony under conditions of perturbation and the precise role that perceptual feedback

plays in maintaining stability. First, perturbation research with relatively high kinematic

detail has solely focused on gesture–speech synchrony of (pointing) gestures that are

directed toward a visually available object (Chu & Hagoort, 2014, unpublished data;

Rusiewicz et al., 2014). These types of gestures are an exotic member of the family of

gesture as they are exogenously controlled with respect to an external target. Such exter-

nally directed gestures are thus closely related to instrumental actions in this respect.

Therefore, it is not certain that more fluid and spontaneous gestures (e.g., beat and iconic

gestures) produced during narration will show similar dynamics (cf., Ian Waterman).

Importantly, McNeill’s (1992) original descriptive report does suggest that gesture–speech
synchrony is maintained under DAF, even when it concerns spontaneous gestures pro-

duced during narration. However, as promising as these results are, more empirical detail
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is required to fully understand how gesture–speech synchrony is affected by DAF for

spontaneous gesturing (as also argued by Rusiewicz et al., 2014). As such, we aim to

conceptually replicate McNeill’s (1992) classic setup by assessing the effect of DAF dur-

ing narration of a cartoon while objectively tracking movement and speech with high

resolution.

In addition to the issue of whether gesture is reactive to speech perturbation, we aim

to address the question how and why it is reactive. It has been argued from a dynamical

systems perspective of gesture (McNeill, 1992, 2005; Rusiewicz et al., 2014; see also

Rusiewicz et al., 2011) that the stability of gesture–speech synchrony under DAF sug-

gests that gesture and speech flexibly organize into equivalent functional sensorimotor

solutions through tight bidirectional coupling of the systems. This stability is likened to

the classic finding by Kelso et al. (1984), who showed that when the jaw is locked in the

midst of articulating a syllable, the lower lip or tongue spontaneously jumps into place to

successfully complete the syllable (depending whether the perturbation is successfully

resolved by a lip or tongue intervention). Yet, in the case of gesture–speech synchrony
under DAF, it could still be that stability is maintained because the delayed auditory

feedback only affects speech and not gesture. That is, if the gesture system is merely uni-

directionally governed by speech production and is not coupled to perceptual auditory

feedback, it will always be produced in synchrony with speech. Stability, under such a

view, is maintained because the gesture system is ignorant with respect to the auditory

shadow of speech; the gesture system is informationally closed in this respect (a feature

that is central to information-processing theories of gesture; De Ruiter, 2000).

We think that a dynamically coupled gesture–speech system (as opposed to an infor-

mationally closed system) would be reactive to DAF in a different way than initially con-

ceived by proponents of a dynamical systems approach to gesture (McNeill, 1992;

Rusiewicz et al., 2014). Namely, in line with the concept of entrainment as described by

Rusiewicz et al. (2014; see also Iverson & Thelen, 1999; Rusiewicz, 2011), coupled

oscillators will diverge from their individually preferred rate of oscillation and will form

a new stable oscillation pattern. This joint preferred oscillation pattern will function as a

stable point attractor, such that the system will return to this stable state even when one

of the subsystems is perturbed (i.e., stability of gesture–speech synchrony). Under this

view, given ordinary gesture–speech synchrony, two oscillators, one for speech and the

other for gesture, are dynamically or “weakly” coupled. However, under DAF, there is a

third oscillator introduced in the form of a delayed feedback. If the DAF signal functions

as a third oscillator, it should serve as a rhythmic attractor for both speech and gesture.

Given that speech and gesture have their own preferred rate of oscillation, it is also likely

that DAF will affect speech and gesture differently. Note that this possibility is not far-

fetched given that it is well known that humans naturally and involuntarily tune their

actions (e.g., finger tapping) to auditory rhythms (e.g., metronome; for an overview, see

Port, 2003; Repp, 2005). In sum, stability under perturbation is a necessary but not suffi-

cient condition for arguing for the dynamic coupling of gesture and speech, as accounts

that posit that gesture couples with speech production (and not speech feedback) would

equally predict gesture–speech synchrony under DAF. Rather, entrainment of speech and
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gesture to the DAF signal is also to be predicted if the gesture–speech system is a

dynamical system. This study examines how coupling and entrainment might account for

DAF effects in gesture–speech synchrony. Further, we explore the implications of the

dynamical systems account for understanding the function of gesture-speech synchrony

for the communication system.

1.2. Summary model predictions

Our previous review of the different predictions that arise out of the literature can be

summarized by three models that each have their separate predictions of how gestures

behave with respect to speech under a DAF manipulation (see Fig. 1).

On the one hand, we have the ballistic model (model A in Fig. 1), which suggests that

gesture and speech are decoupled in the execution phase and therefore any perturbation

in speech production (due to DAF) will not affect gesture. This model predicts that a ges-

ture will therefore be executed as planned and will reach its kinematic peaks (e.g., peak

velocity) earlier than usual, because speech is slowed down due to DAF. Thus, the ballis-

tic model predicts that gestures will come to lead speech in time (i.e., speech will lag

behind gesture).

What we call the sparsely coupled model (McNeill, 1992; Rusiewicz, 2011) assumes

that gesture can readjust its trajectory because there is continuous bidirectional feedback

between gesture and speech (even at late phases of execution). This sparsely coupled

model thus predicts that gesture–speech synchrony is maintained under DAF vs. NO

DAF.

Our newly proposed dynamically coupled model (C) has two alternative predictions.

First, it predicts that gesture–speech synchrony can be modulated under DAF so as to

resist perturbation. As such, we predict that gesture–speech synchrony is more pro-

nounced under DAF versus NO DAF (referred to as the “coupling strength hypothesis

[CSH]”). Second, given that we assume that the gesture system is also reactive to the per-

ceptual delayed feedback of speech, it is predicted that the gesture system will be slightly

Fig. 1. Model predictions.

Notes. On the left-hand side a schematic of the ballistic model (a), the sparsely coupled model (b), and the

dynamically coupled model (c) are provided. On the right-hand side, predictions for each model are given by

frequency distributions of gesture-speech synchrony expressed by D (temporal Difference between peak

velocity gesture and peak F0 speech). The blue vertical line at D = 0, is the reference point and indicates the

moment where the peak F0 is reached. The solid green vertical line at D = 140 indicates when the DAF loop

returns a peak F0 to the speaker (i.e., the length of the auditory delay). The striped vertical lines indicate the

average synchrony for gestures produced under NO DAF (orange) and DAF (light green). When distributions

are shifted to the left, this indicates that gesture’s peak velocity occurred before peak in F0 (i.e., gesture

reaches peak earlier than speech); this is predicted for gestures under DAF by a ballistic model. A more

peaked frequency distribution indicates that gesture–speech is less variably aligned with speech (more cou-

pled); this is predicted by the coupling strength hypothesis of the dynamically coupled model. When distribu-

tions are shifted to the right, this indicates that gestures are completing their peak velocity later in time with

respect to peak F0; this is predicted for gestures under DAF by the entrainment hypothesis.
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attracted to synchronize with delayed speech. This “entrainment hypothesis [EH]” entails

that gesture-speech synchrony is recalibrated and gesture accommodates to the interfering

DAF oscillator, meaning that gesture is more likely to follow speech as to align more

with delayed speech.

1.3. Current paradigm

In our previous exploratory DAF study with four participants who produced 275 ges-

ture events (for full analyses report, see Pouw & Dixon, unpublished data), we replicated

the original experiment by McNeill (1992) with a few modifications. After watching a

cartoon, four participants retold the plot, under alternating bouts of DAF and NO DAF.

In contrast to McNeill (1992), we tracked the motion of the dominant hand (at 240 Hz)

to record gestural movements, which allowed us to identify energetic peaks during each

gesture event (peak velocity, peak acceleration, peak deceleration). Gesture events and

gesture types (beat and iconic) were identified using ELAN and the motion-tracking time

series (Crasborn, Sloetjes, Auer, & Wittenburg, 2006; Lausberg & Sloetjes, 2009). We

extracted the Fundamental Frequency (F0; perceived as “pitch”) from the audio (using

PRAAT, Boersma, 2001), so as to identify peaks in pitch within relevant gesture–speech
events.

In this exploratory study, we obtained preliminary results that aligned with the dynami-

cally coupled model. More precisely, for beat gestures, peak velocity (as a kinematic

anchor point for gesture) had lower absolute deviances from peak pitch under DAF vs.

NO DAF, suggesting stronger synchrony of gesture and speech under DAF (CSH). Sec-

ondly, we found for beat gestures a promising indication that the key kinematic events

(gesture onset, peak acceleration, peak velocity, peak deceleration) of gestures were con-

sistently positively shifted under DAF as compared to NO DAF with about 34 ms (EH),

suggesting that gestures are attracted toward synchronizing with the auditory shadow of

speech.

In this study, we replicated the research setup on the basis of our results from the

exploratory study. We pre-registered analysis plans (see https://osf.io/pcde3/) for two con-

firmatory analyses (based on the promising results in the exploratory study), in which we

planned to assess whether beat gestures are as follows: (a) more stably coupled under

DAF vs. NO DAF, as indicated by lower mean deviances of peak velocity from peak

pitch (CSH), and (b) whether there is a consistent positive shift for kinematic anchor

points (gesture onset, peak acceleration, peak velocity, and peak deceleration) relative to

peak pitch suggesting that gesture entrains to the DAF signal (EH). We also performed

several exploratory analyses assessing whether these effects hold for iconic gestures, and

what the relationship is between coupling strength and degree of entrainment.

We further explored the CSH using cross-wavelet analysis (see e.g., Romero et al.,

2018) wherein we assessed how the temporal structure of speech and gesture is correlated

under DAF versus NO DAF on multiple nested time-scales. Several theorists have main-

tained that gesture and speech operate on nested timescales, suggesting that it is an over-

simplification to think of gesture–speech events as isolatable units of communicative
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expression (Kendon, 2004; McNeill, 2005). For example, multiple sequenced beat ges-

tures may move with the rhythm of speech (operating on the scale of milliseconds;

Leonard & Cummins, 2010); gesture sequences may reflect syntactic conventions that are

present on the verbal sentential level (seconds; Kita & Ozyurek, 2003). Furthermore,

some gestures seem to retain similarity in their kinematic profiles as they recur at several

times in a discourse, providing anchors for discourse cohesion (minutes; McNeill et al.,

2002). As such, if gesture and speech differ in their coupling under DAF vs. NO DAF,

such changes in correlation between temporal coupling of gesture and speech might be

present on the multiple time scales (e.g., phonemes to syllables to sentences). To quanti-

tatively assess the shared temporal structure of speech and gesture, we related manual

movement (velocity) with the amplitude envelope of speech (henceforth ENV). ENV is a

continuous measure for tracking the rhythmicity of speech and correlates highly with

articulatory movements (Chandrasekaran, Trubanova, Stillittano, Caplier, & Ghazanfar,

2009).

2. Method

2.1. Sample and design

The current sample consisted of ten undergraduate students from the University of

Connecticut (7 males; 8 right-handed, 2-left handed; Age M [SD] = 18.8 [0.79] years).

Two participants of the original sample were excluded because they did not gesture. We

therefore tested an additional two participants so as to reach the sampling plan of 10 par-

ticipants.1 All but one participant were native speakers of American English. One partici-

pant reported Spanish as her native language but had 19 years of experience with

speaking American English. This study entails a within-subjects design with one factor

with two levels: DAF versus NO DAF. The current sample generated 25.73 min of narra-

tion (11.00 min DAF vs. 14.73 min NO DAF) containing over 500 gesture events.

2.2. Apparatus

2.2.1. Motion tracking
To track hand movements, we used a Polhemus Liberty (Polhemus Corporation, Colch-

ester, VT, USA) to collect 3D position data at 240Hz (~0.13 mm spatial resolution) with

a single motion-sensor attached to the top of the index finger of the dominant hand. Thus,

the position data are determined by movements of the arm, wrist, and finger. We only

allowed for and recorded the motion of the dominant hand (rather than both hands) to

simplify interpretations regarding gesture–speech synchrony.

2.2.2. Audio
We obtained speech data by using an RT20 Audio Technica Cardioid microphone

(44.1 kHz).
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2.2.3. Camera
Participants were video recorded (29.97 fps) using a Sony Digital HD Camera HDR-

XR5504 recorder.

2.2.4. Motion and audio recording
We used a C++ script made publicly available by Michael Richardson (Richardson,

2009) to collect movement data, which we further modified to simultaneously call and

write audio data using scripts to enable recording of sound from a microphone (using

toolbox SFML for C++ https://www.sfml-dev.org/).

2.2.5. Delayed auditory feedback
For the delayed auditory feedback manipulation, we used a second microphone and

wireless headphone connected to a separate PC (see a Fig. 2 for how the different sys-

tems are used in this study). We used open software called Pitchbox 2.0.2 (Juillerat, n.d.)

to delay feedback with a microphone. This software was originally developed to modify

acoustics, such as shifting the pitch of voice, but in the “normal” mode it will produce a

latency between voice production and acoustic output. This degree of latency is depen-

dent on the computer system’s hardware specifications. We pre-tested the latency between

microphone input and audio output that was produced when running it on a laptop, and

we obtained that the latency was consistently between 130 and 150 ms for this system.

This range for testing the auditory feedback delay phenomenon lies well above the lowest

DAF manipulations that have been known to induce a DAF effect (e.g., Stuart et al.,

2002). The effect of DAF was indeed very noticeable (see sample of speech and gesture

under DAF for the exploratory study, using identical equipment as the current confirma-

tory study: https://osf.io/5h3bx/).

Fig. 2. Schematic overview setup.

Note. Two PCs were used, one that handled the recording of audio and motion tracking of the dominant hand

(PC 1) and PC 2 recorded audio and played back the audio to the participant at a 150 ms delay (DAF manip-

ulation).
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2.3. Procedure

Participants were equipped with a glove for the dominant hand, which allowed attach-

ment of the Polhemus motion sensor with Velcro tape. In previous exploratory studies,

we observed that this glove did not restrict spontaneous gesturing rates (Pouw & Dixon,

2018). The glove was attached before watching the video so that the subject got used to

wearing it. In the current experiments, participants first watched the cartoon “Canary

Row” lasting about 350 s (e.g., McNeill, 1992, 2005). Participants were informed they

would retell the cartoon narrative to the experimenter later on. After watching the car-

toon, participants were familiarized with the DAF manipulation. The experimenter further

explained that during narration the DAF would sometimes be turned on, but that partici-

pants would need to keep narrating as best as they could. In the narration phase, for the

first 30 s participants always narrated without DAF manipulation (warm-up phase). After

the warm-up phase, the DAF was turned on or turned off (depending on counterbalanced

condition) every 60 s. We counterbalanced DAF timing as it is possible that otherwise

DAF would occur for a particular segment of the cartoon narrative and thus perhaps for

particular types of gesture–speech events. No instructions were given about whether to

use hand gestures.

2.4. Data preparation

The first author transcribed speech and identified gesture events using the annotation soft-

ware ELAN (Lausberg & Sloetjes, 2009). We also loaded the motion-tracking time series

into ELAN to manually determine the onset and end-phase of the gestures (see Crasborn

et al., 2006); the video data were used to determine the type of gestures (beat vs. iconic2 vs.

undefined gestures). The gesture was marked as ending at the point at which the gesture

completed its main stroke. Thus, we did not include a pre-stroke hold, post-stroke hold, nor

a retraction phase, if present (see Kita, van Gijn, & van der Hulst, 1998).

Similar to the procedure used by Pouw and Dixon (2018), peak velocity, peak acceler-

ation, and peak deceleration were determined with respect to peak pitch (see code online).

We applied a low-pass first-order Butterworth filter to the position velocity traces with a

cut-off of 33 Hz.3

With regard to taking peak F0 as a speech anchor point, it should be noted that there

are many other viable anchor points for speech which could be used in gesture–speech
synchrony analyses. Rochet-Capellan et al. (2008) used the maximum extension of the

jaw during syllable pronounciation. Rusiewicz et al. (2014) used vowel–vowel midpoint

of an uttered target word. Additionally, one could use regions of prosodic contrast as

indexed by Tones and Breaks Indices (ToBi) prosody analyses (e.g., Danner, 2017;

Loehr, 2004; Shattuck-Huffnagel, 2018). We chose however to use peaks in F0 near a

gesture kinematic peak, as all types of pitch accents (e.g., ToBi typology) are at least

characterized by sudden peaks in F0. Furthermore, Krivokapi�c et al. (2016) have com-

pared different prosodic properties as they relate with gesture, and they found preliminary

evidence that gesture is more likely coordinated with F0 modulations (rather than, e.g.,
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articulatory lengthening). Our current method of taking peak F0 as an anchor, further pro-

vides an objective automatable method suitable for non-scripted speech that replaces

otherwise laborious inter-rater judgments (ToBi) and context specific measures (e.g.,

vowel-to-vowel midpoint is only relevant if there are two vowels) that are often

employed in scripted and controlled contexts (Rusiewicz et al., 2014) or otherwise

applied for small amount of data (e.g., Loehr, 2004; Shattuck-Huffnagel, 2018). Finally,

note that we will also corroborate our F0 analyses by using another speech property that

we will relate to gesture, namely the amplitude envelope of speech (see below; Fig. 3).

Fig. 3. Example gesture and F0 time series and energetic peaks.

Notes. Vertical motion of the hand (Y movement) and F0 (pitch track) time series segment. We have super-

imposed the raw sound waveform in blue above. The F0 values are rescaled for this example and reflect the

opening of the vocal folds for the phonated parts of the speech segments. The colored dots reflect the key

energetic peaks; solid gray dot = peak pitch, red dot = peak acceleration, green dot = peak velocity, and pur-

ple dot = peak deceleration. This data example is based on an iconic gesture produced under NO DAF in the

exploratory study (see video clip at https://osf.io/ax48y/). The participant traces out the outline of a pole

while saying “pole that is attached to the building,” wherein the gesture overlaps with the blue segment of

speech. In this example, it is clear that energetic peaks are situated in the beginning phase of the gesture,

which coincides with the peak in pitch (and the semantically relevant part “pole”).
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2.4.1. Inter-rater reliability gesture annotation
To assess the reliability of distinguishing between beat and iconic gesture events, a

second rater annotated beat and iconic gestures for 20% of the data (for the first two par-

ticipants). We computed reliability scores based on time windows of the second coder

which overlapped with at least 50% of that with the first rater. The raw global agreement

was initially 80.06% and a modified kappa of 0.57 (“moderate agreement” according to

Landis & Koch, 1977). However, since this was lower than the ideal modified Kappa

coefficient of .75 (“substantial agreement”; Landis & Koch, 1977) that we aimed for, the

first author and the second rater discussed disagreement for the first 20% of the data and

the second-rater recoded another 20% of the data (for the last two participants). This

improved reliability to modified kappa of 0.69 (raw global agreement of 89.47%). Given

that this 0.69 modified kappa approached 0.75 and is in the range of 0.61–0.81 for “sub-

stantial agreement” (Landis & Koch, 1977), we decided to proceed and base our analyses

on first rater’s coding for all the data analyses. During inspection of the gesture codings

in ELAN, after the first and second round of inter-rater comparisons, we observed two

sources of discrepancies. First, discrepancy lay in determining whether a gesture is a sin-

gle event or is a part of a sequence of gestures (especially for beat gestures which some-

time beat in rapid sequential fashion). Second, there were some divergences on whether

a gesture was of a beat or iconic nature.

2.4.2. Speech F0
We extracted F0 (or pitch) time series using PRAAT with a range suitable for female

(100–500 Hz) or male (75–500 Hz) voice range (Boersma, 2001). We matched the sam-

pling rate of pitch with that of the motion tracker (240 Hz: 1 sample per 4.16 milliseconds).

2.5. Data aggregation

Using a custom-made code in R, the data from ELAN, PRAAT, and motion track-

ing were aggregated into one dataset (for a tutorial see Pouw, Trujillo, Dixon, unpub-

lished data). We aggregated movement data with the pitch and envelope data using

custom-written R code available on https://osf.io/pcde3/. We read in ELAN gesture

and speech annotation files using a custom–made script in R, so as to mark relevant

movements in the time series.

2.6. Speech amplitude envelope for exploratory continuous analyses

A speech signal has both high-frequency fluctuations (fine structure) and low-frequency

fluctuations. The low-frequency fluctuations can be captured by the amplitude envelope

(ENV), which can be reconstructed from the raw signal using the Hilbert transform (He &

Dellwo, 2017). The amplitude envelope has been found to reliably correlate with articula-

tory gestures such as lip movements and is a good measure for tracking the rhythm of

speech (Chandrasekaran et al., 2009; Tilsen & Arvaniti, 2013). As ENV provides a

smoother and more continuous time series than pitch track (as F0 is only registering during

W. Pouw, J. A. Dixon / Cognitive Science 43 (2019) 13 of 32

https://osf.io/pcde3/


phonation), it is more amenable for comparing the continuous rhythmic and temporal

structure of gesture and speech (i.e., more suitable for cross-wavelet analysis as introduced

in the exploratory section of the Results). The current ENV time series (see Fig. 4) was

produced by applying the PRAAT script by He and Dellwo (2017; see also He & Dellwo,

2016), which provides a time series in scaled Hilbert Units ranging from 0 (minimum

amplitude) to 1 (maximum amplitude). This is a scaled range (per individual) and thus

contains no information about between-subject differences in amplitude.

3. Results

3.1. Descriptive: Gesture and speech rates

A total of 573 gesture events (NO DAF = 301 vs. DAF = 262) were observed

(beat = 263, iconic = 260, undefined = 49), with a mean gesture frequency per minute

Fig. 4. Example amplitude envelope (ENV) time series and raw audio waveform.

Notes. Example time series (10 s narration) of the amplitude envelope (upper panel) and the raw waveform.

The lower panel shows gesture velocity. Note that the ENV time series essentially traces the outline of the

maximum values of the raw waveform.

Table 1

Mean gestures per minute, speech rates per minute speech, F0 (“pitch”) values, and narration time for each

condition

Condition

Beat

p/m

Iconic

p/m

Undefined

p/m

F0

M (SD)
Word Rate

p/m Speech (SD) Approx. Time of Narration

DAF 11.46 10.36 2.00 140.95 Hz (44.00) 309 (193) 11.00 min

NO DAF 9.30 9.91 1.90 145.77 Hz (49.38) 332 (102) 14.73 min

Notes The mean gesture and speech rates (words spoken) are given per minute narration. Pitch (F0) values

are given in Hertz. Note that narration time will be different from speech time as participants sometimes take

moments to pause.
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of 21.00 (SD = 10.59). Table 1 provides an overview of the production rates of the

different gestures, as well as speech rate (spoken words per minute narration). These

findings indicate that there are no prominent differences in gesture rates depending on

condition. The total amount of gestures for this dataset was considerably spread over

all the participants, and all participants gestured during the task. For individual differ-

ences in gesture rates, see here: https://osf.io/n9evb/. Participants had a slower speech

rate (words per minute) of about 7% in the DAF condition, confirming qualitative

observations that speech was noticeably affected by the manipulation. However, the

effect of DAF did seem to vary per participant, as also indicated by the high standard

deviations.

3.2. Descriptive: Gesture kinematics

Table 2 provides estimates for two kinematic properties per condition and gesture

types. Average Jerk provides an estimate of the smoothness of the movement. Although

gestures produced under DAF were generally slower, there were no pronounced differ-

ences in condition. The average time for gesture events for the NO DAF condition was

758 ms (SD = 431 ms, 95% CI [709, 805]) as opposed to 698 ms (SD = 419 ms, 95%

CI [647, 749]) for the DAF condition; beat gestures (MNODAF = 573, SDNODAF = 256,

MDAF = 563, SDDAF = 273), iconic gesture (MNODAF = 916, SDNODAF = 485,

MDAF = 758, SDDAF = 375).

3.3. Current Analyses: Gesture–speech synchrony

The current analyses were aimed to assess gesture-speech synchrony under DAF versus

NO DAF. Table 3 and Fig. 5 show the summary statistics for these distributions. Here,

the temporal differences (D) in milliseconds are reported for a particular kinematic prop-

erty (e.g., peak velocity) occurring relative to peak pitch in speech (e.g., D for peak

velocity = time peak pitch � time peak velocity). Consistent with the CSH, it can be

seen from the graph and numeric data that, indeed, there is a lower standard deviation for

Table 2

Gesture kinematics

Condition

BEAT ICONIC

Peak Velocity

cm/s Average z Jerk
Peak Velocity

cm/s Average z Jerk

DAF M (SD) 30.33 (13.04) �0.24(0.70) 46.90 (20.46) 0.20(0.95)

95 CI% [lower, upper] [28.04, 32.64] [�0.37, �0.12] [43.11, 50.70] [�0.03, 0.38]

NODAF M (SD) 32.31 (14.26) �0.18(0.67) 48.99 (21.18) �0.08(0.84)

95 CI% [lower, upper] [29.91, 34.73] [�0.29, �0.06] [45.53, 52.46] [�0.05, 0.21]

Note Average Jerk is rescaled (standardized) as value ranges are small.
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D peak velocity for beat gestures under DAF versus NO DAF. Furthermore, consistent

with the EH, we find that there is a positive shift for all D’s for gestures produced under

DAF vs. NO DAF. Next, we will formally test our hypotheses with confirmatory and

exploratory analyses. Note, that as stated in the pre-registration we have restricted our

alpha to .025, given that the two main confirmatory hypotheses that are tested.

3.4. Coupling strength hypothesis

3.4.1. Confirmatory analyses CSH: Beat gestures
Using a mixed regression model4 (nlme version 3.1-131; random intercept for partici-

pant), we assessed differences in absolute deviances from peak pitch relative to peak

velocity of beat gestures. In the exploratory study, we had found that beat gestures’ abso-

lute deviances in peak velocity-peak pitch timings (i.e., absolute D peak velocity) were

lower for the DAF condition, indicating more reliable gesture-speech coupling under

DAF vs. NO DAF (Pouw & Dixon, unpublished data).

A model for absolute D peak velocity containing condition (NO DAF vs. DAF) did

not reliably improve fit, compared to a model predicting the overall mean (change in

v2[1] = 1.32, p = .250). Model estimates did indicate that gestures produced under NO

DAF had higher absolute D (21 ms) for peak velocity, b = 21.06 [95% CI: 14.75, 56.89],

but this was not statistically reliable, t(252) = 1.15, p = .25. Thus, the coupling-strength

hypothesis could not be confirmed for beat gestures with the current sample.

3.4.2. Exploratory analyses CSH: SD’s gestures combined
An alternative and perhaps more direct way to test the coupling–strength hypothesis is

assessing whether the standard deviations of D’s (timing of peak pitch relative to the key

Table 3

Mean difference D (peak pitch � gesture property) in milliseconds per condition

Kinematic Property

BEAT ICONIC

NO DAF DAF NO DAF DAF

Onset

M (SD) �331 (238) �274 (227) �475 (435) �364 (282)

95% CI [lower, upper] [�372, �291] [�314, �234] [�546, �404] [�416, �312]

Peak acceleration

M (SD) �42 (223) �14(204) �88 (370) �39 (275)

95% CI [lower, upper] [�79, �4] [�50, 22] [�149, �28] [�90, 12]

Peak velocity

M (SD) 7(230) 34 (193) �31 (379) 37 (295)

95% CI [lower, upper] [�32, 46] [0, 68] [�92, 32] [�18, 91]

Peak deceleration

M (SD) 105 (234) 119 (234) 78 (422) 126 (291)

95% CI [lower, upper] [66, 145] [78,160] [9.15, 147] [72,180]
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kinematic properties of gesture) are lower or higher under DAF versus NO DAF. There-

fore, we computed standard deviations for all D’s (SDD) per condition, participant, ges-
ture type (beat vs. iconic), and gesture kinematic property (peak acceleration, velocity,

and deceleration). If gestures are more closely coupled to speech (peak pitch), then lower

standard deviations (of D’s) are to be expected for DAF gestures as compared to NO

DAF gestures; that is, less variable timing of gesture–speech peaks.

A mixed regression model (participant as random intercept) predicting SDD with

only condition as predictor, fit better compared to a model predicting the overall mean

(change in v2[1] = 11.78, p < .001). Adding gesture type did not further improve pre-

dictability of SDD (change in v2[1] = 1.44, p = .23), suggesting that both beat and

iconic gestures were not different in terms of SDD. Adding kinematic anchor point to

the previous model also did not further improve fit (change in v2[1] = 3.13,

p = .077). Model estimates for the simple model with only condition, indicated that

under DAF, gestures have lower SDDs as compared to NO DAF with a difference in

standard deviation of about DSDD = 66 ms, b = 65.67 [95% CI: 29.47, 101.86],

t(49) = 3.59, p < .001. This analyses shows that gestures’ energetic peaks under DAF

are more tightly (i.e., less variably) coupled to peak pitch as compared to gestures

produced under NO DAF.

3.5. Entrainment hypothesis

3.5.1. Confirmatory analyses EH: Beat gestures
Consistent with the exploratory study, we found a positive shift in D’s for the DAF

condition relative to the NO DAF condition (see Table 3 and Fig. 5). The model includ-

ing kinematic properties fit better than a base model predicting the overall mean (change

in v2[1] = 412.39, p < .001). Furthermore, the model with condition and kinematic prop-

erties fit better compared to the model which only included kinematic properties (change

in v2[1] = 5.40, p = .0202). After accounting for the variance attributed to the different

kinematic properties (ps < .001), DAF condition had an estimated main effect of about

+33 ms (b = 32.59 [95% CI: 5.43, 59.76], t(1038) = 2.34, p = .019). Adding an interac-

tion of kinematic properties and condition did not improve model fit (p = .723). Thus,

regardless of kinematic property (gesture onset, peak acceleration, -velocity, -decelera-

tion), DAF beat gestures had positively shifted D’s. Thus, the EH can be confirmed for

beat gestures with this analysis.

3.5.2. Exploratory analyses EH: Iconic gestures
Similar to beat gestures, there seems to be entrainment to DAF for iconic gestures, as

shown by the consistent positive shift of D’s (see Table 3 and Fig. 5). A model including

kinematic properties fit better than a base model predicting the overall mean (change in

v2[1] = 282.51, p < .001). Adding condition to the model further improved fit (change in

v2[1] = 8.37, p = .004). Adding an interaction term for Condition and Kinematic properties

did not further improve predictions (p = .717). For the final model, after accounting for the

variance attributed to different kinematic properties (ps < .001), DAF condition had an
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estimated main effect of about +69 ms (b = 68.78 [95% CI: 22.29, 115.26], t[1026] = 2.90,

p = .004). In sum, we find further evidence that iconic gestures produced under DAF are

also consistently affected in their timing (similar to beat gestures). Iconic gestures reach their

kinematic peaks less rapidly relative to peak pitch (as compared to NO DAF gestures).

3.6. Exploratory analyses: Relationship between coupling and entrainment

The rationale for the CSH is that gesture–speech synchrony can be modulated so as to

resist perturbation by DAF. As such, we would expect that when participants have a

higher coupling between gesture and speech (as expressed by lower standard deviations

of D) there will be a lower entrainment effect (i.e., smaller positive shift for D), but only
for the DAF condition. We therefore examined the correlations for participants’ standard

deviations (SD) and mean asynchrony (M) of peak velocity D, for iconic and beat ges-

tures combined, and for the current and exploratory data combined. As can be seen in

Fig. 6, a higher standard deviation for each participants’ D peak velocity (as a measure

of coupling strength) was associated with a higher positive mean asynchrony of

Fig. 5. Distributions of D for each condition and gesture type.

Notes. Smoothed frequency distributions of D for each gesture property. The difference in the timing (D)
peak pitch relative to a gesture property is shown (blue line at zero D; i.e., moment of peak pitch). The peak

of the distributions represents the mode of D. The dotted lines represent the mean of D. Negative-valued D’s
indicate that peak pitch ocurred after that gesture property. Note that for DAF gestures there seems to be a

consistent positive shift of all D distributions, and a consistent increase in the sharpness of the peak for the

distributions. Smoothed distribution plots were produced with the ggplot2 “geom_density” func-

tion. This function draws on the “1d Kernel Density Estimate” function called “stat_density” (R code avail-

able at https://osf.io/pcde3/).
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D (r = .74 [95% CI: .34, 0.91], t[12] = 3.78, p = .002). This suggests that the higher the

coupling strength between gesture and speech (smaller SD), the lower the entrainment to

DAF (greater positive mean asynchrony). Note, that this inverse relationship holds if we

take peak deceleration SD and M, or only beat gestures or only iconic gestures (or only

the current data, excluding the exploratory data). Furthermore, this relation does not hold

for the NO DAF condition gestures. Rather, for NO DAF gestures, we find that higher

SD’s lead to more negative mean asynchronies, (r = �.66 [95% CI: �.88, �0.20],

t(12) = �3.044, p = .010); but this effect is possibly carried by two relative outliers as

can be seen from Fig. 6. Note that excluding participants from the exploratory study for

this analysis does not alter our current interpretation. The M–SD correlation for DAF

excluding the exploratory data remains statistically reliable, r = 0.782, p = .007.

3.7. Robustness analyses

Although we have excellent power, given the densely sampled nature of our data col-

lection, an additional concern might be that our conclusions about the entrainment and

the coupling strength hypotheses are carried only by a single participant or by a limited

set of participants, which does not reflect the whole dataset. We therefore performed a

robustness analyses in which we sequentially excluded all possible combinations of two

participants (20% of the total participant number) from the data, and we reran the main

analyses. The results of these analyses can be viewed here: https://osf.io/7vxz6/. We

obtain for the EH that if we exclude any combination of two participants, that in 100%

of the cases (for 45 of the 455 exclusion datasets), the main effect of DAF vs. NO DAF

for beat and iconic gestures combined remain significant at p’s < .009, after accounting

for kinematic properties (same model as used in the EH testing section reported earlier).

Thus, there is a positive shift in D observed for beat and iconic gestures that are pro-

duced under DAF (as compared to NO DAF), regardless of whether we exclude any com-

bination of 20% of the data. We also performed this same type of analyses for the CSH,

Fig. 6. Relationship standard deviation and mean asynchrony (D peak velocity).

Note. Scatter plot of the relationship of the standard deviation with the mean asynchrony for D peak velocity

with the participants of the current experiment (N = 10, numbers 1–10) and the previous exploratory study

(N = 4, numbers 11–14).
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and we obtained for 93% of the times (42 of 45 exclusion datasets) lower SD’s in D were

reliably found for beat and iconic gestures under the DAF vs. NO DAF condition

(p’s < .011). Note that even for the three exclusion datasets for which we did retrieve

non-significant findings, the p-values were not extremely removed from our original find-

ings, p’s < .072. These conservative robustness analyses clearly show that the effects

reported here are not carried by a limited set of participants.

3.8. Exploratory cross-wavelet analysis: Gesture (velocity) and speech (ENV)

3.8.1. Introduction to cross-wavelet analysis
To assess correlated rhythmic activity (i.e., shared periodicities) in gesture and speech

on multiple time scales, we performed a cross-wavelet analysis (Grinsted, Moore, &

Jevrejeva, 2004; for good examples see Schmidt, Nie, Franco, & Richardson, 2014;

Romero et al., 2018) using the R package “WaveletComp” (R€osch & Schmidbauer,

2014; for a helpful tutorial, see R€osch & Schmidbauer, 2016). Wavelet analysis provides

a spectral decomposition of a single time series; that is, it decomposes a complex time

series into a set of dominant periodic oscillations continuously across the sampled time

period. Wavelet analysis is therefore related to the other spectral decomposition methods

(e.g., Fast Fourier Transform). However, a key further specification of cross-wavelet anal-

ysis is that, in addition, it allows for identification of common periodicities6 between two

time series continuously through time. By decomposing the different periodicities at

moments in time that exist within time series, such output can be compared between time

series as well. To this end, cross-wavelet analysis provides an estimate of degree to

which two time series’ periodicities are correlated, and it allows for the estimation of this

correlation on different time-scales that are of interest. The strength of the correlation

between the time series across a pre-defined period range (i.e., time-scales) is provided

by the average coherence (ranging from 0 to 1; no correlation to perfect correlation) and

a concomitant p-value for that average coherence. The number of simulations that deter-

mine the reliability of the p-value estimates was set at 250 (default = 10).

As mentioned in the introduction, our main aim with this analysis is to assess whether

we can detect differences in correlation strength of the periodicities of gesture and speech

on multiple nested timescales. Given that we are dealing with spoken language and physi-

cal movement, the following theoretically relevant timescales can be proposed. We set

the period range at which average coherence was computed as to include possible period-

icities at the timescale of a clause and a sentence (~2–6 s; i.e., 0.5–0.16 Hz or a period

of 6 s), the gesture (~0.5–2 s; 2–0.5 Hz or a period of 1 s), up to faster frequencies to

accommodate for the average length of a syllable (~200–500 ms; i.e., 5–8 Hz or a period

of 0.2 s).

To provide an example of how cross-wavelet analysis decomposes and relates two time

series, Fig. 7 shows a visual presentation of a cross-wavelet analysis for the time series

of participant 1 for two consecutive “trials” of 60 s, starting with the first DAF trial (after

30 s warm up) and following the NO DAF trial of equal length. The cross-wavelet analy-

sis plot provides periodicities for the velocity and ENV time series separately
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(represented by the first two upper panels). For these “univariate” wavelet analyses, an

estimate of the spectral “power” is provided through time as well as an average power

over time (right panels). Power expresses the amount of variance that is explained by a

particular pure periodic signal (e.g., 2-s period) in the complex time series. Thus, power

allows you to compare which periodicities are more dominant in the complex time series.

Similarly, in the bottom panel the “cross-wavelet” analysis is shown which provides the

strength of the shared periodicities as quantified by the cross-wavelet power. Cross-wave-

let power expresses the relative strength of periodicities that are shared between two time

series (represented by the bottom panel with more red-colored areas denoting higher

cross-wavelet power for shared periodicities between gesture and speech).

To interpret the cross-wavelet plot results, we can further assess the bottom panel of

Fig. 7: We see that for this participant there seems to be a slight drop in the correlations

of the speech (ENV) and gesture (velocity) time series (see note e in Fig. 7), as expressed

by the lower cross-wavelet power levels for the NO DAF trial segment (as compared to

the DAF segment); visually represented as a decrease in red-colored areas (and an

increase in blue-shaded areas). If generalizable, this supports the idea that gesture and

speech are more tightly coupled under DAF. For this participant, a reliable common fre-

quency of speech and gesture is observed for the 2-s period, which indicates that move-

ment and speech are coupled over parts of a sentence. If gesture–speech coupling

strength is affected by DAF, we thus might find such effects on several time scales. How-

ever, to formally test this, we reconstructed for each participant a time series for speech

and gesture produced under DAF vs. NO DAF by concatenating alternating trials into a

single continuous DAF versus NO DAF time series per participant. The reconstructed

time series of gesture and speech was standardized for each trial (excluding possible arti-

facts of difference in amplitude levels between DAF vs. NO DAF trials, while preserving

temporal structure within trials7 ). We subsequently entered these time series into a cross-

wavelet analysis from which we obtained the “average coherence” and “p-values for the

average coherence” per condition and per participant across the predefined timescales

(0.2–6 s periods). Average coherence provides a summary statistic of the correlation

strength of the time series over the pre-defined time scales (i.e., different periods), its out-

put ranging from 0 (no correlation) to 1 (perfect correlation). The conventional p-values
provide a reliability estimate by testing against the null hypothesis that there is no joint

periodicity.

The final cross-wavelet analyses were performed to test whether coupling strength dif-

ferences between gesture and speech were present in the form of correlated periodicities

(average coherence) between amplitude envelope of speech (ENV) and the velocity of

the hand movements. Importantly, in addition to assessing the effect of condition on aver-

age coherence, we wanted to assess whether differences in coherence for condition were

pronounced at particular time scales. We therefore constructed a three-level categorical

variable to capture three theoretically relevant time scales (see for a similar procedure

Schmidt et al., 2014). First, on the basis that an average syllable length is about 200–
300 ms (Turvey, 1990) we will define a “fast” syllable-level time scale (0.2–0.5 s peri-

ods). Given that we obtain in the current dataset that gestures take about 700 ms to
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Fig. 7. Wavelet and cross-wavelet analyses plots for participant 1.

Notes. The top and middle panels show wavelet power plots. Time is on the horizontal axis (see note c). The
vertical axis shows the different time scales expressed as “period” (Note to convert to Hz = 1/period; i.e.,

period 0.5 = 2 Hz, period 4 = 0.25 Hz.). Vertical axes show the time scales from 0.125 s to ~4 s periods

(see note a). Darker red areas indicate higher power indicating stronger periodicities at that time scale for that

time segment. The right panels show the average power (horizontal axis) for each time scale (vertical axis)

(see note b). The red dots indicate which periodicity is statistically reliable at p < .05. The lower panel shows

the cross-wavelet results. Darker red areas indicate higher cross-wavelet power for shared periodicities at that

time scale for that time segment (see note e and note f). The bottom right panel shows a summary of the

average cross-wavelet power for each timescale (see note d). The horizontal axis represents the average

cross-wavelet power indicating a degree of shared variance explained for a particular periodicity. Notice for

example, that for both speech and gesture there is a peak at 2-s periods (see note b), which produces a shared

peak at 2 s in cross-wavelet power (see note d). This indicates that gesture and speech seem to oscillate with

a joint period of 2 s or a frequency of 0.5 Hz (for this participant). Note, however, that the shared periodici-

ties are very complex and show varied coupling across time and period (except periods <0.20 s, i.e.,

<200 ms).
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complete (and some may last as long as 2 s), we will define a “medium” gesture-level

timescale (0.5–2 s; 1 Hz or a period of 1 s). Finally, although the average sentence length

is difficult to judge (given its inherent variability), we estimate most sentences to not take

longer than 6 s and we will use this as the upper bound for the slowest timescale of inter-

est, that is, “slow” sentence-level timescales (which included coherence levels for 2–6 s

periods). Note that our definitions of the timescales are given to provide a sense of the

dominant timescale for each phenomenon, but clearly there is a distribution of times for

each modality around these center values.

Having identified timescales of interest, we performed two separate analyses. First, we

assessed raw average coherences per participant and per condition for all periodicities.

Second, we performed an analysis where we compared coherence strengths that were

found statistically reliable (p < .05). Fig. 8 provides a visual overview of the average

coherence levels for each time scale.

To test whether differences in raw average coherence levels (Fig. 7 upper panel) exist

for DAF vs. NO DAF trials, and whether such differences are more pronounced on speci-

fic time scales, we performed a mixed regression (with a random intercept for each par-

ticipant) with average coherence as the dependent variable. As predictors, we included

time scale (model 1), timescale and condition (model 2), as well as finally adding an

interaction of condition and timescale (model 3). However, in all the models, condition

was not a reliable predictor of raw average coherence (p’s > .71). Only model 1 with

time scale as predictor for average coherence showed significantly improved fit relative

to a model predicting the overall mean (change in v2[1] = 2,291.31, p < .001). Slower

time scales had higher raw coherence levels than fast time scales (fast < medium < slow;

all comparisons p’s < .001).

However, the raw coherences might contain correlation estimates that are not reliable.

Indeed, it is common for these types of continuous bivariate time series analyses to treat

coherences as meaningful indicators of reliable relations given some arbitrary cutoff (e.g.,

see Danner et al., 2018). Instead of deciding on a cut-off based on the correlation coeffi-

cients, the current cross-wavelet analyses conveniently provide reliability estimates

(p-values) for coherence estimates by testing against the null hypothesis that there is no

correlated periodicity. As such, we can filter our coherence estimates, by considering only

coherence estimates that were found reliable at p < .05, and compare possible differences

across conditions for those statistically reliable periodicities (Fig. 6 lower panel). Note

that this drastically reduces the amount of data points as only 22% of the coherence esti-

mates reached the p < .05 threshold. A model containing time scale as a predictor for sta-

tistically reliable average coherence had improved fit, relative to a model predicting the

overall mean (change in v2[1] = 525.227, p = .001). Adding condition as predictor to the

model improved the fit (change in v2[1] = 11.938, p < .001). Consistent with the overall

findings, the average coherence across the time scales was lower for the NO DAF trials

as compared to the DAF trials (b = �0.036 [95% CI: �0.056, �0.036], t(187) = �3.510,

p < .001). Adding an interaction of time scale and condition further improved the model

compared to the previous model containing only condition and period (change in

v2[1] = 22.78, p < .001). The final model revealed that the effect of increased coherence
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levels for DAF was carried only for the medium time scale (0.5–2 s), which in the model

containing interactions is reflected by statistically reliable interaction of condi-

tion 9 medium time scale (as compared to the average coherence for the fast time scale),

b = �0.124 [95% CI: �0.174, �0.074], t(182) = �4.822, p < .001), but no reliable inter-

action of condition x slow time scale, b = �0.009 [95% CI: �0.085, 0.007],

t(182) = �0.239, p = 0.811). In sum, the current continuous time series analyses support

our earlier parametric findings. We show that for statistically reliable periodicities there is

higher coherence between gesture and speech for the DAF vs. NO DAF condition, espe-

cially for periodicities around 0.5–2 s. It is further important that statistically reliable

periodicities were obtained at slower (2–6 s) and fast time scales as well (200–500 ms),

suggesting that gesture and speech are coupled on multiple nested time scales.

Fig. 8. Average coherence levels for fast to slow time scales under DAF vs. NO DAF.

Notes. Box- and jitter-plot for the average coherence levels per time scale. The colored “jittered” dots provide

individual coherence data points. The upper panel shows the raw coherence levels, and the lower panel shows

only the coherence levels that were statistically reliable at p < .05. Note that reliable periodicities are

observed on all time scales. “Fast” time scale indicates average coherence between ENV and velocity for

periods relevant to syllable completion times (200 ms to 500 ms); “Medium” time scales are most relevant to

gestures (500 ms to 2 s); “Slow” time scales are most relevant to clauses and sentences (2–6 s).
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4. Discussion

In this study, we assess how strongly gesture and speech are coupled by perturbing the

speech production system. We perturbed the speech production system by providing partici-

pants with a delayed auditory feedback of their speech of 150 milliseconds, which leads to

speech disfluency. We made particular model-based predictions that variably state how ges-

ture and speech are related (see Fig. 1). First, we introduced the ballistic model which states

that gesture and speech are decoupled at late stages of execution. This ballistic model pre-

dicts that speech will lag behind on gesture when speech production is impaired, as there is

no means of readjusting the gesture stroke to accommodate speech (leading to considerable

gesture–speech asynchronies). Second, we introduced the sparsely coupled model, which

states that there is bidirectional coupling between gesture and speech which allows continu-

ous recalibration of gesture and speech. The sparsely coupled model predicted that gesture-

speech synchrony would be maintained when speech was perturbed, as gesture can readjust

and slow down if speech disfluencies occur. Finally, the currently favored dynamically cou-

pled model (also see Fig. 9) suggests that gesture-speech coupling strength is something

that is intensified when speech disfluencies occur as it allows for gaining stability under

interfering conditions. This model further predicts that the gesture system is (next to speech)

sensitive to the auditory delay of speech. Namely, gesture activity will inadvertently entrain

to the auditory delay, leading to gesture-speech asynchronies that indicate gesture’s syn-

chronization with the delay of speech.

Fig. 9. The dynamically coupled model and the summary data.

Notes. The dynamically coupled model as shown in Fig. 1 is shown here on the right. On the left is a sum-

mary of the actual data obtained for peak-velocity and peak pitch (a) synchronies (D) for all beat and iconic

gesture events that occurred during this study. It can be seen that the distribution of D for gestures produced

under DAF is more peaked, indicating that gesture and speech are more synchronized under DAF (supporting

the coupling strength hypothesis). Secondly, gestures produced under DAF consistently have a slight offset,

such that gestures are slightly delayed wherein peak velocity was more closely aligned with the delay of

speech (supporting the entrainment hypothesis).
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Our results indicating that gesture-speech synchrony is present under DAF leads us to

conclude that gesture and speech are indeed bi-directionally coupled (discounting the bal-

listic model). This supports McNeill’s (1992) pioneering descriptive work, as well as

more kinematically detailed research on non-spontaneous gesturing (Chu & Hagoort,

2014; Rusiewicz et al., 2014).

This study, however, extends this previous research by also showing that gesture and

speech are more tightly coupled under DAF. Namely, our exploratory analyses suggest

that all gestures (i.e., beat and iconic) produced under DAF (vs. NO DAF) were more

tightly coupled to peak pitch as indicated by smaller standard deviations for D’s for all

key kinematic anchor points. In other words, gestures were less variably aligned with

peak pitch under DAF. Initially we predicted that increased gesture-speech coupling

would also be translated into more absolute differences in asynchronies, as this was also

originally found in an exploratory study with beat gestures (Pouw & Dixon, unpublished

data). However, we could not replicate this confirmatory prediction in the current analy-

sis. We think, however, that the exploratory analysis provides strong additional evidence

for the coupling hypothesis as it more directly addresses the question whether distribu-

tions of D are more or less peaked (as a measure of coupling strength), as opposed to

looking at absolute deviances from peak pitch. Furthermore, looking at absolute deviances

of peak velocity from peak pitch as a proxy for gesture-speech coupling strength, is in

hindsight not the ideal test because there is also an entrainment effect found which inevi-

tably leads to more absolute deviances in the DAF condition (as can be seen in Fig. 9).

Thus, given that the more adequate exploratory analyses show clear stable effects, we

conclude that across the board the CSH is supported; gesture–speech coupling is strength-

ened when the speech system is perturbed by an interfering signal (i.e., DAF).

The exploratory cross-wavelet analysis further corroborate the CSH by showing that

the shared temporal structures of gesture and speech had a lower correlation (average

coherence) for statistically reliable shared periodicities, which was especially pronounced

for time scales at the level of a gesture completion (0.5–2 s). As such, this analysis sup-

ports our main findings by indicating that increased gesture-speech coupling is detectable

in shared periodicities as well. We also provide evidence that shared periodicities are sta-

tistically reliable at slower timescales (2–6 s), providing novel quantitative evidence for

the theoretical claim (Kendon, 2004; McNeill, 2005) that gesture and speech are coordi-

nating on multiple time scales (e.g., a gesture-speech event can be nested in a sequence

of gesture-speech events), although we do not find evidence that DAF is disrupting

gesture-speech coupling on these slower timescales.

Secondly, we find strong evidence that despite gesture-speech system’s resistance to

perturbation, gestures seem to entrain to the DAF signal. Both beat gestures’ and iconic

gestures’ kinematic anchor points were positively shifted. It is as though gestures’ kine-

matics is attracted toward the delayed auditory event which occurs after the actually pro-

duced peak pitch. Furthermore, we find a promising indication that higher coupling

strength (lower standard deviations for D’s) is associated with lower entrainment effects,

suggesting that increased coupling strength may reduce interference of DAF on gesture.
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To note, we are confident in the presence of the current DAF effects in the current sample,
as we yielded such findings from multiple analyses techniques, additional robustness analyses,

and a pre-registered replication of earlier exploratory results. However, given that we base our

conclusions on only a small number of participants (N = 10 and N = 4 for the confirmatory

and exploratory study, respectively), we should be cautious in generalizing the currently

obtained dynamics in the wider population. More research and methodological innovations in

multimodal research are needed that can take up such claims of generalizability.

4.1. Theoretical implications

We propose based on the dynamically coupled model that DAF of speech affects both

speech and gesture production. At first blush this is counterintuitive, because the DAF of

speech only constitutes inherently relevant information to the speech production system.

However, that DAF of speech affects gesture is less surprising if we consider the evi-

dence that gesture is strongly coupled to the speech system (McNeill, 2005); thus, effects

of speech production are inherently meaningful for the gesture system. Furthermore, there

is a possibility that the entrainment effect is also not dependent on the inherent meaning-

fulness of the DAF signal per se. The differences in how DAF affects gesture and speech

may rather be explained by the differing intrinsic or “preferred” frequencies of gesture

and speech which, therefore, lead to different entrainment relations to the DAF signal.

This is a well-known phenomenon for coupled oscillator systems called detuning (see

p. 11; Pikovsky, Rosenblum, & Kurths, 2001). Considering that the average duration for

a syllable is about 200 ms, the current DAF of 150 ms presents an interfering out-of-

phase signal. Yet a gesture event completes its movement at about 700 ms and is likely,

therefore, to entrain differently than speech to the DAF of speech. Indeed, it has been

shown that the rate at which rhythmic tapping is performed will affect the degree to

which those actions are sensitive to a DAF manipulation (Finney & Warren, 2002); tap-

ping at an interval of 250 ms (vs. 400 ms) will maximally be interrupted by a roughly

similar-valued DAF of the tapping action (250 ms rather than 400 ms delay). Therefore,

the entrainment effect could equally be accommodated by theories that aim to explain

effects of DAF for rhythmic sensorimotor behavior in general (rather than DAF affecting

speech in a special way), such that a DAF signal oscillates at a frequency that can impair
(speech) or attract (gesture) periodicities in the behavior which the DAF shadows (Finney

& Warren, 2002; Howell, Powell, & Khan, 1983).

That gestures are more tightly (less variably) coupled to speech under DAF may be an

important lead for understanding the cognitive function of beat and iconic gesture–speech
synchrony that goes beyond its obvious role in communication. This modulation of

gesture–speech synchrony is also particularly interesting, because there is a host of research

showing that DAF leads to less synchrony in rhythmic tapping tasks, where one needs to tap

with an external rhythm or continue tapping after the external signal has stopped (e.g.,

Finney & Warren, 2002; Repp, 2005). We think that the key difference is that gesture with

its own intrinsic dynamics (and thus different entrainment to DAF) can be utilized to resist

DAF in speech production. We speculate that under conditions where speech is made
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difficult due to DAF, the increased coupling of gesture and speech may allow the gesturer to

maintain her own preferred “oscillation rate” (i.e., maintain rhythmic speech). In keeping

with the coupled oscillator parlance, increasing the coupling strength between two oscilla-

tors diminishes the relative coupling strength with an interfering third oscillator. That active

intentional mechanisms play some role in gesture-speech synchrony resonates with findings

from a finger-tapping paradigm. Treffner and Peter (2002) found that tapping-speech cou-

pling can be affected by explicitly focusing attention on speech or finger tapping (Treffner

& Peter, 2002). Furthermore, effects of attention were especially pronounced when the tap-

ping-speech coordination was in a less stable regime (i.e., tapping out of phase with speech),

which suggests that attentional mechanisms come into play when, and may help to persist

in, performing a coordination that is inherently more unstable (e.g., gesture–speech under

DAF). Although the precise effects on gesture-speech synchrony on speech go beyond the

current paper and should be further studied in the present context, our findings suggest that

stability through synergy may be a key mechanism for understanding the cognitive function

of gesture. This resonates with dynamical systems perspectives on gesture-speech coordina-

tion (Iverson & Thelen, 1999; Jonge-Hoekstra, Van der Steen, Van Geert, & Cox, 2016;

Rusiewicz, 2011; Rusiewicz & Esteve-Gibert, 2018), as well as with David McNeill’s

(1992, 2005) lifework on the Growth-point theory of gesture.

In sum, the current findings suggest that gesture-speech synchrony is modulated so as

to maintain stability under perturbation. It can therefore be related to research indicating

that gesture may help listeners understand a speaker’s message when auditory information

is degraded (e.g., trying to have a conversation at a crowded cocktail party; Drijvers &

Ozyurek, 2018), and speaking more rhythmically may help listeners’ understanding when

the speech signal is more noisy (Wang, Kong, Zhang, Wu, & Li, 2018). Conversely, ges-

ture-speech synchrony may help the gesturer to keep a preferred prosodic rhythm that is

more difficult to maintain without bodily synchronization, especially when speech is per-

turbed due to an interfering signal (e.g., loud music during a party). We suggest that sta-

bility by means of sensorimotor synchronization may be an important expansion of the

intra-cognitive functionality of gesticulation that has so far been largely overlooked (e.g.,

De Ruiter, 2000; Goldin-Meadow & Beilock, 2010; Hostetter & Boncoddo, 2017; Kita,

Alibali, & Chu, 2017; Pouw, De Nooijer, Van Gog, Zwaan, & Paas, 2014; ).
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Notes

1. For statistical power analyses: https://osf.io/5h3bx/.

2. Note that for present purposes, metaphorical gestures (McNeill, 2005) will not be

distinguished from, and fall under the category of, the iconic gesture label in this

study.

3. We found that 33 Hz resulted more smooth derivative time series (i.e., velocity) as

compared to the 10 Hz cut-off as initially proposed in the pre-registration.

4. For all mixed regression models reported throughout the paper, we used maximum

likelihood estimation.

5. There are 45 unique combinations of two participants that can be excluded.

6. There are other functionalities such as assessing leading/follower relations between

periods (i.e., “relative phase relations”). However, in the current paper we will

restrict ourselves to the gross coupling between gesture and speech.

7. We also reran another set of analyses where we computed coherence statistics for

each trial separately instead of concatenating the DAF and NO DAF time series.

Our current interpretations are not affected by these different approaches; for an

overview of this analyses, see https://osf.io/pdbk2/.
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