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Simple Summary: Gliomas comprise 80% of all malignant brain tumors. We aimed to develop a
deep learning-based framework for the automatic segmentation and characterization of gliomas.
In this retrospective study, patients were included if they: (1) had a diagnosis of glioma confirmed
by histopathology and (2) had preoperative MRI with the inclusion of FLAIR imaging. The deep
learning-based U-Net framework was developed based on manual segmentation on FLAIR as the
ground truth mask for automatic segmentation and feature extraction, which were used for the
prediction of biomarker status and prognosis. A total of 208 patients were included from our internal
dataset with stratified sampling to split the database into training and validation. An external
dataset (n = 31) from an outside institution was used for testing. The dice similarity coefficient of
the generated mask was 0.93 on the testing dataset. The prediction of the radiomic model achieved
an AUC of 0.88 for IDH-1 and 0.62 for MGMT on the testing dataset. Our deep learning-based
framework can detect and segment gliomas with excellent performance for the prediction of IDH-1
biomarker status and survival.

Abstract: (1) Background: Gliomas are the most common primary brain neoplasms accounting
for roughly 40–50% of all malignant primary central nervous system tumors. We aim to develop
a deep learning-based framework for automated segmentation and prediction of biomarkers and
prognosis in patients with gliomas. (2) Methods: In this retrospective two center study, patients
were included if they (1) had a diagnosis of glioma with known surgical histopathology and (2) had
preoperative MRI with FLAIR sequence. The entire tumor volume including FLAIR hyperintense
infiltrative component and necrotic and cystic components was segmented. Deep learning-based
U-Net framework was developed based on symmetric architecture from the 512 × 512 segmented
maps from FLAIR as the ground truth mask. (3) Results: The final cohort consisted of 208 patients
with mean ± standard deviation of age (years) of 56 ± 15 with M/F of 130/78. DSC of the generated
mask was 0.93. Prediction for IDH-1 and MGMT status had a performance of AUC 0.88 and 0.62,
respectively. Survival prediction of <18 months demonstrated AUC of 0.75. (4) Conclusions: Our
deep learning-based framework can detect and segment gliomas with excellent performance for the
prediction of IDH-1 biomarker status and survival.

Keywords: deep learning; glioma; tumor segmentation; radiogenomic; isocitrate dehydrogenase 1;
magnetic resonance imaging

1. Introduction

Radiogenomic mapping has emerged as a promising noninvasive tool for the success-
ful prediction of glioma biomarkers, which has important implications for understanding
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pathophysiology and creating targeted treatment regimens [1]. Some of the most studied
biomarkers include isocitrate-dehydrogenase-1 (IDH1) [2], methylguanine-DNA-methyl-
transferase (MGMT) promoter methylation profile [3], transcriptional regulator (ATRX) [4],
and epidermal growth factor (EGFR) [5]. In particular, IDH-1 and MGMT have emerged
as important biomarkers, with IDH-1 shown to be an independent positive prognostic
biomarker correlating with longer progression-free survival and positive treatment out-
come for chemoradiotherapy [6]. MGMT gene promoter methylation has also been shown
to predict treatment outcomes for temozolomide plus radiotherapy [7,8].

Most recently, conventional MRI sequences such as T1-weighted postcontrast (T1c+),
fluid-attenuated inversion recovery (FLAIR), and diffusion imaging [9] have been found to
be useful in predicting IDH-1 mutation [10–13], MGMT methylation status [7,8], EGFR over-
expression [14,15], ATRX mutation [12,16], PTEN deletion [17], and TP53 mutation [13]. The
ability to predict biomarker statuses noninvasively is invaluable as large tissue specimens
requiring multiple biopsy attempts are often needed for confirmatory histopathological
diagnoses. Radiomic association with survival prediction has also been underway. Carlson
et al. previously demonstrated that in patients with malignant gliomas, vascular endothelial
growth factor (VEGF) status was predictive of patient survival independent of edema [18].
Eliat et al. incorporated texture analysis with dynamic contrast-enhanced MRI to differenti-
ate malignant glioneuronal tumors, which are associated with increased survival and less
metastasis, from glioblastoma multiforme (GBM) [19]. More recently, Rao et al. used MRI
sequences to demonstrate that volume-class, hemorrhage, and T1/FLAIR-envelope ratio
could stratify survival in patients with GBM [20].

In recent years, models developed as part of the Brain Tumor Segmentation (BraTS)
challenges have been shown to successfully detect and segment gliomas [21,22]. Several
deep learning methods, such as single multi-task network (OM-Net) [23], 3D convolutional
neural networks applying hierarchical segmentation [24], and 3D U-Net architecture [25]
have shown promising results in glioma segmentation. Extensive research is underway to
predict biomarkers from these segmentations; however, there is scarce data on combining
segmentation with radiomic extraction for the prediction of biomarkers and survival
prediction.

In this study, we aimed to develop a U-Net-based, fully automated framework
for segmentation and characterization of gliomas using MR radiomics for predicting
biomarker status and prognosis. We further assess the applicability of our algorithm
using external validation.

2. Materials and Methods
2.1. Patient Selection

This retrospective study was approved by an institutional review board and informed
consent was waived. Patients with initial diagnoses of glioma between January 2016 and
September 2020 were reviewed. Patients were included if they (1) had a diagnosis of
gliomas with known IDH-1 and MGMT statuses from surgical histopathology; (2) had
preoperative MRI including FLAIR within 30 days of biopsy or surgical resection. Further-
more, any patients with prior chemotherapy or resection were excluded. MR with motion
artifacts were excluded. The patient’s survival defined from the date of diagnosis (surgical
pathology) onward was documented when available. The survival was dichotomized to
poor versus good using an 18-month cutoff as the high-end of the survival curve in the era
of modern glioma treatments [26]. The internal dataset was collected from Mount Sinai
Hospital (MSH) for training and validation purposes. Developed models were tested on an
external dataset from the University of California, Los Angeles (UCLA).

2.2. Histopathological Data

Tumor tissue samples were obtained from biopsy or resection as part of routine
diagnostic neuropathology and molecular evaluation. IDH-1 (specifically IDH1-R132H)
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was assessed using immunohistochemistry. MGMT promoter methylation was assessed
using pyrosequencing of bisulfite-treated genomic DNA (CpG sites 74–79, QIAGEN).

2.3. Image Acquisition

Image acquisition was performed using a standardized preoperative brain tumor MRI
protocol within our radiology department. The imaging protocol for FLAIR images were
repetition time (TR)/echo time (TE)/inversion time (TI), 8000–12,000/98–130/2400–2700 ms.

2.4. U-Net Based Auto-Detection and Segmentation of Gliomas

A DenseNet121 [27] based U-Net framework pretrained on the RadImageNet [28]
dataset was developed based on symmetric architecture from the 512 × 512 segmented
maps from FLAIR as the ground truth mask. The input size was 256 × 256 × 3, where all
grayscale images were converted to RGB images in order to use pretrained weights with
all three channels set to the same value. The ReLU activation function was implemented
on each convolutional layer. A batch size of 16, RMSProp with a learning rate of 0.001,
and binary cross entropy loss function were used. Stratified sampling was performed to
split the database into training (n = 176), validation (n = 32), and testing (n = 31). Dice
similarity coefficient (DSC) was calculated to assess the overlap of the deep learning-
based segmentation map and ground truth segmentation divided by the total size of the
two masks.

2.5. Volume Acquisition and Texture Analysis

Tumor segmentation was performed manually using volume-of-interest (VOI) analysis
on commercially available FDA-approved software (Olea Sphere software, Olea Medical
SAS, La Ciotat, France). The entire tumor volume, including FLAIR hyperintense infil-
trative component and necrotic and cystic components, was manually segmented by an
expert neuroradiologist (K.N., 10 years) on FLAIR images (Figure 1). A total of 95 texture
features were extracted from predictive masks generated by the aforementioned U-Net
via the pyradiomics [29] package in Python 3.8.10. These included 2 shape features, voxel
volume and surface volume ratio, 18 first-order metrics, such as the mean, standard de-
viation, skewness, and kurtosis, and second order metrics including 24 gray level run
length matrix (GLCM), 16 gray level run length matrix (GLRLM), 16 gray level size zone
matrix (GLSZM), 5 neighboring gray-tone difference matrix (NGTDM), and 14 gray level
dependence matrix (GLDM) [30–34]. We used all 95 textual features with 2 demographic
features, age and sex, chosen for machine learning model development for the prediction
of biomarkers and survival analysis. Details of the definitions and calculations of these
features have previously been reported [35,36]. Details of 95 features were reported in
Supplementary Table S1.
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2.6. Statistical Analysis

To find the best parameter setting of the machine learning model, we applied an
optimization search grid algorithm on a support vector machine (SVM) [37], multilayer
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perceptron (MLP) [38], XGBoost [39], and RandomForest [40] classifiers with 7-fold cross-
validation using our internal dataset. The performance of the developed models was then
assessed in the external testing dataset. Each classifier having the best performance on the
validation set was selected. Only the results of the best classifier were reported hereafter.
Receiver-operating characteristic (ROC) curves were generated and area under the curve
(AUC) was estimated for models from FLAIR features.

Kaplan–Meier analysis [41] and Cox proportional hazards (CPH) [42] were performed
to study the prognosis of 18-month survival. CPH were compared to the best machine
learning classifier. The DeLong test [43] was used to calculate the 95% confidence inter-
vals (CI) of AUC and two-sided p-values. A P-value smaller than 0.05 was considered
statistically significant.

3. Results
3.1. Clinical Characteristics of Patient Population

A total of 251 patients were reviewed. Patients were excluded if they had insufficient
MR image quality (motion artifact, n = 23), prior surgeries involving the tumoral bed
(n = 16), or were treated with radiotherapy previously (n = 12).

Our final patient cohort consisted of a total of 208 patients. The mean ± standard
deviation of age (years) was 56 ± 15 with a median age of 56. Among our cohort, 130 were
male and 78 were female. The breakdown of the WHO glioma grades (2/3/4) were
28/56/124.

3.2. Testing Dataset

In our testing dataset, the cohort size was 31 patients with a mean ± standard deviation
of age (years) of 54 ± 14 with a median age of 54. Among our cohort, 21 were male and
10 were female. The breakdown of the WHO glioma grades (2/3/4) were 3/0/28. IDH-1
wt comprised 27/31 patients and MGMT methylation was in 22/31 patients.

3.3. Auto-Segmentation and Prediction of Biomarkers

The DSC of the generated mask compared to the ground truth mask on FLAIR was
0.93 on the external testing dataset (Figure 1) (Table 1). We conducted a 7-fold cross-
validation on the training dataset to analyze the variability in the AUC. The prediction for
IDH-1 status had a performance of AUC 0.88 (95% CI: 0.84–0.93) in the training dataset
and 0.93 (95% CI: 0.90–0.97) in the testing dataset using RandomForest (Table 2) (Figure 2).
The prediction for MGMT status achieved an AUC 0.59 (95% CI: 0.51–0.68) and 0.62 (95%
CI: 0.54–0.71) on training and testing datasets, respectively, using RandomForest (Table 3)
(Figure 2).

Table 1. U-Net performance.

Network Pretrained Source DSC on Validation Set DSC on Test Set

ResNet50 ImageNet 0.94 0.83

ResNet50 RadImageNet 0.94 0.89

DenseNet121 ImageNet 0.92 0.83

DenseNet121 RadImageNet 0.96 0.93

Table 2. IDH-1 performance.

Sensitivity Specificity Negative Predictive Value Positive Predictive Value

Training Set 0.9 1 0.28 1

Testing Set 0.98 0.32 0.94 0.59
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Table 3. MGMT performance.

Sensitivity Specificity Negative Predictive Value Positive Predictive Value

Training Set 0.63 0.65 0.83 0.38

Testing Set 0.45 0.68 0.57 0.57

3.4. Auto-Segmentation and Prediction of Survival

Survival data were available in a subset of patients within the training dataset (n = 89).
A total of 150 patients were lost to follow-up, which included transfer to an outside hospital,
hospice care, or no documented death in medical records. Survival prediction of <18 months
demonstrated AUC of 0.75 (95% CI: 0.65–0.85) in the training dataset using MLP, while the
CPH model achieved AUC of 0.53 (95% CI: 0.40–0.65; p < 0.05) (Figure 3). Kaplan Meier
curve of survival estimation is shown in Supplementary Figure S1. The comparisons of
SVM, MLP, XGBoost, and RandomForest classifiers on the validation set were reported in
Figure 4.
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Figure 1 shows an axial image from a preoperative MRI showing a 75-year-old man
with WHO grade IV glioblastoma with a biomarker profile of IDH1 wildtype and MGMT
methylation. Using FLAIR imaging (A), a volume of interest (VOI) was generated using
a voxel-based signal intensity threshold method subsuming the entire region of FLAIR
hyperintensity (B) used as a ground truth mask. The predicted mask from U-Net deep
learning algorithm (C) is shown for comparison.

4. Discussion

Automatic segmentation of gliomas has been extensively studied in the past, most
notably in studies from the recent BraTS trials, where large databases were assessed with
successful segmentation with DSCs ranging from 0.74 to 0.92 [44–49]. In our study, the DSC
was 0.93, which matched higher-performing algorithms from the BraTS trial (2017–2020).
However, our algorithm only used FLAIR sequences compared to the multiparametric
approach used in the BraTS trials.

In our study, we explored four U-Net approaches: the ResNet50 [50] network and
DenseNet121 network by using pretrained weights generated from ImageNet [51] and
RadImageNet, respectively. Table 1 summarizes the performance of these four models on
both internal validation and external testing sets. DenseNet 121 with the RadImageNet
pretrained weights were selected as it performed best on the validation set. This was
likely because RadImageNet pretrained weights have higher similarities to the glioma
dataset than ImageNet weights, thereby achieving better performance on both validation
and test set and demonstrating reproducibility by showing a narrower difference between
validation and test sets.

Several biomarkers are widely accepted as important prognostic indicators in gliomas.
In our study, we report radiomic prediction for IDH-1 status with AUC of 0.88. Prior
multimodal radiomic studies have predicted IDH-1 status with AUCs ranging from
0.86–0.90 [10,11,13]. We showed suboptimal predictability for MGMT methylation status
with an AUC of 0.62. Prior studies have shown the prediction of MGMT status with AUC
as high as 0.85 in multiparametric models [7–9]. The discrepancy in the performance of
our FLAIR-only model to prior multiparametric approaches suggests that adding features
from additional sequences likely increases the predictive ability for MGMT methylation
status. Methylation of the MGMT gene has been associated with longer overall survival and
favorable prognostic indicator of response to temozolomide and radiotherapy [52]. How-
ever, subsequent studies have reported conflicting results on the prognostic implication of
MGMT methylation independent of therapy [53].

In a subanalysis of our internal dataset, survival analysis demonstrated good pre-
dictability of survival of <18 months with an AUC of 0.75. Previously, Bae et al. demon-
strated improved overall survival prediction (integrated AUC of 0.65) in patients with
GBM when combining radiomic MRI phenotyping with clinical and genetic profiles [54].
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A separate study by Choi et al. showed that MGMT methylation and IDH-1 status when
combined with radiomic data, provided valuable prognostication of GBM with a mean
overall survival of 25.5 months and integrated AUC of 0.73 [55]. Similarly, radiomics and
gene expression data were used by Ma et al. to stratify patients with low-grade gliomas
into low- vs. high-risk of progression to higher-grade tumors with an AUC of 0.79 [56].

Establishing an automated pipeline that can predict treatment response and prognosis
in patients with glioma can guide treatment options and surgical/chemotherapy manage-
ment, potentially serving as a noninvasive alternative to brain biopsy and tissue resection.
External validation of this algorithm also introduces applicability of this algorithm across
institutions, although a larger validation set and multiple institutions should be further
assessed in the future.

Our study has several limitations. Firstly, our study is retrospective in nature, and
consequently, our patient cohort had a skewed distribution consisting predominantly of
GBMs, especially in our testing group. Although our study had a higher proportion of
low-grade gliomas compared to the BraTS trial, a balanced cohort of WHO-grade tumors
would increase the applicability of our algorithm for low-grade gliomas. Another challenge
is the heterogeneous nature of gliomas, especially in GBMs, which vary across individual
patients and spatially within each tumor. Thus, biomarker profiles may vary depending on
the site of biopsy, even within the same tumor, and a comprehensive biomarker landscape
may not be captured by biopsy alone. Further validation with larger external datasets and
multiple institutions are needed to demonstrate the applicability of this algorithm. Another
limitation is related to truncated survival analysis due to incomplete data related to the
retrospective nature of this study. Survival data for many patients were not available due
to undocumented death in medical records, loss of follow up and switching providers,
among many others. We also did not have survival data for most of our external dataset;
therefore, the model performance in survival prediction could not be independently tested.

In summary, we showed that our deep learning-based framework can detect and
segment gliomas with excellent performance and can provide high prediction accuracy for
IDH-1 and modest accuracy for MGMT. Early identification of these biomarkers provides
several advantages to clinicians and patients by allowing prognosis prediction and inform-
ing treatment decisions. We hope to expand this study to include serial follow-up imaging
to assess changes in glioma radiomics and heterogeneity correlation with biomarker status,
and in particular in patients who received prior treatment, where a noninvasive assessment
of biomarkers may be a promising diagnostic tool without the need for re-surgery.

5. Conclusions

Our deep learning-based framework can detect and segment gliomas with a DSC of
0.93 and provide an acceptable prediction of biomarkers and prognosis. If its potential
is realized, our automated pipeline may be used as a noninvasive assessment of glioma
characteristics with important prognostic and therapeutic implications.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers14184457/s1, Table S1. Feature list for model development.
Figure S1. Kaplan Meier curve of survival estimation (MSH n = 89).
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