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We present an overview of selected computational methods for microRNA prediction. It is especially aimed at viral miRNA de-
tection. As the number of microRNAs increases and the range of genomes encoding miRNAs expands, it seems that these small
regulators have a more important role than has been previously thought. Most microRNAs have been detected by cloning and
Northern blotting, but experimental methods are biased towards abundant microRNAs as well as being time-consuming. Com-
putational detection methods must therefore be refined to serve as a faster, better, and more affordable method for microRNA
detection. We also present data from a small study investigating the problems of computational miRNA prediction. Our findings
suggest that the prediction of microRNA precursor candidates is fairly easy, while excluding false positives as well as exact predic-
tion of the mature microRNA is hard. Finally, we discuss possible improvements to computational microRNA detection.
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INTRODUCTION

Since 2000 the interest in microRNAs (miRNAs) and their
role as gene expression regulators has grown immensely. Lee
et al were the first to identify such a small regulator: the
lin-4 RNA in Caenorhabditis elegans [1]. It has been shown
that the 21 nt lin-4 RNA represses mRNA and controls part
of the C elegans larval development [1, 2]. The next small
regulatory RNA to be discovered was the let-7, which con-
trols a later stage in the development of C elegans [3, 4]. The
lin-4 and let-7, previously known as small temporal RNAs
(stRNAs), are today recognized as the first of a large class
of small regulatory noncoding RNA molecules now called
microRNAs [5]. This class of molecules is not limited to
development but regulates a wide range of biological pro-
cesses [6]. The microRNAs have been reported to be en-
coded within noncoding regions of genomes [5, 7, 8], and
within protein coding genes [9] as well as noncoding genes
[10].

Primary precursor miRNAs (pri-miRNAs) are long tran-
scripts that contain one or more miRNA precursors (pre-
miRNAs) [11]. Subsequently the pri-miRNA is cut by the
Drosha enzyme into one or more ∼ 70 nt long pre-miRNA
stem-loop (hairpin) structure(s) while still in the nucleus

[12]. The pre-miRNAs are transported by exportin-5 to the
cytoplasm [13–15], where they are cut by the RNase III Dicer
enzyme into active ∼ 22 nt long miRNAs [16–18] (Figure 1).
Usually only one side of the stem encodes a mature miRNA
[5, 19], however the process of selecting the side and re-
gion of the pre-miRNA that becomes a mature miRNA is
still not fully understood. The mature miRNAs are then
incorporated as subunits of the micro-ribonucleoproteins
(miRNPs) [20]. The miRNP is able to repress the transcrip-
tion of target mRNAs by binding to or cleaving the mRNA.
Thus the miRNA is capable of posttranscriptional regulation
[1–4, 21–23]. Such a posttranscriptional silencing complex
is often called an miRNA-initiated (or associated) RISC com-
plex (RNA-induced silencing complex), and is very similar to
the small interfering RNA-initiated RISC complexes [21, 24].
Detailed descriptions of the stepwise maturation of microR-
NAs are presented by Chen and Meister [25] and by Bartel
[26].

Different miRNAs have been detected in a variety of or-
ganisms; including 114 C elegans miRNAs, 326 human miR-
NAs, and a total of 35 virus-encoded miRNAs (miRBase
release 7.1, October 2005) [27, 28]. It is estimated that as
much as 30% of human genes are regulated by miRNAs
[29, 30].
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Figure 1: Sequence and structure of a pre-miRNA molecule encod-
ing a miRNA detected by Pfeffer et al [33] from the Epstein-Barr
virus. The mature 21 nt EBV mir-BART1 miRNA sequence is shown
on a grey background.

COMPUTATIONAL DETECTION OF miRNAs
IN SELECTED ORGANISMS

Until 2003 miRNAs were identified almost exclusively by ex-
perimental molecular biology [31] because there were few
computational miRNA prediction tools available (except for
homology searches).

According to Lai et al [32], three observations suggest
that computational miRNA prediction approaches will be
feasible. “First, miRNAs are generally derived from precursor
transcripts of 70–100 nucleotides with extended stem-loop
structure. Second, miRNAs are usually highly conserved be-
tween the genomes of related species. Third, miRNAs display
a characteristic pattern of evolutionary divergence.”

Already in 2001 Lee and Ambros used both bioinformat-
ics and cDNA cloning to identify potential C elegans miRNAs
[7]. They searched the C elegans genome for sequences con-
served in C briggsae that also had characteristic pre-miRNA
features and a secondary structure similar to lin-4 and let-7,
as computed by the mfold program [37]. They reported 15
novel miRNAs, of which two were the results of the com-
putational screening, while the rest were derived from the
cDNA cloning. Table 1 contains an overview of computa-
tional miRNA prediction studies.

Another computational tool for miRNAs identification
is MiRscan, described by Lim et al in 2003 [31]. MiRscan
was designed to identify miRNA genes conserved between
genomes, and was initially applied to C elegans and C brig-
gsae. MiRscan was utilized together with extensive sequenc-
ing of clones, resulting in the detection of 30 additional
miRNAs.

MiRscan starts out with two closely related genomes A
and B. It scans genome A for sequences that could form hair-
pin structures and then checks if the sequences are conserved
in genome B. This initial search aims at capturing most of the
homologous pre-miRNAs in the two genomes. The program
uses the captured miRNAs that are already experimentally
verified as a training set, and then computes a score for all
the initially recognized sequences.

Lim et al found 35 novel miRNA candidates in C elegans
using MiRscan, of which 16 were experimentally validated. In
addition, the program used a detection threshold that would
have identified half (29) of the known (58) miRNAs. This
implies that in the worst case, the MirScan program would
have a sensitivity of 0.70 for miRNAs detection in this study.

Lim et al also showed that the accuracy of MirScan is
lower than for programs designed to detect one special type
of RNA, such as tRNAs [38], but on the other hand it is at
least as good as general computer algorithms for detection
of bacterial ncRNAs [39–41]. Due to the homology criterion

of MiRscan, it may be questionable whether this program is
suitable for the detection of viral miRNAs as there are reports
on viral miRNAs not being conserved across species [33], as
well as reports on the opposite [36]. MiRscan has proved it-
self able to detect a large number of miRNAs in vertebrate
genomes with a detection sensitivity of 0.74 [42].

In May 2003, Ambros et al reported on the testing of
different methods for the detection of miRNAs in C ele-
gans [34]. This study was a follow up to their 2001 study,
when only 10% of the C briggsae genome was available [7].
Two computational approaches were based on sequence sim-
ilarities and stem-loop structure features, but used slightly
different algorithms. The algorithms were complementary
in the way that the methods uniquely identified miRNAs
and in total these two approaches identified 9 new miRNAs.
Combined with a third approach, cDNA cloning followed by
Northern blots, they discovered a total of 21 novel miRNAs.

Others have also screened the C elegans genome for
miRNAs using computational approaches based on hairpin
structure searches, secondary structure predictions, and in-
terspecies sequence conservation. Grad et al suggested 214
miRNA candidates of which 14 were confirmed by expres-
sion analysis [43].

In 2003 Lai and colleagues described a computational
method for miRNA identification in Drosophilia [32]. The
approach was named miRseeker, and the initial step was to
search the euchromatic DNA sequences of D melanogaster
and D pseudoobscura for transcripts potentially forming
stem-loop structures and having a “pattern of nucleotide
divergence characteristic of known miRNAs.” Subsequently
they considered the conservation of this sequence in more
distantly related insects. Lai et al started by aligning 24
pre-miRNA sequences from the two Drosophilia species and
found the degree of conservation to be higher than in pro-
tein coding regions. The candidates were then subjected to a
stricter selection procedure due to the many conserved pos-
sible pre-miRNA stem-loops found. Further analysis proved
that most divergence in the orthologous Drosophila miRNAs
originated in loop-mutations. In more diverged species only
the 21–24 nt mature miRNAs were found to be preserved.
The algorithm consists of three steps. Initially it aligns all D
melanogaster and D pseudoobscura intronic and intergenic re-
gions. It then slides a window along the conserved regions
and uses mfold [37] to estimate the free energy of poten-
tial secondary structure formed by the sequence in the win-
dow. A minimum arm length of 23 nt was required as well
as a free energy of at most −23.0 kcal/mol for one isolated
miRNA precursor arm. Both strands of the DNA sequence in
the sliding window were mfolded. Additional scoring of the
stem-loops was also applied. Finally, miRseeker attempts to
fit all the remaining miRNA-precursor candidates into one
of six stem-loop pattern classes defined by the initial 24 pre-
miRNA training set. This procedure left 208 miRNA candi-
dates, including 18 (75%) from the training set among the
124 highest scoring candidates. Out of the 208 candidates 42
were also found to be conserved (by sequence and structure)
in a third species. In a selection of 38 candidates, 24 were con-
firmed as novel miRNA genes (20/27 of those conserved in a
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Table 1: Overview, in chronological order, of approaches and results of selected miRNA detection studies. Computational and experimental
approaches used as well as the total number of predicted candidates and verified miRNAs are indicated for each study.

Reference Genome(s) Stem-loop Homology
Folding

Experimental
Novel candidates Novel verified

(free energy) (comp/exp) (comp/tot)

Lee and Ambros [7] C elegans X X X X 40/38 (only 53 tested) 2/13
Lim et al [31] C elegans X X — X 35/NA 16/30
Ambros et al [34] C elegans X X X X 407/NA 9/21
Lai et al [32] D melanogaster X X X — 166/0 (only 38 tested) 24/24
Pfeffer et al [35] Epstein-barr virus (EBV) — — — X 0/NA 5/5

Pfeffer et al [33]
Human cytomegalovirus

X — X X 11/NA 5/9
(HCMV)∗

Grey et al [36]
Human cytomegalovirus

X X — — 10/0 2/2
(HCMV)

∗One selected genome of a range of herpesviruses studied.

third species and 4/11 of the Drosophila specific candidates).
Lai and colleagues also estimated miRNAs to make up about
1% of the total amount of genes in the Drosophila genomes
(94–124 miRNA genes), while Grad et al estimated C elegans
to code for 140–300 miRNA genes [43]. As a concluding re-
mark, Lai et al state that their algorithm excludes at least one
known miRNA (miR-100).

Another study exploiting both characteristic miRNA fea-
tures and sequence conservation was developed by Wang
et al [44]. This approach was used in their search for Ara-
bidopsis thaliana miRNAs. Their prediction identified 63%
of known Arabidopsis miRNAs, and they claim identification
of 83 novel miRNAs, of which 25 were verified. The com-
puter algorithm evaluated possible miRNA precursors based
on their stem-loop structure, the GC content of the mature
miRNA, the loop length, mismatches in the stem containing
the mature miRNA and the conservation of mature miRNA
sequence in the Orysa sativa genome. Interestingly, 15 of the
19 already known unique Arabidopsis miRNAs have a loop
ranging from 20–75 nt, which is much longer than in the
known viral miRNAs [19, 33, 35, 36].

In plants, the alignment of the miRNA and its target
mRNA contains few mismatches. This fact has been success-
fully exploited in combination with typical miRNA feature
and conservation searches, as described above, in a search for
Arabidopsis thaliana miRNA [45].

Yet another project combining bioinformatics and exper-
imental biology in the quest for A thaliana and Nicotiana
tabacum miRNA chose a “reverse” approach [46]. Billoud
first created a cDNA library of all short N tabacum RNAs,
then computational methods were used to identify poten-
tial miRNAs. Their pattern matching program, Patbank, was
used for finding homologues and their MIRFOLD program
was used to check for possible miRNA secondary structures.

In this context, the microHarvester should be mentioned
as it is a useful web service designed to detect miRNA ho-
mologues in any set of sequences, given an miRNA precur-
sor [47]. The microHarvester is filter based and uses the con-
servation patterns of the microRNAs combined with BLAST
[48], Smith-Waterman [49], and RNAfold [50].

Wang et al presented a new computational tool in 2005
designed to search for homologues and paralogues of known

miRNAs; miRAlign [51]. It is claimed that miRAlign outper-
forms all earlier programs of this kind, due to a less strict
conservation search, the ability to take more structural prop-
erties into account, as well as its capability to create structural
alignments based on a single miRNA. It should be noted that
miRAlign is tested primarily on animal data. It was able to
detect 59 miRNA candidates in Anopheles gambiae of which
37 has later been reported in the MicroRNA registry [27, 28].

COMPUTATIONAL DETECTION OF miRNAs
IN VIRAL GENOMES

The first miRNAs detected in a viral genome were reported in
Science 2004 [35]. Pfeffer and colleagues recorded the small
RNA profile of Epstein-Barr virus (EBV) positive cells. They
detected several expressed miRNA genes in EBV, and given
the function of miRNAs they concluded that they had iden-
tified regulators of host and/or viral gene expression. The
detection of these 5 novel miRNAs was made by cloning of
small RNAs from EBV-infected cells. 4% of the small RNAs
originated from EBV. The 5 novel EBV miRNAs were de-
tected by Northern blotting. One miRNA was found in the
5′ UTR, one in the coding sequence, and one in the 3′ UTR
of the same gene, BHRF-1. The last two miRNAs are from a
cluster in the intronic regions of the BART gene. The mi-
RANDA algorithm was used in their prediction of mRNA
targets, a method developed for detecting miRNA targets in
Drosophila [52]. Several host and/or EBV mRNA targets were
found for every miRNA. The majority of the target mRNAs
have more then one miRNA binding site.

In 2005 Pfeffer et al reported on the identification of
several miRNAs in the herpesvirus family [33]. Their study
combined a new computational method for miRNA predic-
tion with a cloning approach similar to the one used in their
initial discovery of viral miRNAs [35]. They were able to pre-
dict miRNAs in many large DNA viruses, but they were un-
able to predict or experimentally identify miRNAs in small
RNA viruses or retroviruses. Another important finding in
this study was that the EBV miRNAs neither have any sig-
nificant sequence similarity with host miRNAs, nor do they
seem to be conserved in the herpesvirus family. This obser-
vation indicated that methods depending on cross-species
sequence conservation such as MiRscan and miRseeker,
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described above, are not well suited for prediction of viral
miRNAs. The computational approach developed by Pfef-
fer and colleagues was based on defining a set of properties
of known miRNA precursor stems and subsequently train-
ing a support vector machine (SVM) to separate known pre-
miRNAs from stem-loops unlikely to code for miRNAs. The
SVM was then applied on the set of all genomic regions po-
tentially forming a stem-loop secondary structure. The SVM
reported predictions based on a chosen threshold that re-
sulted in the detection of 71% of the true pre-miRNAs from
the training set with only 3% false positives. Their program
also had a method for ranking the candidates with a score
above the threshold; this method is independent of the SVM
threshold score. Disregarding the direction of transcription,
Pfeffer et al made 23 unique predictions of which 14 (61%)
were experimentally verified. One should keep in mind that
some of the predicted miRNAs can be very hard to detect as
they may be expressed only under rare conditions.

Further studying the expression of the EBV BHRF-1 gene
and its miRNAs, Pfeffer and colleagues suggest that viruses
are able to simultaneously transcribe both miRNAs and
mRNA from the same region. Pfeffer et al also suggest that
their conclusions support the view of independent miRNA
evolution in viruses, as viral miRNAs seem to lack sequence
conservation. In addition, most miRNAs are transcribed by
pol II [53], while viral miRNAs may also be transcribed by
pol III [25, 33].

Almost at the same time as Pfeffer et al published their
results [33], Cai et al published a paper on the detection
of miRNAs in the human pathogenic Kaposi’s sarcoma-
associated herpesvirus (KSHV) [54]. They reported the de-
tection of 11 distinct miRNAs, of which all were expressed in
latent KSHV infected cells. These 11 miRNAs were detected
by cloning small RNAs followed by RT-PCR and Northern
blot analyses. MirBase (release 7.1, October 2005) [27, 28]
lists 12 KSHV miRNAs, of which 10 were identified in both
studies, while both Pfeffer et al and Cai et al report one addi-
tional unique miRNA.

Grey et al developed a computational method based
on pre-miRNA stem-loop properties and combined it with
stem-loop conservation [36], despite the findings by Pfeffer
et al about lack of sequence conservation for viral miRNAs,
but in line with the findings in primates [55]. Grey and col-
leagues studied the closely related human and chimpanzee
cytomegaloviruses (HCMV and CCMV). First, all conserved
stem-loop structures scoring better than a 60% similarity
threshold were detected. The resulting 110 highly conserved
stem-loop sequences were then run through the MiRscan
program [31]. MiRscan then suggested 13 high-scoring can-
didates. Northern blot analysis was used on total RNA har-
vested at different time points for transcription verification.
Five of the 13 candidates were expressed during infection,
and three of these were among the ones detected by Pfeffer et
al. All but one of the miRNAs found in the study by Pfeffer et
al but not identified in the study by Grey et al were conserved
in CCMV and had a MiRscan score above the threshold. The
reason they were not detected was the initial stem-loop finder
algorithm.

The miRNAs of the simian virus 40 (SV40) has also been
studied [19]. Sullivan et al created a computer program
called VirMir that identifies miRNA precursor candidates in
small genomes (max 300 kbp). The VirMir program utilizes
the RNAfold package [50]. Sullivan and colleagues ended
up with two candidates out of which one region produced
a suitably sized pre-miRNA that was detected by a Northern
blot. The detected miRNA precursor was found to be a
member of a seemingly small fraction of the miRNA pre-
cursor family, namely, those producing one mature miRNA
from each stem of the precursor hairpin. Interestingly, they
also discovered that both of these miRNAs are acting on the
same target mRNA.

Bennasser et al argue that there are 5 likely miRNA can-
didates in the human immunodeficiency virus (HIV-1) [56].
Attempts to validate the candidates were in progress, but all
of the miRNA candidates were found to have several cellu-
lar mRNA targets by a rule based target finder algorithm.
As small-interfering RNAs (siRNAs) are somewhat related to
miRNAs due to the fact that their pathways partially overlap
and both become part of a RISC complex [21, 24], it is worth
mentioning that the HIV-1 genome encodes an siRNA [57].
So there is evidence that viruses can encode both miRNAs
and siRNA. The existence of both viral miRNAs and siRNAs
was also suggested by Lu and Cullan in their paper on the
adenovirus VA1 [58].

A COMPUTATIONAL SEARCH FOR EBV
miRNA PRECURSORS

In 2004 we investigated the challenges in computational
detection of miRNAs encoded in the EBV genome. The
EBV genome sequence (NC 001345) was retrieved from
NCBI, and then the sRNAloop program [43] (parameters:
hairpin structure no more than 75 nt, loop longer than 3 nt,
score threshold 22) was used to scan the entire genome for
potential miRNA precursors. A total of 148 candidates were
found, including all the five known EBV miRNAs. We kept
only one copy of the candidates appearing more than once
in the genome, narrowing down the number of candidates
to 70. Potential miRNA precursors inside coding regions
were not excluded. We then used mfold [37] to estimate the
free energy of the entire precursors, using the web service
(http://bioweb.pasteur.fr/seqanal/interfaces/mfold-simple.
html). The free energy estimates for the five known EBV
miRNAs ranged from −25 kcal/mol to −33.8 kcal/mol. We
kept approximately 40 candidates having a free energy less
than −24.5 kcal/mol, which is about the same threshold as
used in the study by Lai et al [32].

We then ranked the candidates as follows: the candidates
from nonrepeat noncoding regions or hypothetical protein
coding regions were ranked first, followed by candidates in
known protein coding regions, and finally the remaining
candidates. All of the five known pre-miRNAs were among
the top ten candidates. Based on these criteria we selected
the top 14 candidates for further studies, including the 5
known miRNAs. This leaves 9 novel predictions, as shown
in Table 2, the according secondary structure predictions can
be found in Figure 2. Attempts to experimentally verify either

http://bioweb.pasteur.fr/seqanal/interfaces/mfold-simple.html
http://bioweb.pasteur.fr/seqanal/interfaces/mfold-simple.html
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Table 2: Computationally predicted miRNA precursor candidates from the Epstein-Barr virus (this study), ranked according to our criteria.
The free-energy estimates were computed by the online mfold [37] version of December 2004. All predicted secondary structures can be
found, according to the given letter, in Figure 2.

Name,1 structure Position Direction Length Free energy2 Sequence Notes

PMRP 1, a 53263–53332 + 69 −25.4 kcal/mol

AUAACCUAUAGGUU-
AUUAACCUAGUGGU-
GGAAUAGGGUAUUG-
CAGCUGGGUAUAUA-
CCUAUAGGUAUAU

Intergenic region, poly A
signals upstream

PMRP 2, b 6838–6912 − 74 −32.7 kcal/mol

UACGUCACGGUUGUA-
GGCGGGGUUAAGCGU-
GCAUCUUCUGGGAUG-
CAACGUUAAGCCCCG-
UUUAGGUGGAACUG

Intergenic region

PMRP 3, c 9041–9116 + 74 −29.8 kcal/mol

AUGCUUCCCGUUGG-
GUAACAUAUGCUAUU-
GAAUUAGGGUUAGUC-
UGGAUAGUAUAUACU-
ACUACCCGGGAAGCAU

Intergenic region, poly A signals
upstream, promoter at 8573

PMRP 4, d 61262–61333 + 71 −43.8 kcal/mol

UGCCAUCAUCCCCUG-
CUUGGGACCCGACCG-
CACUUGCAUGCGGCC-
GGUGGUCCUGCGGGG-
GGUGACGGUCA

Inside a hypothetical
protein coding region

PMRP 5, e 1898–1973 − 75 −32.7 kcal/mol

CUCCUGACGCUGAGG-
CCUGGGAUCGUUGUU-
GGUGCCACGCAGCGC-
CACUAGCAGCAGGUU-
CUCAGCAAUCAGGGG

Inside a coding region

PMRP 6, f 7408–7483 + 75 −24.6 kcal/mol

CCACUCUACUACUGG-
GUAUCAUAUGCUGAC-
UGUAUAUGCAUGAGG-
AUAGCAUAUGCUACC-
CGGAUACAGAUUAGG

Intergenic repeat region3

PMRP 7, g 7454–7526 + 72 −25.4 kcal/mol

UAGCAUAUGCUACCC-
GGAUACAGAUUAGGA-
UAGCAUAUACUACCC-
AGAUAUAGAUUAGGA-
UAGCAUAUGCUA

Intergenic repeat region

PMRP 8, h 7929–8003 + 74 −29.4 kcal/mol

AUAGCAUAUGCUACC-
CAGAUAUAGAUUAGG-
AUAGCCUAUGCUACC-
CAGAUAUAGAUUAGG-
AUAGCAUAUGCUAU

Intergenic repeat region,
promoter at 7888

PMRP 9, i 151510–151584 + 74 −34.0 kcal/mol

UUGGUGGGACCUGAU-
GCUGCUGGUGUGCU-
GUAAAUAAGUGCCUA-
GCACAUCACGUAGGC-
ACCAGGUGUCACCAG

Intergenic repeat region

BHRF 1-1, j 53754–53829 + 75 −27.9 kcal/mol

CUCCUUAUUAACCUG-
AUCAGCCCCGGAGUU-
GCCUGUUUCAUCACU-
AACCCCGGGCCUGAA-
GAGGUUGACAAGAAG

Holds known miRNA; BHRF 1-1
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Table 2: continued.

Name,1 structure Position Direction Length Free energy2 Sequence Notes

BHRF 1–2, k 55131–55206 + 75 −32.1 kcal/mol

CCCCACUUUUAAAUU-
CUGUUGCAGCAGAUA-
GCUGAUACCCAAUGU-
UAUCUUUUGCGGCAG-
AAAUUGAAAGUGCUG

Holds known miRNA; BHRF 1–24

BHRF 1–3, l 55248–55323 + 75 −25.0 kcal/mol

UGGUGUUCUAACGGG-
AAGUGUGUAAGCACA-
CACGUAAUUUGCAAG-
CGGUGCUUCACGCUC-
UUCGUUAAAAUAACA

Holds known miRNA; BHRF 1–3

BART 1, m 151631–151706 + 75 −33.8 kcal/mol

CGUGGGGGGUCUUAG-
UGGAAGUGACGUGCU-
GUGAAUACAGGUCCA-
UAGCACCGCUAUCCA-
CUAUGUCUCGCCCGG

Holds known miRNA; BART 1

BART 2, n 153197–153272 + 75 −30.8 kcal/mol

UUCCAGACUAUUUUC-
UGCAUUCGCCCUUGC-
GUGUCCAUUGUUGCA-
AGGAGCGAUUUGGAG-
AAAAUAAACUGUGAG

Holds known miRNA; BART 2

1The novel candidates are named PMRP (possible micro RNA precursor) 1 through 9.
2Energy calculations made using mfold [37].
3Mfold suggests two possible secondary structures for this sequence, only one structure is shown.
4Pfeffer et al [35] state that this hairpin structure gives two mature miRNAs, one from each stem-arm, the other is named BHRF 1–2∗.

the 5 known miRNAs or the 9 new candidates were unsuc-
cessful. Several possible human and EBV target mRNAs were
predicted for the 9 novel pre-miRNA candidates (data not
shown) using a ParAlign [59] sequence similarity search with
the predicted stem sequences and a set of rules similar to
the ones used by the miRANDA algorithm [52]. A schematic
view of our approach can be found in Figure 3.

DISCUSSION

It is important to assess the significance of viral miRNA-
induced posttranscriptional gene regulation in an infected
cell. In C elegans, miRNAs play vital roles during develop-
ment [3, 4], while such a critical role for miRNAs has not
yet been discovered in viruses. Sullivan et al argue that the
importance of the EBV miRNAs in viral mRNA regulation is
uncertain, while claiming a more important role of the SV40
miRNA, which they have proven to reduce the cytotoxic T-
lymphocyte susceptibility and also reduce local cytokine re-
lease [19]. The homology findings of Grey et al indicate that
the viral miRNAs have not evolved independently [36], sug-
gesting a more significant role than implied by theories of
independent evolution.

The importance of further miRNA knowledge is illus-
trated by the successful use of miRNA expression profiles to
classify human cancers [60], as well as data indicating that
many human miRNAs are located in regions frequently asso-
ciated with cancer [61].

Our study clearly indicates that predicting pre-miRNA
structures seems reasonably easy apart from deciding on a
score threshold for candidates. The most challenging task is
to predict the accurate position of the mature miRNA within
the precursor. The most promising strategy for predicting
novel miRNAs in viruses appears to be a combination of the
conserved stem-loop search by Grey et al and the precursor
miRNA feature searches used in the Grey and Pfeffer stud-
ies. Grey et al suggest a refinement of the stem-loop finder to
improve the search results as it excluded true positives that
would have been accepted by the later stages of the algorithm.
A broader search for stem-loop structures is also anticipated
by the reports by Wang et al [44] of much longer loops (20–
75 nt) in A thaliana than in the loops in the known HMCV
miRNAs (4–12 nt) [33, 36].

Algorithms might also be improved by exploiting the
findings of Berezikov et al [55]; while miRNAs stems show
strong conservation and the loops vary in their degree of
conservation, the miRNA precursors’ flanking regions show
a striking drop in conservation. This conservation profile can
be used for phylogenetic shadowing [62], a technique for se-
quence comparison between closely related species. This ap-
proach was used to predict and identify several primate miR-
NAs [55].

Introducing a search for miRNA targets [29, 52, 63–67]
at an earlier stage of the algorithm could also improve the
results. In most miRNA detection approaches this is often
a final separate part [44, 45]. We suggest that including an
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

(j) (k) (l) (m) (n)

Figure 2: (a)–(i) The predicted structure of the nine top scoring novel miRNA precursor candidates. (j)–(n) The predicted structure of the
five known EBV miRNA precursors.
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Retrieve EBV
genome from
NCBI

Run sRNAloop on EBV genome
(max 75nt hairpin, min 3 nt loop,
score min 22)

Remove copies and
obvious repeats

Use mFold to filter
candidates
(cutoff �24.5 kcal/mol)

Rank candidates
due to rule set
(see details in the text)

Check for
possible mRNA
targets

140
candidates

70
candidates

40
candidates

Kept 14
(9 novel,
5 known)

Schematic view of the
computational approach

Figure 3: Schematic view of the computational approach.

miRNA regulatory module (MRM) [68] search at an early
stage could be a valuable improvement.

Concerning experimental approaches and verification it
should be noted that miRNA candidates found to originate
from within exons are often regarded as cloning artefacts
and therefore discarded. However, as stated by Berezikov et
al, there is no experimental evidence excluding miRNAs can-
didates in these regions [55]. Furthermore, there is evidence
indicating that a region coding for both an miRNA and a pro-
tein can be used almost simultaneously for miRNA and pro-
tein production [54]. A large portion of the currently known
miRNAs have emerged as a result of cloning, but cloning ap-
proaches are likely to be biased towards abundant miRNAs
[43].

Current computational methods are useful tools for
identifying miRNA candidates, however before better meth-
ods have been developed, we still need to verify candidates
using Northern blots.
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[35] Pfeffer S, Zavolan M, Grässer FA, et al. Identification of virus-
encoded microRNAs. Science. 2004;304(5671):734–736.

[36] Grey F, Antoniewicz A, Allen E, et al. Identification and char-
acterization of human cytomegalovirus-encoded microRNAs.
Journal of Virology. 2005;79(18):12095–12099.

[37] Zuker M. Prediction of RNA secondary structure by energy
minimization. Methods in Molecular Biology. 1994;25:267–294.

[38] Lowe TM, Eddy SR. tRNAscan-SE: a program for improved
detection of transfer RNA genes in genomic sequence. Nucleic
Acids Research. 1997;25(5):955–964.

[39] Argaman L, Hershberg R, Vogel J, et al. Novel small RNA-
encoding genes in the intergenic regions of Escherichia coli.
Current Biology. 2001;11(12):941–950.

[40] Rivas E, Klein RJ, Jones TA, Eddy SR. Computational identifi-
cation of noncoding RNAs in E. coli by comparative genomics.
Current Biology. 2001;11(17):1369–1373.

[41] Wassarman KM, Repoila F, Rosenow C, Storz G, Gottes-
man S. Identification of novel small RNAs using compara-
tive genomics and microarrays. Genes and Development. 2001;
15(13):1637–1651.

[42] Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP. Vertebrate
microRNA genes. Science. 2003;299(5612):1540.

[43] Grad Y, Aach J, Hayes GD, et al. Computational and experi-
mental identification of C. elegans microRNAs. Molecular Cell.
2003;11(5):1253–1263.

[44] Wang XJ, Reyes JL, Chua NH, Gaasterland T. Prediction and
identification of Arabidopsis thaliana microRNAs and their
mRNA targets. Genome Biology. 2004;5(9):R65.

[45] Jones-Rhoades MW, Bartel DP. Computational identification
of plant microRNAs and their targets, including a stress-
induced miRNA. Molecular Cell. 2004;14(6):787–799.

[46] Billoud B, De Paepe R, Baulcombe D, Boccara M. Identifica-
tion of new small non-coding RNAs from tobacco and Ara-
bidopsis. Biochimie. 2005;87(9-10):905–910.

[47] Dezulian T, Remmert M, Palatnik JF, Weigel D, Huson DH.
Identification of plant microRNA homologs. Bioinformatics.
2006;22(3):359–360.

[48] Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Ba-
sic local alignment search tool. Journal of Molecular Biology.
1990;215(3):403–410.

[49] Smith TF, Waterman MS. Identification of common molecular
subsequences. Journal of Molecular Biology. 1981;147(1):195–
197.

[50] Hofacker IL, Fontana W, Stadler PF, Bonhöffer LS, Tacker M,
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