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Abstract

Background: Different human responses to the same vaccine were frequently observed. For example, independent
studies identified overlapping but different transcriptomic gene expression profiles in Yellow Fever vaccine 17D (YF-
17D) immunized human subjects. Different experimental and analysis conditions were likely contributed to the
observed differences. To investigate this issue, we developed a Vaccine Investigation Ontology (VIO), and applied
VIO to classify the different variables and relations among these variables systematically. We then evaluated
whether the ontological VIO modeling and VIO-based statistical analysis would contribute to the enhanced vaccine
investigation studies and a better understanding of vaccine response mechanisms.

Results: Our VIO modeling identified many variables related to data processing and analysis such as normalization
method, cut-off criteria, software settings including software version. The datasets from two previous studies on
human responses to YF-17D vaccine, reported by Gaucher et al. (2008) and Querec et al. (2009), were re-analyzed.
We first applied the same LIMMA statistical method to re-analyze the Gaucher data set and identified a big
difference in terms of significantly differentiated gene lists compared to the original study. The different results
were likely due to the LIMMA version and software package differences. Our second study re-analyzed both
Gaucher and Querec data sets but with the same data processing and analysis pipeline. Significant differences in
differential gene lists were also identified. In both studies, we found that Gene Ontology (GO) enrichment results
had more overlapping than the gene lists and enriched pathway lists. The visualization of the identified GO
hierarchical structures among the enriched GO terms and their associated ancestor terms using GOfox allowed us
to find more associations among enriched but often different GO terms, demonstrating the usage of GO
hierarchical relations enhance data analysis.

Conclusions: The ontology-based analysis framework supports standardized representation, integration, and
analysis of heterogeneous data of host responses to vaccines. Our study also showed that differences in specific
variables might explain different results drawn from similar studies.
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Background
As one of the most significant inventions in modern
medicine, vaccination has been used to efficiently pro-
tect humans against many infectious diseases and im-
prove human health. Vaccines are also being developed
against cancer [1], allergy [2], and many other non-
infectious diseases [3, 4]. However, our efforts to develop
vaccines to protect against diseases have not always been
successful. The future success of effective vaccine devel-
opment relies on a deep understanding of protective
vaccine-induced immune mechanisms against different
diseases. The protective mechanism can be better under-
stood with a systematic analysis of high throughput data
being generated in the vaccine domain.
One bottleneck in high throughput vaccine-host inter-

action studies is that inconsistent experimental results
were frequently generated even with similar experimen-
tal designs. A typical example is the gene-level host im-
mune responses induced by the live attenuated Yellow
Fever vaccine 17D (YF-17D) from various gene expres-
sion studies. The live attenuated YF-17D [5] and the
sub-strains derived from the original 17D strain [6] are
widely used for vaccination against Yellow Fever infec-
tions. These vaccine strains can induce strong and
effective protective immune responses in vaccinated
humans [7, 8]. As a result, YF-17D has become an excel-
lent model to study general host responses induced by
vaccinations, and many differentially expressed genes
have been reported in YF-17D-vaccinated human sub-
jects. However, these studies reported different results
even though similar experimental designs were used. For
example, three studies, Gaucher et al. [9], Querec et al.
[10], and Scherer et al. [11], all used human subjects
who were all vaccinated with YF-17D or YF-VAX (made
with a specific YF-17D strain). These three studies gen-
erated overlapping but quite different gene expression
profiles [9–11].
In our previous study, we systematically classified the

conditions in these three studies [9–11] and reported
our results in a recent publication [12]. Our study identi-
fied approximately 20 variables that existed in a typical
vaccine-induced host response investigation study. A
large portion of these variables was associated with dif-
ferent values among these three YF-17D vaccine studies
[12]. Such variability was likely contributed to the differ-
ent gene expression profiles observed. Another achieve-
ment in the previous study was that we mapped these
variables using ontology terms from the Ontology of
Biological and Clinical Statistics (OBCS) [13] and the
Vaccine Ontology [14–16]. Such ontological modeling
facilitated the identification of these variables and the re-
lations among these variables.
Ontology offers an ideal platform to properly and ro-

bustly solve the critical issue of different but overlapping

results from studies on the same scientific question.
Basically, ontology standardizes the representation of en-
tities and relations among entities in a specific domain
using human- and computer-interpretable format. Such
standardization is important since experimental studies
are often reported using inconsistent vocabulary and incom-
plete representation, often resulting in non-reproducible
outcomes. The ontology usage can solve the issues in the
standardized experimental and data representation from
different studies. Given the nature of ontology, such
standardization can also be understood by computers and
so useful for data sharing. In addition to standardization,
ontology also provides a hierarchical structure and logical
relations among different entities, supporting advanced rea-
soning and data analysis.
The current study extends the previous study as intro-

duced above [12]. Specifically, in this study, we hypothesize
that an ontology-based strategy can better analyze (i) differ-
ent experimental and analysis conditions that significantly
affect the gene expression outcomes of host responses to
vaccines, and (ii) the conditional gene expression profiles.
The first point of the hypothesis can be justified by the
phenomenon that human subjects vaccinated with the same
Yellow Fever vaccine in three independent studies shown
different gene expression profiles based on high throughput
transcriptomic profiling. A similar phenomenon has also
been observed by other high-throughput studies in various
biomedical domains [17–19]. However, the second point of
this hypothesis proposes a novel ontology-based strategy
that has not been carefully investigated in the field. Al-
though it is commonly known that experimental
standardization is critical for reproducible studies, how to
use ontology for better understanding the mechanism and
underlying knowledge from various studies still poses a big
challenge. This paper aims to address this challenge by using
the ontology-based vaccine response model system to
standardize the experimental conditions and systematically
analyze the high throughput data vaccine studies.
Several vaccine investigation-related ontologies exist. The

Vaccine Ontology (VO) represents vaccine-related entities,
such as vaccines, vaccine components, vaccinations, host
responses to vaccines, and the relations among these
entities [14–16]. The Ontology of Biological and Clinical
Statistics (OBCS) is a community-based ontology of statis-
tics in the biological and clinical domains [13]. The
community-based Ontology for Biomedical Investigations
(OBI) targets to represent various biomedical investigation
components shared by different biomedical communities
[20]. Although these ontologies can all be related to vaccine
investigation study at some levels, these ontologies are not
primarily focused on vaccine investigation and may miss
important aspects of vaccine investigation. Ideally, an inte-
grative ontology with a focus on vaccine investigation build-
ing on the ontologies mentioned above is needed.
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In this study, we first developed a Vaccine Investiga-
tion Ontology (VIO), and then applied VIO to systemat-
ically and logically model the vaccine investigation
process. VIO classifies different variables and the rela-
tions among these variables in the vaccine investigation
studies. To further address the hypothesis of how differ-
ent experimental and analysis conditions affect the out-
comes of host responses to vaccines, we applied VIO to
standardize and analyze the host responses induced by
the Yellow Fever vaccine YF-17D and its sub-strains in
three studies [9–11].

Methods
VIO development and usage
As an extension of the Vaccine Ontology (VO) [14–16],
the Vaccine Investigation Ontology (VIO) was developed
by following the eXtensible Ontology Development
(XOD) principles [21]. Specifically, a list of vaccine
investigation-related terms available in VO was initially
identified. Ontofox [22] was then used to extract this list
of terms and other relevant information (including lo-
gical axioms and annotations) from VO, and imported
into VIO. Additionally, many OBCS and OBI terms re-
lated to vaccine investigation were also imported into
VIO using Ontofox [22]. Since VO, OBCS, and OBI all
follow the Open Biomedical Ontology (OBO) Foundry
ontology development principles [23] and use the same
upper-level ontology, Basic Formal Ontology (BFO) [24],
these terms coming from different ontologies were effi-
ciently and seamlessly aligned to each other in VIO. The
resulting VIO was manually edited and checked using
the Protégé OWL editor. The home page and the source
code of VIO are publicly available from the GitHub website:
https://github.com/vaccineontology/VIO. VIO has been de-
posited to the Ontobee website: http://www.ontobee.org/
ontology/VIO, and BioPortal: http://bioportal.bioontology.
org/ontologies/VIO.
In this manuscript, VIO modeling means the usage of

the VIO ontology to represent the factors involved in the
vaccine investigation process logically. The VIO modeling
identified differences among multiple vaccine studies in
terms of experimental design and data analysis methods,
and helped to explain the different vaccine study out-
comes. The Yellow Fever vaccine investigation was used
as the specific use case to identify additional terms and ra-
tionale for further VIO ontology development.

Extraction of data from open resources
The NCBI Gene Expression Omnibus (GEO; https://
www.ncbi.nlm.nih.gov/geo/) is a web-based public re-
pository that supports the storage of various functional
genomics data [25]. The microarray data sets reported in
the Gaucher et al. 2008 paper [9] and Querec et al. [10]
are available through the GEO under series accession

numbers GSE13699 and GSE13486, respectively. The data
sets were then extracted from the GEO as instructed in the
GEO manual (https://www.ncbi.nlm.nih.gov/geo/info/). The
raw data sets from Scherer et al. [11] were not available from
GEO or the paper supplemental material files. Therefore,
Scherer et al. [11] was excluded from this study.

Microarray data re-analysis using LIMMA
GEO2R [25] was used to analyze the two microarray data-
sets as reported in the Gaucher et al. [9] and Querec et al.
[10]. In brief, GEO2R applies log2 transformation if the
expression values of given GEO dataset are not in log
space, and then performs differential expression analysis
using Linear Models for Microarray Analysis (LIMMA)
[26]. The resulting p-values are adjusted for multiple com-
parisons using the false discovery rate (FDR). The GEO2R
results for the two microarray datasets were exported and
compared for overlapping using a Venn diagram. The
same cut-off (adjusted p-value based on FDR < 0.05 and
log fold change less than − 1.3 fold or greater than 1.3
fold) for identifying significant results was applied.

Gene list comparison studies
Venn diagrams were generated to compare gene lists
and identify the shared and unique genes. For the gene-
level comparison, gene symbols were updated to official
gene symbols using the DAVID Gene ID Conversion
Tool (https://david.ncifcrf.gov/conversion.jsp) [27]. All
genes analyzed in this study were mapped to their corre-
sponding Entrez Gene IDs using the DAVID Gene ID
Conversion. The Gene Ontology (GO) and pathway en-
richment analyses of the original study were performed
based on the original list of differentially expressed
genes. The DAVID bioinformatics resources [27] was
used to analyze the similarities and differences of differ-
ent GO terms enriched in the original analysis or the
standardized re-analysis of the two microarray datasets.
The performance of the standardized re-analysis was

estimated by the identification of shared significant GO
biological processes between the two microarray data-
sets. The hierarchical structure of significantly enriched
GO terms and their related ancestor terms were also visu-
alized and analyzed using GOfox (http://gofox.hegroup.
org) [28, 29]. By integrating and extending features from
two popular ontology programs Ontofox [22] and Onto-
bee [30], the GOfox web program is able to generate full
or simplified hierarchical GO subsets to classify and
display enriched GO terms and their ancestor terms. By
considering the multiple inheritances of GO, the GOfox
includes a simplified hierarchical classification method
that outputs a GO hierarchical structure among enriched
GO terms and their minimal upper-level ancestor terms
in a user-friendly interactive visualization scheme.
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In addition, we also used the Reactome pathway analysis
tool [31] to analyze enriched pathways in the Reactome
pathway knowledgebase. Both GO biological processes
and Reactome pathway enrichment analysis applied ad-
justed p-value based on FDR < 0.05 as the significance cut-
offs.

Results
VIO ontology development
The top-level hierarchical design of the VIO ontology is
shown in Fig. 1. Compared to the VO, VIO focuses on
the vaccine investigation, especially on defining and
standardizing metadata types in various vaccine investi-
gation studies. Figure 2 was generated to show a repre-
sentative ontology design pattern, which includes most
variables in the three Yellow Fever studies [9–11]. Our
modeling of the vaccine experimental investigation iden-
tified many variables (e.g., data transformation method,
human genome annotation version, significant gene
identification method such as LIMMA, LIMMA version,
and GO version used for GO enrichment analysis) that
are related to data analysis. These variables can be stan-
dardized in our data re-analysis process pipeline. On the
other hand, the variables for wet-lab experiments were
examined because this study focused on the data pro-
cessing and analysis using ontology-based strategy rather
than repeating the experiments with standardized ex-
perimental conditions. To a certain extent, studies with
different experimental settings can be considered as per-
mutations to the host immune system and can be used
to better understand the immune response mechanisms
induced by the vaccine immunization. Therefore, con-
trolling these experimental conditions is not necessary
to understand the contributions of different variables to

the final observed immune response outcomes. Instead,
we can carefully dissect and identify the similarities and
dissimilarity among these variables from different experi-
mental studies.
Overall, the current version of VIO has 79 classes, 46

object properties, and 44 annotation properties. These
VIO terms are obtained from reusing terms from 12
existing ontologies such as VO, OBI, OBCS, and IAO.
The detailed VIO ontology statistics can be found at the
VIO Ontobee website: http://www.ontobee.org/ontostat/
VIO.

Standardize and re-analyze yellow fever vaccine studies
using VIO
The overall hypothesis in our study is that different ex-
perimental and analysis conditions significantly affect
the analysis result of host responses to vaccines and such
conditional gene expression profiles can be analyzed
using an ontology-based strategy. A feasible way to test
our hypothesis is to re-analyze data sets from different
studies. Since data analysis may involve many variables,
it needs to standardize these variables using the devel-
oped VIO and thus may change the results.
In this work, we tested this hypothesis using the data

obtained from previous two Yellow Fever vaccine stud-
ies: Gaucher et al. [9] and Querec et al. [10] (Table 1).
Our analysis included two scenarios:

(i) Comparison of statistical analyses of the same data
set from a study. Here we re-analyzed the data set
from Gaucher et al. [9], and compared newly
analyzed results with the results reported in the
published paper [9]. The full gene list from Querec

Fig. 1 Selected top-level terms and hierarchy of VIO. VIO top-level hierarchy is aligned to the BFO to facilitate data integration
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et al. [10] was not available from the publication
and thus cannot be studied in this work.

(ii) Comparison of different data sets from two studies
but analyzed with the same statistical design. We
re-analyzed the two datasets available in Gaucher
et al. [9] and Querec et al. [10]. Both datasets were
extracted from GEO. We used the same statistical
method with standardized settings to analyze these
two datasets and compare the results.

Comparison of statistical analyses using the same data
set from a study
The original Gaucher et al. paper reported 559 differen-
tially regulated genes in response to Yellow Fever
vaccination. The method used in the original paper was
via LIMMA data analysis [32]. Using the dataset from
Gaucher et al. [9], we re-analyzed the data also using the
same LIMMA data analysis method in the GEO2R plat-
form [25]. The purpose of such analytic design was to

repeat the analysis method and compare the results be-
tween newly analyzed results and the results published
in the original paper. Table 1 shows the details of ana-
lysis factors used in this comparison.
Overall, there were 554 significantly expressed genes

(criteria: adjusted p-value based on FDR < 0.05, and log
fold change < − 1.3 or > 1.3) in the re-analysis of the
dataset obtained from Gaucher et al. [9].
When we compared Gaucher et al. original results [9]

to our re-analysis results, a different set of genes were
identified in the re-analysis from those in the original
analysis (Fig. 3a). Specifically, comparing the original
analysis results in Gaucher et al. paper, our re-analysis
found many similarities as well as differences. Although
we found 343 shared genes, 211 genes only existed in
the re-analysis, and 216 only existed in the original
paper [9]. This is likely because the analysis settings can
vary, and some of these settings are not clearly specified
in the original paper (Fig. 2). More specifically, our VIO-

Fig. 2 VIO design pattern suitable for representing the YF-VAX vaccination use case. The boxed section includes different components that are all
related to data processing and analyses. The brown-colored boxes are examples of variables changeable in our data re-analysis

Table 1 Comparison of factors used for the LIMMA analyses of the same data set published in the Gaucher et al. [9]

Factor Original analysis Re-analysis

Filtering Filtered probes with intensity below background

Normalization Quantile normalization

Transformation Log2 transformation

Fold change cut-off < −1.3 or > 1.3

LIMMA version Unspecified (before 2008) LIMMA 3.26.8

LIMMA Software LIMMA package in Bioconductor GEO2R

Multiple test correction False discovery rate (FDR)

Adjusted p-value cut-off based on FDR 0.05
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based detailed comparison of analytic conditions (Table 1)
showed that only the LIMMA version and the software
running the program likely differed. Our re-analysis used
the LIMMA version 3.26.8 and was conducted in the
GEO2R platform [25]. However, the original LIMMA ver-
sion was not provided in their publication, and the soft-
ware appeared to be the LIMMA package in R and
Bioconductor [9]. The re-analysis LIMMA version (3.26.8)
was released in 2016, which is more recent than the paper
publication date (i.e., 2008), suggesting that two different
LIMMA versions were applied. Therefore, the VIO mod-
eling of data processing and analysis provides us a way to
appropriately explain why the same dataset analyzed with
the same LIMMA method resulted in different significant
gene lists.
When we compared the enriched GO biological process

terms, 17 GO terms were shared between the two ana-
lyses, and only 1 GO term from Gaucher original and 3
GO terms from Gaucher re-analysis were unique and not
shared (Fig. 3b). Therefore, our study indicated that the
GO enrichment study provided us more reproducible re-
sults compared to the gene list results.
Furthermore, we performed Reactome-based pathway

analyses (Fig. 3c). This study provided another compari-
son to examine the possible differences at the level of
enriched pathways. A total of 15 enriched pathways were
shared between two analyses. Only two pathways were
enriched in the re-analysis but not in the original
analysis.
As shown in this analysis based on the same analytic

study and the same dataset, different analysis settings
often generated different results. For data re-analysis, the
usage of the same data analysis settings is important. In
our case, we tried to use exactly the same analysis

methods. However, data analysis details are often miss-
ing, making it difficult to duplicate the exact same ana-
lysis method and setting.

Comparison of different data sets from two studies but
analyzed with the same design
In this study, we re-analyzed two datasets (Gaucher et al.
vs. Querec et al.) using the same data processing setting,
the same GEO2R platform, and the same LIMMA data
analysis method. Overall, there were 554 and 126 signifi-
cantly differentiated genes in the re-analysis of Gaucher
et al. [9] and Querec et al. [10], respectively (Fig. 4a). In
total, 89 genes were shared by these two studies. Mean-
while, 465 significantly differentiated genes were only
found in Gaucher re-analysis, and 37 only in Querec re-
analysis (Fig. 4a).
Compared to the difference of gene lists between these

two studies (Fig. 4a), our re-analysis identified more con-
sistent enriched GO biological processes. As shown in
Fig. 4b, after re-analysis, 7 GO terms are shared in both
data sets, and only 11 GO terms in Gaucher and 1 in
Querec are not shared. This clearly suggested that sig-
nificantly identified gene lists differ more than the differ-
ence in the results of GO enrichment analysis. As seen
in the two original studies [9, 10], only four enriched
GO biological process terms were shared, and 20 terms
were found different. Compared to Fig. 4b, our re-
analysis provided more consistent results in terms of the
enrichment analysis of GO biological process terms.
It is possible that the non-overlapped GO terms have

closer relations in terms of the GO hierarchical struc-
ture. For example, these non-overlapped GO terms
might share the same parents, siblings, or children
terms. To test this hypothesis, we applied the GOfox

Fig. 3 Comparison of the reported result from Gaucher et al. [9] to our re-analysis based on genes, biological process in Gene Ontology and
Reactome. Venn diagram illustrating the comparison of significant (adjusted p-value based on FDR < 0.05) (a) differentially expressed genes, (b)
Gene Ontology biological process terms, (c) Reactome pathways between the original and re-analysis of Gaucher et al. [9]
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GO visualization tool [28, 29] to put the enriched GO
terms under the context of the GO hierarchical struc-
ture (Fig. 5). The shared enriched GO terms (with
green color circles) were focused on categories includ-
ing responses to viruses, cytokine-mediated signaling
pathways, and defense response (Fig. 5). Interestingly,
responses to three types (alpha, beta, and gamma) of
interferon cytokines were identified in the story. The
response to interferon-alpha was shared between both
re-analyses. However, responses to interferon-beta and
interferon-gamma are significantly enriched in only
Gaucher re-analysis (with red circles). The only GO

term unique to Querec re-analysis was negative regula-
tion of type I interferon production (with blue circle).
How different interferon signaling pathways get in-
volved in the protective immunity against Yellow Fever
deserves further investigation. Several GO terms under
cellular and RNA macromolecule metabolic processes
were enriched only in Gaucher re-analysis, suggesting
more general metabolic processes were detected in
Gaucher re-analysis than Querec re-analysis. This study
demonstrated that the hierarchical visualization of the
enriched GO terms provided more useful information
than plain lists of enriched GO terms.

Fig. 5 Hierarichal display of significantly enriched GO biological process terms from the re-analysis of Gaucher et al. and Querec et al. using the
GOfox tool. Circles colored with green, red, and blue represent GO terms shared in both re-analyses, unique to Gaucher re-analysis, and unique to
Querec re-analysis, respectively

Fig. 4 Comparison of the reported result between the re-analysis of Gaucher et al. [9] and Querec et al. [10] based on genes, biological process
in Gene Ontology and Reactome. Venn diagram illustrating the comparison of significant (adjusted p-value based on FDR < 0.05) (a) differentially
expressed genes, (b) Gene Ontology biological process terms, (c) Reactome pathways between the re-analysis of Gaucher et al. and Querec et al.
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Our Reactome pathway enrichment analysis found that
five enriched pathways were shared in two dataset ana-
lyses, and 10 enriched pathways were unique in Querec
re-analysis, and 30 unique in Gaucher re-analysis, sug-
gesting more differences (Fig. 4c).

Discussion
This study focuses on the development of the Vaccine
Investigation Ontology (VIO), its application on the
identification of different variables in vaccine investiga-
tion studies, and the use case demonstration showing
the possibility and complexity of using VIO to study dif-
ferent vaccine host response results.
This ontology-based study is novel in that the VIO de-

velopment and application represent the first ontology
effort to standardize and represent vaccine investigation
studies from different research studies. Our ontology
development followed the state-of-the-art eXtensible
Ontology Development (XOD) principles, which support
ontology reuse, alignment, design pattern usage, and
community extensibility [21]. Our use case study demon-
strates how VIO can be used to represent and standardize
analytic pipeline of gene expression studies, and such a
study can be potentially extended to other biomedical
domains.
VIO provides a way to standardize the representation

of minimal information standards and metadata repre-
sentation for vaccine investigations including both ex-
perimental and analytic parts. As shown in Fig. 2, VIO
can be used to standardize all the variables and metadata
types for vaccine investigation studies including the
study of host responses to vaccinations. Our VIO model-
ing identified many variables involved in raw data pro-
cessing, data transformation, and statistical analyses. We
found that although the same LIMMA method was used
in the original Gaucher et al. paper [9] and our re-
analysis, the results are still quite different (Fig. 3a). By
carefully examining all the variables, we found that only
specifying the LIMMA method alone is not sufficient to
achieve reproducible results. The two LIMMA analyses
(original Gaucher et al. [9] and our re-analysis) using the
same dataset generated inconsistent results due to two
different software versions. This emphasized the use of
VIO to model and represents various metadata types to
ensure robust and reproducible studies. The VIO model-
ing can also recommend what metadata types should be
provided by the authors for making analysis reproducible.
It is interesting to observe that although the gene lists

from our two standardized scenarios using the same data-
set differed a lot, the GO enrichment results were more
consistent between groups of studies (Fig. 3b and Fig. 4b).
This suggested that although the specific significantly dif-
ferentiated genes might differ given different conditions,
they participate in similar or related biological processes.

Furthermore, our GOfox analyses showed that even the
GO terms might show differences, the hierarchical struc-
ture comparison between the two sets of results showed
that the different GO terms could often be aligned under
the same ancestor GO terms. The identification of these
hierarchical structures makes it better to understand the
underlying molecular mechanisms.
When the enrichment results of GO biological processes

and Reactome pathways are compared, the GO enrichment
results show more overlapping than the Reactome pathway
enrichment results. This suggests that GO biological pro-
cesses are broader and more inclusive than the Reactome
pathways in this scenario. It is possibly due to the fact that
Reactome pathway annotations have lower coverage of hu-
man proteins than GO annotations: close to 11,000 proteins
in Reactome (https://www.reactome.org/about/statistics) vs.
over 17,000 proteins in GO (http://current.geneontology.
org/annotations/) based on releases in 2018, resulting from
different annotation criteria. More future analyses are de-
served and required to study the detailed gene products,
GO terms, and pathways to identify the underlying mecha-
nisms and uncover new scientific insights.
Different from this study where many data processing

and analysis-related variables exist, a previous meta-
analysis of Brucella vaccine protection study shows only
one data-related variable (i.e., protection or not) [33].
The Brucella meta-analysis study focuses on the effects
of different experimental conditions toward the same
vaccine protection efficiency. In that case, the data ana-
lysis is simple, but the roles of different experimental
conditions can be determined. In total, the Brucella
vaccine protection study identified approximately 20
experimental variables whose variations may change the
protection outcomes. One major difference between
these two types of vaccine investigations is that Brucella
vaccine protection study includes a step of virulent
pathogen challenge, while the Yellow Fever vaccine
study does not have the challenge step. We plan also to
use VIO to model the vaccine protection studies and
make VIO useful in standardized vaccine protection
studies.
The VIO ontology development is an ongoing project.

We will continue to develop VIO to cover more experi-
mental conditions such as genetic variations and apply
VIO to test different study scenarios using the ontology-
based strategy described in this paper. The genetic varia-
tions among experimental subjects may also affect the
outcomes of vaccine investigation studies. Although our
cases have so far not investigated the effect of host gen-
etic variations, we plan to include various types of gen-
etic variations in our future VIO development to address
the importance of genetic variations in vaccine outcome
studies. As a result, we will extend the VIO ontology-
based methods to study more datasets and address
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specific scientific questions. For example, ImmPort
(http://www.immport.org/) is the NIH-funded bioinfor-
matics repository for the field of immunology [34]. Imm-
Port stores a large volume of vaccine-induced host
immune response data. It is difficult to systematically
process and analyze the heterogeneous data types ob-
tained from different experimental studies and groups.
However, the VIO ontology framework generated in this
article provides a good strategy to tackle this problem.
Not only in the vaccine domain, the challenge of

standardizing and integrating homogenous data also ex-
ists in other biomedical domains, and can be caused by
experimental or analytical factors in the metadata. For
example, the fields of cancer prognosis and prediction
[35], stem cell differentiation and aging [36], lung
disease [37] all face the challenge. There are various
sources of errors and inconsistencies associated with dif-
ferent high throughput technologies such as the micro-
array technology [38], flow cytometry [39], and RNA-seq
[40]. This study represents an effective ontology-based
effort to solve the critical issue of different but overlap-
ping results from studies on the same scientific question.
In addition, we have developed VIO by following the
state-of-the-art strategy and ensure that the ontology is
open and logically well-formed to enable interoperability
to ontologies in other biomedical domains. The inter-
operability can further solve the critical issue of data het-
erogeneity and inconsistency in interdisciplinary studies.
The strategy demonstrated in our VIO work can be fur-
ther extended to solve the similar problems in other re-
search domains.

Conclusions
In summary, the development of VIO and its application
on standardizing and analyzing vaccine investigation study
helps to better integrate and understand the underlying
immune mechanism induced by vaccination. The experi-
mental investigations following the VIO modeling can also
improve or ensure the reproducibility of experimental and
data analysis. This study provides a demonstration of the
ontology-based strategy is feasible to be applied to other
biomedical domains.
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