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Abstract

Drosophila melanogaster head development represents a valuable process to study the
developmental control of various organs, such as the antennae, the dorsal ocelli and the
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molecular mechanisms underlying this coordination. These imaginal discs contain the
anlagen of nearly all adult head structures, such as the antennae, the head cuticle, the ocelli
and the compound eyes. While large scale screens have been performed to unravel the gene
regulatory network underlying compound eye development, a comprehensive understand-
ing of genome wide expression dynamics throughout head development is still missing to
date. We studied the genome wide gene expression dynamics during eye-antennal disc
development in D. melanogaster to identify new central regulators of the underlying gene
regulatory network. Expression based gene clustering and transcription factor motif
enrichment analyses revealed a central regulatory role of the transcription factor Hunch-
back (Hb). We confirmed that hb is expressed in two polyploid retinal subperineurial glia
cells (carpet cells). Our functional analysis shows that Hb is necessary for carpet cell devel-
opment and we show for the first time that the carpet cells are an integral part of the blood-
brain barrier.

Introduction

The development of complex organs is often accompanied by extensive cell- and tissue rear-
rangements. Initially simple cells undergo profound morphological changes such as extensive
cell fusions of muscle precursor cells to form syncytial muscle fibers [1] or the formation of
highly polarized neurons from initially uniform neuroectodermal cells [2,3]. Other cell types,
such as germ cells, first migrate long distances before coming to rest in the developing gonads
[4]. Although these cell-type specific processes need to be tightly controlled and coordinated
with those of other cell types of the same and neighboring organs, the molecular mechanisms
involved are still poorly understood. The development of the adult Drosophila melanogaster
head and the visual system has been proven to be an excellent model to study the coordination
of different developmental processes [5-10].

The adult D. melanogaster head is composed of the compound eyes (the main visual sys-
tem), the three dorsal ocelli, the antennae, the ventral mouthparts and the head capsule that
connects these organs and encloses the brain [11]. Most of these structures develop during lar-
val stages from eye-antennal imaginal discs, which originate from about 20 cells that are speci-
fied at embryonic stages [12-14]. Throughout larval development, the eye-antennal discs grow
extensively by cell proliferation resulting in discs composed of more than 15,000 cells at the
beginning of pupation [7,15]. During the first two larval stages, the initially uniform disc is
subdivided into an anterior antennal and a posterior retinal compartment by the action of two
opposing morphogen gradients, which subsequently activate genes responsible for antennal
development [16,17] and the retinal determination genes [15,18-24]. Approximately at the
same time when the retinal part of the disc and the antennal region separate during the early
L2 stage, the maxillary palp is defined in the ventral portion of the antennal part [25-27].

Once the eye-antennal disc is subdivided into the different organ precursors, cells within
each compartment start to differentiate at L2/early L3 stages. In the retinal region, a differenti-
ation wave that is established in the posterior most part of the equator region moves anteriorly.
This wave is accompanied by a morphologically visible indentation, the so-called morphoge-
netic furrow (MF) [28]. In the region of the MF the expression of the proneural gene atonal
(ato) becomes restricted to regularly spaced single cells posterior to the furrow [29,30]. Those
cells are destined to become R8 photoreceptors, which subsequently recruit R1-R7 photore-
ceptors and associated cell types, such as cone and pigment cells from the surrounding cells
[31-33].
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The axons of successively forming photoreceptor cells need to be connected to the optic
lobes to allow a functional wiring of the visual system with the brain. All axons are collected at
the basal side of the eye-antennal disc and guided through the optic stalk throughout the L3
stage. This process is supported by retinal glia cells, which originate mainly by proliferation
from 6-20 glia cells located in the optic stalk prior to photoreceptor differentiation [34-36].
These retinal glia cell types include migratory surface glia (including perineurial and subperi-
neurial glia cells) and wrapping glia. Triggered by the presence of developing photoreceptor
cells, the retinal glia cells enter the eye-antennal disc through the optic stalk and migrate
towards the anterior part of the disc, always remaining posterior to the advancing morphoge-
netic furrow [34-36]. When photoreceptors differentiate, the contact of their growing axons
with perineurial glia cells triggers the reprogramming of these glia cells into differentiated
wrapping glia, which extend their cell membranes to ensheath bundles of axons that project to
the brain lobes through the optic stalk [34,37,38]. The basally migrating perineurial glia cells
and the wrapping glia ensheathed projecting axons are separated by two large polyploid carpet
cells, each of them covering half of the retinal field [34]. The two carpet cells form septate junc-
tions and express the G protein-coupled receptor (GPCR) encoded by the moody locus, both
characteristics of the subperineurial surface glia type [34,39]. While subperineurial glia cells
located in the brain remain there to form the blood-brain barrier, the carpet cells are thought
to originate in the optic stalk [36], and during L2 and early L3 stages they migrate into the eye-
antennal disc. Later during pupal stages, they migrate back through the optic stalk to remain
beneath the lamina neuropil in the brain. However, so far it is not known, whether carpet cells
or other retinal glia cell types eventually contribute to the formation of the blood-eye barrier,
the retinal portion of the blood-brain barrier [40,41]. The carpet cells thus share features of
subperineurial glia, but their extensive migratory behavior and their function in the eye-anten-
nal disc suggest that these cells may exhibit distinct cellular features. However, so far, no carpet
cell specific regulator has been identified that may be involved in specifying carpet cell fate.

Although eye-antennal disc growth and patterning, and especially retinal determination
and differentiation, are among the most extensively studied processes in D. melanogaster, a sys-
tematic understanding of involved genes and their potential genetic and direct interactions is
limited to the late L3 stage in the context of retinal differentiation [42-49]. Similarly, recent
attempts to incorporate existing functional and genetic data into a gene regulatory network
context covers mainly retinal determination and differentiation processes [50]. So far, a com-
prehensive profiling of gene expression dynamics throughout eye-antennal disc development
is missing. The same holds true for the molecular control of retinal glia cell development.
While the transcriptome of adult surface glia in the brain has been analyzed [51], retinal glia
cells have not been comprehensively studied yet.

Here we present a dynamic genome wide expression analysis of D. melanogaster eye-anten-
nal disc development covering late L2 to late L3 stages. We show that the transition from pat-
terning to differentiation is accompanied by extensive remodeling of the transcriptional
landscape. Furthermore, we identified central transcription factors that are likely to regulate a
high number of co-expressed genes and thus key developmental processes in the different
organ anlagen defined in the eye-antennal disc. One of these central factors is the C2H2 zinc-
finger transcription factor Hunchback (Hb) [52] that has been extensively studied in D. mela-
nogaster during early axis determination and segmentation [53,54]. It is also well-known for
its role in the regulation of temporal neuroblast identity during embryogenesis, as it deter-
mines first-born identity in the neural lineage [55,56]. Here we show for the first time that hb
is expressed in carpet cells and loss of function experiments suggest that its activity is necessary
for carpet cell formation and/or migration and consequently for blood-brain barrier integrity.
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Eventually, we reveal putative Hb target genes and confirm that bioinformatically predicted
targets are indeed expressed in developing carpet cells.

Results
Differential gene expression during D. melanogaster head development

Although compound eye development and retinal differentiation are among the most inten-
sively studied processes in D. melanogaster, a comprehensive understanding of the underlying
gene expression dynamics is still missing to date. To identify the genes expressed during D.
melanogaster eye-antennal disc development and their expression dynamics, we performed
RNA-seq on this tissue at three larval stages covering the process of retinal differentiation that
is marked by the progression of the morphogenetic furrow. The late L2 stage (72h after egg lay-
ing, AEL) represents the initiation of differentiation, at mid L3 stage (96h AEL) the morphoge-
netic furrow is in the middle of the retinal field and the late L3 stage (120h AEL) represents the
end of morphogenetic furrow progression (Fig 1A). Multidimensional scaling clustering
clearly indicated that the largest difference in gene expression (dimension 1) was between L2
eye-antennal discs (72h AEL) and L3 eye-antennal discs (96h and 120h AEL) (S1 Fig).

After filtering out not expressed and very lowly expressed genes, we observed that 9,194
genes were expressed at least in one of the three sequenced stages. As anticipated by the multi-
dimensional scaling plot (S1 Fig), the number of genes that changed their expression between
72h AEL and 96h AEL was much larger than between 96h AEL and 120h AEL, (Fig 1A). In
only 24 hours, during the transition from L2 to L3, 60% of the expressed genes changed their
expression significantly. In the transition from mid L3 to late L3, in contrast, only 22% of the
genes underwent a change in their expression. The observation that many more genes were
significantly differentially expressed during the transition from late L2 stages to mid L3 stages
may in part also be caused by the fact that only female discs were analyzed between 96h and
120h AEL, while we compared mixed males and females at 72h AEL with only females at 96h
AEL during the first transition. Since about one third of all genes in D. melanogaster show
signs of sex-specific expression [57], the differentially expressed genes in the first transition
may also include some male or female biased genes. However, in a GO term analysis, we only
found two terms associated with the search term “sex” (see Materials and Methods), namely
“sex differentiation” (GO:0007548; padj = 5.35e-5; 47 genes) and “dosage compensation”
(GO:0007549; padj = 2.61e-3; 15 genes) among those genes that were higher expressed at 96h
AEL. None of the 165 terms was enriched in those genes higher at 72h AEL and among differ-
entially expressed genes in the 96h vs. 120h comparison.

It has been shown that early eye-antennal disc stages are mainly characterized by patterning
processes that subdivide the initially uniform disc into the individual organ anlagen [6,15,18,
25,58-61]. Within organ-specific domains, further patterning processes define for instance
the dorsal ventral axis in retinal field [62-64] or the proximal-distal axis of the antennae [65].
Additionally, the discs grow extensively throughout L1 and L2 stages mainly by cell prolifera-
tion [15,66]. Accordingly, the genes active at the late L2 stage were mostly involved in meta-
bolic processes and generation of energy (Fig 1B). At the end of L2 stages, the patterning
processes are mostly concluded and differentiation starts within each compartment. For
instance, in the retinal field the progression of the differentiation wave is accompanied by a
reduction in cell proliferation [8,10]. Therefore, mostly genes related to cell differentiation,
nervous system development, pattern specification and compound eye development were sig-
nificantly up-regulated at the mid L3 stage (Fig 1B). During the transition from the mid L3
stage to the late L3 stage again genes related to metabolism and energy production were down-
regulated (Fig 1C). This may be explained by the fact that at 96h AEL the disc has not yet
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Fig 1. Analysis pipeline and expression dynamics at stage transitions. (A) The mRNA of eye-antennal imaginal discs
was sequenced at three developmental stages: late L2, mid L3 and late L3. Upwards arrows illustrate the applied analysis
pipeline. The total number of expressed genes for each stage transition is shown below the imaginal discs (B: late L2 to
mid L3; C: mid L3 to late L3). The numbers next to the green arrows represent upregulated genes in each transition
and the numbers next to the red arrow represent downregulated genes. (B) GO term enriched in the upregulated
(green, left) and downregulated (red, right) genes in the transition from late L2 to mid L3 stage. (C) GO terms enriched
in the upregulated (green, left) and downregulated (red, right) genes in the transition from mid L3 to late L3 stage.

https://doi.org/10.1371/journal.pgen.1007180.9001

reached its final size, and cells anterior to the morphogenetic furrow still proliferate [10]. Also,
directly behind the morphogenetic furrow one last synchronous cell division takes place to
give rise to the last cells of the photoreceptor clusters (R1, R6 and R7) [10,60]. In the light of
ongoing differentiation, genes active at the late L3 stage belonged to GO categories related to
differentiation processes (Fig 1C). At this stage, terms related to processes taking place late
during eye-antennal disc development [10] such as R7 cell differentiation or pigment meta-
bolic process (Fig 1C) were also obtained.

In summary, the pairwise comparison of expression levels of genes expressed at the three
studied stages of eye-antennal disc development recapitulate the key transition from pattering
and proliferation processes to differentiation.

Co-expression clustering reveals gene expression dynamics during eye-
antennal disc development

In order to better characterize the different expression dynamics of the expressed genes, we
performed a co-expression clustering analysis based on Poisson Mixture models [67]. Manual
comparison of the different outputs showed that the 13 clusters predicted by one of the models
(Djump, [68]) were non-redundant and sufficiently described all the expression profiles pres-
ent in the data. A total of 8,836 genes could be confidently placed in one of these clusters (max-
imum a posteriori probability (MAP) > 99%). We ordered the predicted 13 clusters according
to their expression profile (Fig 2): four clusters contained clearly early expressed genes, two of
them contained genes expressed only at 72h AEL (cluster 1 and 2) and two contained genes
predominantly expressed early, but also with low expression at 96h and/or 120h AEL (clusters
3 and 4); one cluster showed down-regulation at 96h AEL, but a peak of expression again at
120h AEL (cluster 5); the genes in the largest clusters showed almost constant expression
throughout the three stages (clusters 6 and 7); one cluster showed constant expression at 72h
AEL and 96h AEL and down-regulation at 120h AEL (cluster 8); one cluster showed a peak of
expression at 96h AEL (cluster 9) and four clusters contained genes with predominantly late
expression, one with high and constant expression at 96h AEL and 120h AEL (cluster 10), two
with up-regulation in both transitions (cluster 11 and cluster 12) and one with genes expressed
only at 120h AEL (cluster 13).

A GO enrichment analysis for the genes in the individual clusters showed that the genome-
wide co-expression profiling and subsequent ordering of the clusters recapitulated the conse-
cutive biological processes that take place during eye-antennal disc development with a great
resolution (Fig 2, S1 Table). For instance, we found genes related to energy production mainly
in clusters 2 and 3, while genes more specific for terms related to mitosis and cell cycle were
found in clusters 4, 8 and 9. For example, cluster 8 grouped genes that were similarly high
expressed at 72h and 96h AEL, and their expression decreases at 120h AEL. The enrichment of
GO terms related to DNA replication and cell cycle control (Fig 2; S1 Table), corresponds with
the fact that active proliferation takes place at these stages [60]. Thus, other genes that were
grouped in this cluster, but for which no previous knowledge is available, are likely also related
to these biological functions. Genes up-regulated in the later stages were separated in more
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value) of the genes of that cluster (y-axis on the right) at each stage. Background grey lines represent the normalized mean count of all
genes belonging to a cluster (y-axis on the left). Below each cluster plot, the first four non-redundant GO terms enriched in the genes of
that cluster are listed (see S1 Table) and the significantly enriched transcription factors (NES > 3, see S2 Table) are shown (the NES
value is given in brackets).

https://doi.org/10.1371/journal.pgen.1007180.g002

specific clusters, and most of the enriched GO terms were related to differentiation and neuron
and eye development. For instance, cluster 10 contained the more general term “imaginal disc
development”, while cluster 12 showed enrichment for “compound eye morphogenesis”, and
cluster 13 was the only with enriched terms related to pupation processes and pigmentation.

In order to get an overview of the presence of key eye developmental genes in the individual
clusters, we mapped the clusters onto the FlyODE network (Fig 3) that comprises manually
curated interactions of genes involved in retina development [50]. Only ten of the 146 genes of
this network were not present in any of the 13 clusters, either because they did not pass the
expression level or the cluster assignment thresholds (grey nodes in Fig 3). Apart from the cell
death regulator reaper (rpr) (cluster 3), all other genes of this network are present in clusters
7 to 13 (Fig 3), that represent genes with constant expression throughout the three stages
(clusters 7 to 9) or with increasing expression at later stages (clusters 10 to 13) (Fig 2). This
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Fig 3. Assignment of key retinal genes to identified co-expression clusters. Directed gene interaction network (FlyOde,[50]) of the
genes known to be involved in retinal development in D. melanogaster. Only genetic and protein-DNA interactions are included. The
horizontal axis represents developmental time, with early L3 at the most left, and the vertical axis displays network hierarchy (please see
[50] for details). Each node represents a gene, and these are color-coded according to the assigned co-expression cluster (see also Fig 2).
In grey are genes that have not been allocated to any cluster, either because they did not pass the expression level threshold or the
clustering confidence threshold (see Materials and Methods for details).

https://doi.org/10.1371/journal.pgen.1007180.9003
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observation is in accordance with the nature of the FlyODE network that covers mainly stages
of retinal differentiation from the third instar to the adult [50]. The most prominent retinal
determination genes [7,10] eyeless (ey), sine oculis (so), dachshund (dac) and optix/six3 are pres-
ent in clusters 7 to 9, while eyes absent (eya), twin of eyeless (toy) and eye gone (eyg) were found
in clusters 10 and 11. Among the genes expressed during late L3 stages in clusters 12 and 13
we found central genes involved in photoreceptor and neuronal differentiation [10] such as
atonal (ato), glass (gl) and prospero (pros) (Figs 2 and 3). Members of well-known developmen-
tal signaling pathways such as the Wnt, BMP and Hh pathways, EGFR, Notch and cell cycle
related genes (e.g. CycE) were present in cluster 10 (Fig 3) that grouped genes with similarly
high expression at 96h AEL and 120h AEL (Fig 2). Among genes which steadily increased in
expression throughout the three studied stages (cluster 12), we found for instance Delta (DI),
which is one of the Notch receptor ligands [69] and has been shown to fulfill different roles
during eye development [66,70,71]. Also, anterior open (aop) (also known as yan), a member
of the JNK signaling pathway [72], which is described to repress photoreceptor differentiation
[73] and also to determine R3 photoreceptor identity [74] was present in this cluster.

Although we sequenced the entire eye-antennal discs, we found many GO terms related to
eye development with high enrichment scores, while very few GO terms specific for antenna
and maxillary palps were observed (e.g. in cluster 12 “eye development” appears with p =
4.38e-24, “antennal development” with p = 4.37¢-08 and no GO terms related to maxillary
palps were found) (S1 Table). This finding may be a result of much more extensive research on
eye specific developmental processes in comparison to the other organs that develop from the
same imaginal disc. However, many GO terms related to leg formation and proximodistal pat-
tern formation were highly enriched in the genes in cluster 9 (“proximaldistal pattern forma-
tion” with p = 4.48e-05), cluster 10 (“leg disc development” with p = 7.85e-20) and cluster 12
(“leg disc development” with p = 4.32e-12) (S1 Table). Since antennae and maxillary palps are
serially homologue to thoracic appendages, pathways involved in leg, antenna and maxillary
palp development are likely to share key regulators [17,65,75-80], suggesting that genes found
in these clusters may also play a role in antenna or maxillary palp development.

The assignment of all expressed genes to their corresponding cluster is available along with
the GEO submission number GSE94915 and on this website http://www.evolution.uni-
goettingen.de/posnienlab/clusterSearch/search.html.

In summary, we showed that clusters with early expressed genes mainly represent metabolic
and energy related processes, while clusters with late expressed genes represent more organ
specific differentiation and morphogenetic processes. Therefore, we provide a dataset that con-
tains the complete gene expression dynamics underlying the fundamental change from pre-
dominantly patterning and proliferation processes to the onset of differentiation from late L2
stages to late L3 larval instars [7,28].

Transcription factors regulating D. melanogaster eye-antennal disc
development

The co-expression of genes observed in the 13 clusters may be a result of co-regulation by the
same transcription factors or combinations thereof. In order to test this hypothesis and to
reveal potential central upstream regulators, we used the i-cisTarget method [81] to search for
enrichment of transcription factor binding sites in the regulatory regions of the genes within
each of the 13 clusters (Fig 2, S2 Table). As basis for this enrichment analysis various experi-
mental ChIP-chip and ChIP-seq datasets were used, namely those published by the modEN-
CODE Consortium [82], the Berkeley Drosophila Transcription Network Project [83] and by
the Furlong Lab [84,85].
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One of the most noticeable results of the statistical ranking analysis was that genes in 9 of
the 13 clusters showed significant enrichment for Nejire binding sites (Fig 2). Nejire (also known
as CREB-binding protein (CBP)) is a zinc-finger DNA binding protein that functions as a co-acti-
vator that acts as bridge for other transcription factors to bind specific enhancer elements [86-88],
which can explain why we find it to regulate such many target genes. Nejire/CBP has been shown
to be involved in many processes during eye development and patterning in D. melanogaster
[89,90] and mutations in this gene cause the Rubinstein-Taybi syndrome in humans [91] that
among others is characterized by extensive problems during retinal development [92].

Similarly, Pannier was found enriched to regulate the genes of many clusters (clusters 2, 4, 6,
7,8,9 and 11) (Fig 2). This GATA transcription factor is involved in the establishment of the
dorsal-ventral axis of the retinal field of the discs during early L1 and L2 stages [93,94], while
later during L2 and L3 stages it is known to have a role in defining the head cuticle domain by
repressing eye determination genes [64,94]. In both cases, Pannier is found in a very upstream
position of the respective gene regulatory networks that define these cell fates [64,95].

Besides these highly abundant transcription factors, the clusters with genes predominantly
expressed at later stages were also enriched for transcription factors already known to play a
role in eye-antennal disc development. For instance, a significant number of Sloppy-paired 1
(Slpl) target genes are up-regulated at L3 stage (cluster 12, Fig 2) and this transcription factor
is known to play a critical role in establishing dorsal-ventral patterning of the eye field in the
eye-antennal disc [96]. A function of Daughterless (Da) (identified in cluster 13, Fig 2) is also
described: it is expressed in the morphogenetic furrow, it interacts with Atonal and is neces-
sary for proper photoreceptor differentiation [97]. Finally, Snail (enriched in cluster 1 and 13)
and Twist (enriched in cluster 12) (Fig 2) were previously identified as possible repressors of
the retinal determination gene dac [98] and our results indicate that they regulate also other
genes during eye-antennal disc development.

Cluster 5 contained genes that show a peak in expression at 72h AEL and 120h AEL stages,
which precede major stage transitions from L2 to L3 and from L3 to pupa stage, respectively.
These transitions are characterized by ecdysone hormone pulses before larval molting and
pupation [99]. The only potential transcription factor binding site that was significantly
enriched was that of the Ecdysone Receptor (EcR), that has been shown to be expressed in the
eye-antennal disc in the region of the progressing morphogenetic furrow [100].

Intriguingly, we did not find an enrichment for known transcription factors such as So or
Ey. The most obvious explanation is that there is no ChIP-seq data available (e.g. for Ey) or
that the available data for these factors (e.g. for So [48]) is not included as transcription factor
binding information in the current i-cisTarget database [81,101].

Potential new regulators of eye-antennal disc development

The identification of well-known transcription factors suggests that the applied clustering
approach indeed allows identifying key regulators of various processes taking place throughout
eye-antennal disc development. Interestingly, we identified a few generally well-known
upstream factors for which a potential role during eye-antennal disc development has not yet
been described. For instance, in clusters of very early expressed genes, we found an enrichment
of motifs for the transcription factor Caudal (Cad) (cluster 1 and 2) and the Hox protein Fushi
tarazu (Ftz) (cluster 1) (Fig 2). Caudal is a downstream core promoter activator [102] and very
recently it has been found that it cooperates with Nejire to promote the expression of the
homeobox gene fushi tarazu (ftz) [103]. A Caudal-like transcription factor binding motif has
been identified within Sine oculis (So) bound DNA fragments as identified by ChIP-seq [48],
suggesting that So and Cad may co-regulate potential target genes in the eye-antennal disc.
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The MADS-box transcription factor Myocyte enhancer factor 2 (DMef2) was predicted to
regulate genes found in clusters 2, 4 and 12 (Fig 2). Using two independent Dmef2-Gal4 lines
to drive GFP expression, we confirmed expression of Dmef2 in lose cells attached to the devel-
oping eye-antennal discs (S2 Fig). Eventually, we found an enrichment of potential target
genes of the C2H2 zinc-finger transcription factor Hunchback (Hb) in clusters 12 and 13,
which are active mainly during mid and late L3 stages. Since GO terms enriched in these two
clusters suggested an involvement in retinal development or neurogenesis (Fig 2, S1 Table), we
examined a potential function of Hb in the eye-antennal disc in more detail.

hb is expressed in retinal subperineurial glia cells

Using in-situ hybridization we found hb expression in two cell nuclei at the base of the optic
stalk in the posterior region of late L3 eye-antennal discs (S3A Fig). With a Hb antibody we
also detected the Hb protein in these two basally located nuclei (S3B and S3C Fig). DNA stain-
ing with DAPI showed that the Hb-positive nuclei are bigger than those of surrounding cells,
suggesting that they are polyploid. Additionally, we tested two putative Gal4 driver lines
obtained from the Vienna Tile library [104] (VT038544; S3D Fig and VT038545; S3E Fig).
Both lines drove reporter gene expression in the two polyploid nuclei as described above. Note
that both lines also drove the typical hb expression in the developing embryonic nervous sys-
tem, but not the early anterior expression [105,106]. The regulatory region covered by the two
Gal4 driver lines is located at the non-coding 3’ end of the hb locus accessible to DNA-binding
proteins at embryonic stages 9 and 10 [83] (S4 Fig), a time when early-born neuroblasts
express hb [55]. The lack of the early anterior expression may be explained by the fact that the
DNA region covered by the driver lines does not seem to be bound by Bicoid during early
embryonic stages [83] (S4 Fig). Based on these findings, we are confident that the regions cov-
ered by the two Gal4 driver lines (VT038544 and VT038545) recapitulate native hb expression.

The basal location of the hb-positive cells suggests that they may be retinal glia cells. Co-
expression of hb with the pan-glial marker Repo (Fig 4A-4C) further supported this sugges-
tion. Previous data has shown that two polyploid retinal subperineurial glia cells (also referred
to as carpet cells) cover the posterior region of the eye-antennal disc [34,36]. In order to test,
whether hb may be expressed in carpet cells, we first investigated the expression of the subperi-
neurial glia marker Moody [107] and we found a clear co-localization with Hb (Fig 4D).

Carpet cells migrate through the optic stalk into the eye-antennal disc during larval devel-
opment [34,36]. Therefore, we followed the expression of the hb driver lines throughout late
L2 and L3 larval stages (Fig 4A-4C). Already at the L2 stage, we could easily recognize the hb-
positive cell nuclei by their large size (Fig 4A and 4A”; see also size quantification in Fig 5D).
We could corroborate that these cells indeed migrated through the optic stalk during late L2
and early L3 stages (Fig 4A and 4B), and then entered the disc and remained basally in the pos-
terior region of the disc, flanking the optic stalk (Fig 4C and 4C”). As previously observed for
carpet cells [34], we never found hb-positive cell nuclei in the midline of the retinal field.

Taken together, these data show that hb is expressed in two polyploid retinal subperineurial
glia cells (carpet cells) that enter the basal surface of the eye-antennal disc through the optic
stalk during larval development.

Hb function is necessary for the presence of polyploid carpet cells in the
eye-antennal disc
The expression of hb in carpet cells suggested an involvement in their development. To test

this hypothesis, we examined loss of Hb function phenotypes based on RNA interference
(RNAI) driven specifically in subperineurial glia cells (moody-Gal4 driving UAS-hb**N4), Of
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Fig 4. hb is expressed in migratory subperineurial glia cells. (A-C) hb expression (VT038544-Gal4 driving histone-bound RFP (UAS-H2B::RFP) (A-C),
red in A”-C”) co-localizes (white arrows) with the pan-glial marker Repo (detected with rabbit o-Repo antibody (A’-C’), green in A”-C”) in two large cells.
These cells migrate from the optic stalk during L2 stage (A”) into the posterior end of the eye-antennal disc at mid L3 stage (B”) and are located in the
posterior region of the retinal field, at each side of the optic stalk, at late L3 stage (C”). (VT038544-Gal4 driver line obtained from the Vienna Tile
collection, see S4 Fig for details) (D) Hb (detected with rabbit a-Hb antibody, red in D”) is present in the same cells (white arrows) that express the
subperineurial glia cell marker moody (D’) (moody-Gal4 driving UAS-GFP, green in D”). In all pictures, anterior is to the right. Eye disc (ed), optic stalk
(0s). Scale bar = 20 pum.

https://doi.org/10.1371/journal.pgen.1007180.9004
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Fig 5. The number of polyploid glia cell nuclei is reduced after loss of Hb function. (A-C) Staining with rabbit a-Repo antibody (red) and Phalloidin (green) of late
L3 eye-antennal discs in wild type (A), repo driven hb RNAI (B) and Hb temperature sensitive mutant (C). This figure represents the phenotypes that were analyzed in
(D), where the number of polyploid nuclei (white arrows) have been quantified. In all pictures, anterior is to the right. Scale bar = 20 um. (D) Box plot of glia cell nuclei
size. When two carpet cells were present, these are significantly larger than other surrounding glia cells. When only one carpet cell was present in the retinal field, its
nucleus was significantly larger than regular carpet cells. Significance calculated by t-test (“Two CCs” vs. “One CC”, homogeneous distribution of variances) and t-
Welch-test (“Other glia” vs. “Two CCs”, not homogeneous distribution of variances); ““**”: p < 0.0005. (E) Quantification of the number of polyploid nuclei observed
in wild type (WT), repo-Gal4 and moody-Gal4 driven UAS-hb RNAi (hb*RN%) and Hb temperature sensitive mutant (hb™S). (F) Quantification of the number of
polyploid nuclei observed in late L3 eye-antennal discs of flies that were raised at 18°C until the indicated time points (24h AEL, 48h AEL, 72h AEL and 96h AEL),
when they were transferred to the restrictive temperature of 28°C. In D and E, the black bar indicates percentage of discs with two polyploid glia cell nuclei, grey
indicates discs with one polyploid glia cell nucleus and white indicates discs without polyploid glia cell nuclei. Pearson’s Chi-squared test was performed to determine if
the distribution of the different number of cells (0, 1 or 2) was equal between wild type and RNAI. *: p-val < 0.05, ***: p-val < 0.0005.

https://doi.org/10.1371/journal.pgen.1007180.9g005
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four tested UAS-hb¥RNA lines we used the most efficient line (see Materials and Methods) for
the RNAi knock-down experiments. Additionally, we investigated eye-antennal discs of a tem-
perature sensitive mutant (hb™S) [108]. Since Hb is necessary during embryogenesis [53,54],
the analyzed flies were kept at 18°C during egg collection and throughout embryonic develop-
ment, and they were only transferred to the restrictive temperature of 28°C at the L1 stage. We
quantified the size differences between carpet cell nuclei and neighboring glia cells by measur-
ing the nucleus area. The mean area of a Repo-positive glia cell was 30.42 um?, while the carpet
cell nuclei had a mean area of 86.10 um? (Fig 5A and 5D). Based on these clear results, the
presence or absence of carpet cell nuclei could be confidently identified by a-Repo staining
because of their significantly larger size (see Fig 5A and 5D).

The most common phenotype observed in late L3 eye-antennal discs of RNAi and mutant
flies was the absence of one or both carpet cell nuclei (Fig 5A-5C). In wild type animals, we
could unambiguously identify two carpet cell nuclei in 72% of the eye-antennal discs. In 21%
of the analyzed discs, we found only one carpet cell nucleus (Fig 5E). In contrast, in 35% to
40% of the studied Hb loss of function discs only one carpet cell nucleus was observed (Fig 5B
and 5E). This single polyploid Repo-positive nucleus was significantly larger than carpet
cell nuclei in discs that contained two carpet cell nuclei (Fig 5D; 129.80 um* compared to
86.10 um® if two carpet cells were present). Additionally, the single carpet cell nuclei were
mostly located in the midline of the retinal field (Fig 5B). No carpet cell nuclei could be
observed in 24% and 38% of the eye-antennal discs originating from moody>>hb*** and
hb™® flies, respectively (Fig 5C and 5E). Note that we obtained comparable results when we
expressed the hb dsRNA in all glia cells (repo>>hb®"™*) or only in subperineurial glia cells
(moody>>hbIFNA),

To identify larval stages at which Hb function is crucial for carpet cell development, we
transferred hb™ flies to the restrictive temperature of 28°C at 24h AEL (early L1 stage), at 48h
AEL (late L1), at 72h AEL (late L2) or 96h AEL (mid L3 stage) and assessed the presence of
polyploid Repo-positive carpet cell nuclei in late L3 eye-antennal discs, respectively. In all
cases, we found a significant reduction of the number of carpet cell nuclei when compared to
control discs (Fig 5F). Although no clear significant differences in the number of carpet cells
was detected between the consecutive experiments (S5 Fig), our results show that Hb function
is necessary for the presence of polyploid carpet cell nuclei throughout larval development.

Loss of Hb function affects carpet cell migration

The observed loss of polyploid carpet cell nuclei could be a result of either the loss of the entire
carpet cells, incomplete migration into the eye-antennal disc or loss of the polyploidy. To dis-
tinguish between these options, we tested whether also the carpet cell membranes were affected
upon loss of hb expression, in addition to the polyploid nuclei. To this aim, we expressed
hb™RNA specifically in subperineurial glia cells with a moody-Gal4 driver line together with a
strong membrane marker (20xUAS-mCD8::GFP) to label the extensive carpet cell membranes
(moody>>20xmCD8:GFP; moody>>hb™ N4, Fig 6).

In the eye-antennal discs where two carpet cells could be identified, moody expressing
membranes were always present in the optic stalk and in most cases (95%) they spanned the
entire posterior region of the eye-antennal disc up to the morphogenetic furrow (Fig 6A and
6D). In discs with only one clear carpet cell nucleus, we observed a decrease both in the cases
where mCD8::GFP was present in the optic stalk (82%) and even more in the retinal field
(73%) (Fig 6B and 6D). Of the discs with no clear polyploid carpet cell nuclei (Fig 6C and 6D),
also fewer (89%) showed moody expressing membranes in the stalk, although also the differ-
ence was not significant compared to controls. However, a very significant decrease in the
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Fig 6. Carpet cell membranes after loss of carpet cells. (A-C) All glia cells are stained with rabbit o-Repo antibody
(red in A”-C”). In control discs, two carpet cells can be identified by their large size (white arrows). After moody driven
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knock-down of hb expression (B and C) some discs present only one carpet cell nucleus (B, white arrow) and others no
carpet cell nucleus (C) (refer to Fig 5 for percentages). (A’-C’) Membranes of carpet cells in late L3 eye-antennal discs
are labelled with moody-Gal4 driven UAS-mCD8::GFP expression (green in A”-C”). The presence of these membranes
was analyzed in the optic stalk (orange arrowheads) and in the retinal field (determined by the presence of these
membranes in the posterior margins of the disc and their extension to the MF (blue arrowheads)). In all pictures,
anterior is to the right. Eye disc (ed), optic stalk (os). Scale bar = 20 um. (D) Quantification of the presence of carpet
cell membrane as described in A’-C’. Pearson’s Chi-squared test was performed to determine significance between
each pair of condition. *: p-val < 0.05, ***: p-val < 0.0005.

https://doi.org/10.1371/journal.pgen.1007180.g006

percentage of discs with moody expressing membranes in the retinal field was observed in this
case (22%).

Loss of Hb function results in blood-brain barrier defects

Subperineurial glia cells cover the entire surface of the brain from larval stages onwards. They
are an integral part of the protective blood-brain barrier by establishing intercellular septate
junctions [109]. The blood-brain barrier prevents the substances that circulate in the hemo-
lymph to enter the brain and helps maintaining the proper homeostatic conditions of the ner-
vous system [110]. Since it has been shown that the carpet cells migrate through the optic stalk
towards the brain during pupal stages [40], we tested, whether the loss of hb expression in
developing carpet cells had an effect on the integrity of the blood-brain barrier.

To this aim, we injected fluorescently labeled dextran into the abdomen of moo-
dy>>hb* "™ adult flies and scored the presence of this dye in the retina of the flies. Animals
with a properly formed blood-brain barrier showed a fluorescent signal in their body, but not
in the retina (Fig 7A). However, in animals that had an incomplete blood-brain barrier, the
dextran penetrated into the retina and fluorescence was observed in the compound eyes (Fig
7A’). Since it is known that blood-brain barrier permeability can increase after exposure to
stress conditions [111,112], we only scored animals that survived 24h after the injection of dex-
tran. In most cases, the two eyes of an individual presented different fluorescent intensities,
and even no fluorescence in one eye but strong signal in the other. Therefore, we scored each
eye separately. moody>>hb™"™* flies had a significantly higher rate of fluorescent retinas
(p = 8.08e-7, % test), indicating that their eyes were not properly isolated from the hemolymph
circulating in the body cavity (Fig 7B).

In summary, our loss of function experiments further confirmed a central role of Hb in car-
pet cell development. Besides impaired retinal glia cell migration and axon guidance, we
showed that upon loss of Hb function also the blood-brain barrier integrity is disrupted.

Expression of putative Hb target genes in eye-antennal discs

Since we have identified Hb because of an increase in expression of its target genes during 96h
and 120h AEL stages and hb itself is only expressed in carpet cells, we also investigated,
whether some of the targets were expressed in these cells. Using available ChIP-chip data for
Hb from the Berkeley Drosophila Transcription Network Project (BDTNP) [83], we generated
a high confidence list of 847 putative Hb target genes (see Materials and Methods for details),
of which 585 were expressed in eye-antennal discs at least in one of the studied stages. More
precisely, we found that 267 of these genes were differentially expressed in the transition from
72h to 96h AEL and only 52 were differentially expressed between 96h and 120h AEL (Fig 8,
S4 Table). In both cases, most of these genes were up-regulated, suggesting that Hb mainly
activates target gene expression in the eye-antennal disc. Focusing only on those target genes
that resulted in the identification of Hb in our clustering approach (see above), we found that
77 of the 585 expressed putative Hb targets were present in clusters 12 and 13. We searched
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Fig 7. Blood-brain barrier function is impaired after loss of hb expression in carpet cells. (A) After injection of fluorescently labelled dextran
into the abdomen of adult flies, animals with correctly formed blood-brain barrier show no fluorescence in the compound eye. (A’) In flies with
incomplete blood-brain barrier, fluorescent dye can be observed in the compound eye as well as in the body. (B) Quantification of eyes with
(green) or without (red) dye penetration. hb knock-down flies have a significant increase in the penetrance of dye into the eye, indicating a
defective blood-eye barrier. Pearson’s Chi-squared test was performed to determine significance between the wild type results and the RNAi. ***:
p-val < 0.0005.

https://doi.org/10.1371/journal.pgen.1007180.9007

the GO terms for biological functions of these 77 genes and found that 17 code for transcrip-
tion factors and up to 25 code for proteins integral to the cell membrane. A number of GO
terms were related to neuronal development and eye development and to note is the presence
of genes known to be related to glia cell migration and endoreduplication (S5 Table).

Based on their annotated GO terms, predicted or known cellular location and the availabil-
ity of driver lines and antibodies, we selected 13 of these target genes and tested if they were
expressed in carpet cells at 120h AEL. For 8 out of the 13 selected targets we found no clear
expression related to carpet cells (archipelago (ago), Delta (DI), knirps (kni), rhomboid (rho),
roundabout 3 (robo3), Sox21b, Src oncogene at 64B (Src64B) and thickveins (tkv)). This could be
because they were false positives, but they could also be expressed at earlier stages than ana-
lyzed here or the used driver constructs did not include the regulatory regions to drive expres-
sion in carpet cells. Tkv for instance could still be an interesting candidate because it has been
implicated in retinal glia cell development [113]. brinker (brk), Cadherin-N (CadN), cut (ct),
Fasciclin 2 (Fas2) and sprouty (sty) showed expression in carpet cells (Fig 9). brinker (brk) was
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Fig 8. Differentially expressed putative Hb target genes. Green and red shaded circles are up- and down-regulated
genes, respectively. Larger circle size indicates higher log2-fold change. (A) 267 genes from the high confidence list of
Hb targets are differentially expressed in the eye-antennal discs during the transition from late L2 (72h AEL) to mid L3
(96h AEL) stages. 33 genes are down-regulated and 234 are up-regulated (see S4 Table). (B) 52 genes from the high
confidence list of Hb targets are differentially expressed in the eye-antennal discs during the transition from mid L3
(96h AEL) to late L3 (120h AEL) stages. 10 genes are down-regulated and 42 are up-regulated (see S4 Table).

https://doi.org/10.1371/journal.pgen.1007180.g008
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Fig 9. Expression of Hb target genes in the eye-antennal discs. Four of the tested target genes show expression in carpet cells. Eye disc
(ed), optic stalk (os). Scale bar = 20 um. (A) CadN-Gal4 drives UAS-GFP expression (green in A”) in one of the two carpet cells (white
arrow), as well as other cells in the disc, possibly glia cells. (A’ and A”). Glia cells are marked with an antibody against the pan-glial
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marker Repo (rabbit o-Repo, red) and Repo-positive carpet cell nuclei are recognized by their large size (see also Fig 5D). (B) mouse o.-
Cut (red in B”) showed a clear signal in the two carpet cells (white arrows). (B’ and B”). Carpet cell nuclei were recognized by the
expression of the subperineurial glia marker moody (moody-Gal4 driving UAS-GFP expression, green). DAPI shows the eye-antennal
disc surface. (C) Fas2-Gal4 drives UAS-H2B::RFP (red in C”) expression in the two carpet cells (white arrows). (C’ and C”) Carpet cell
nuclei are recognized by their large size with DAPI and their location on the posterior edge of the retinal field between the outgoing
axons visualized with Phalloidin staining (green). (D) Sty-Gal4 drives UAS-H2B::RFP (red in D”) expression in the two carpet cells
(white arrows), as well as in other cells in the disc. Due to folding of the imaged disc, the right (D-I) and left (D-II) carpet cells where
not found in the same focal plane. (D’ and D”) Carpet cell nuclei are recognized by their large size with DAPI and their location on the
posterior edge of the retinal field between the outgoing axons visualized with Phalloidin staining (green).

https://doi.org/10.1371/journal.pgen.1007180.9009

very broadly expressed in the eye-antennal disc (S6C and S6D Fig). Although we could only
observe expression in one of the two cells in every eye-antennal disc we analyzed, CadN is
clearly expressed in carpet cells (Fig 9A). Recent data demonstrated that CadN, a Ca* depen-
dent cell adhesion molecule, is necessary for the proper collective migration of glia cells [114],
a key feature of carpet cells. As it has previously been published, Cut is expressed in subperi-
neurial glia cells (Fig 9B) [115]. The Cut protein is present in carpet cells already at L2 stage
and remains until late L3 stage (Fig 9B). It has been shown that Cut is necessary for proper
wrapping glia differentiation (note that the wrapping glia expression is found in another focal
plane in Fig 9B) and to correctly form the large membrane processes that these cells form
[115]. Interestingly, carpet cells have a similar morphology, with very large membrane surface
and extensive processes that reach to the edge of the retinal field. In contrast, retinal perineur-
ial glia do not have this morphology and do not express Cut. Also, Fas2 (Fig 9C) and sty (Fig
9D) were clearly expressed in carpet cells as well as in several other cells in the eye-antennal
disc. Sty and Fas2 are negative regulators of the EGFR signaling pathway that is involved in ret-
inal glia cell development and photoreceptor differentiation [116-121].

Please note that we used antibodies to detect target genes if they were available. Given the
nature of the CadN and Fas2 proteins [122,123], we detected broad membrane associated
expression for both proteins (S6 Fig). Therefore, we decided to study the expression of those
two candidates using available Gal4 lines (see above and Fig 9A and 9C). For both lines, we
found at least one high confidence Hb motif (S6 Table).

In summary, we showed that 5 of the 13 computationally predicted Hb target genes that we
tested were expressed in carpet cells, suggesting that our bioinformatic pipeline allows the
identification of new potential regulators of carpet cell development.

Discussion

Genome wide expression dynamics allows the identification of known and
new transcription factors involved in eye-antennal disc development

Although compound eye development is one of the most extensively studied processes in D.
melanogaster, a comprehensive understanding of genome wide gene expression dynamics is
still missing. A previous genome wide expression study based on Microarray data has shown
that between 5,600 and 6,100 genes are active in the retinal part of the eye-antennal disc at the
late L3 instar stage [49]. Given that we studied the entire eye-antennal discs at three time
points, our observation that 9,194 of all annotated D. melanogaster genes are expressed in at
least one stage is likely to provide a meaningful estimate of the number of active genes
throughout eye-antennal disc development. The pairwise comparison of the studied stages
(Fig 1), as well as the more defined clustering approach (Fig 2), revealed an extensive remodel-
ing of the transcriptomic landscape during eye-antennal disc development.

It has previously been shown that co-expression of genes is likely to be a result of regulation
by similar or even the same transcription factors [124-128]. This basic assumption has been
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successfully used to identify central transcriptional regulators in developmental gene regula-
tory networks [44,85,129-133]. Here, we identified several transcriptional regulators, such as
Pnr, Nejire, Slpl, Da, Snail, Twist and EcR (Fig 2) that have previously been shown to regulate
various aspects of eye-antennal disc development, but we also found new transcriptional regu-
lators. For instance, the MADS-box transcription factor Myocyte enhancer factor 2 (DMef2)
was predicted to regulate a number of genes in various clusters. The detection of Dmef2
expression in lose cells attached to the developing eye-antennal discs (S2 Fig) confirmed that
our result is not an artefact, but rather specific. Since, DMef2 is crucial for the development of
muscle and heart tissue [134] these cells could be precursors of future head muscles. However,
some recent findings could also hint towards an important role of this transcription factor in
eye development since DMef2 has been implicated in circadian behavior [135] and larval eye
and adult ocelli function [136]. These findings certainly encourage additional research on the
possible role of DMef2 in photoreceptor cell development.

Taken together, the combination of dynamic gene expression clustering and upstream fac-
tor enrichment provides an excellent basis for the identification of potential new regulators
involved in a given biological process.

Integration of genomic resources: Opportunities and limitations

We identified a number of putative direct transcriptional regulators, although the ChIP-seq
experiments that identified the direct interaction of a transcription factor with its target genes
were not specifically performed in eye-antennal disc tissue at the stages we studied here.
Indeed, most data available in current databases is based on experiments in embryonic or
adult stages [82,83,85,137,138]. Interestingly, the enrichment of Caudal in clusters 1 and 2 (S2
Table) is based on data from a ChIP-seq experiment performed in adult flies [82], but does not
represent an experiment performed in embryos [83]. This could indicate that Caudal has very
different downstream targets during embryogenesis compared to its target genes at later stages.
Although this observation may also indicate that the parameters and thresholds used in the dif-
ferent ChIP-seq experiments are very different, a large degree of tissue and stage specific target
genes is expected. In the light of this specificity, we may miss eye-antennal disc specific target
genes in our survey, but we are confident that one can identify a representative set of target
genes to justify further tissue and stage specific ChIP-seq experiments if necessary.

We failed to identify enriched motifs for classical retinal determination genes such as So, Ey
or Glass (Gl) in any of the 13 clusters, due to the fact that respective ChIP-seq data is either not
available or not included in the i-cisTarget database. Therefore, our analysis is biased towards
those transcription factors for which ChIP-seq data is publicly available. We performed a pre-
liminary power analysis to evaluate the potential to pick up an enrichment of So binding sites.
We identified those clusters that contained 112 previously identified putative So/Eya target
genes [47] and we found 76 of them distributed throughout all clusters (S3 Table). The most
representative clusters were cluster 2 with 17 (of 656 genes in the cluster) and cluster 10 with
15 (of 935 genes in the cluster) So/Eya target genes. Given that the significantly enriched tran-
scription factors with relatively low NES scores of 3.7 (Mef2 in cluster 2) and 3.5 (dTcf in clus-
ter 10) (Fig 2) are predicted to regulate 57 and 559 target genes, respectively, this analysis very
likely would not provide enough power to pick up a statistically significant enrichment. How-
ever, we detected an enrichment for Nejire although its putative target genes are present in 9
of 13 clusters. One explanation could be that the Nejire protein is detected ubiquitously in the
entire eye disc [90] where it acts as a co-regulator [86-88] and thus influences the expression
of many target genes. In contrast, classical retinal determination genes are dynamically
expressed in more restricted domains, what is recapitulated by a highly complex regulation of
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these genes [139,140] and many different functions throughout eye-antennal disc develop-
ment. Previous studies aiming at the identification of target genes resulted in limited lists of
putative target genes for So (112 high confidence targets [47]) and Ey (20 direct targets in the
retinal part of the eye-antennal disc [46]) suggesting that retinal determination genes regulate
arestricted number of genes in a highly context dependent manner.

A new role of Hb in retinal glia development

The combination of our genome wide expression analysis with functional experiments
revealed a novel role of the C2H2 zinc-finger transcription factor Hunchback (Hb) in carpet
cell development. Carpet cells have been shown to be a sub-population of the subperineurial
glia cells due to shared key cellular features, such as the formation of extensive septate junc-
tions [34]. However, a well-established subperineurial glia cell driver (NP2276 [141]) does
drive reporter gene expression in brain subperineurial glia, but we could not detect expression
in carpet cells. In contrast, we only detected hb expression in carpet cells and not in any sub-
perineurial glia cells in the larval brain (results confirmed both using immunostaining and two
driver lines (VT038544 and VT038545)). Additionally, if we compare our list of putative Hb
target genes with the 50 genes enriched in adult blood-brain barrier surface glia [51], we only
find Fas2 to be present in both datasets. All these data suggest that carpet cells are indeed a ret-
ina specific subperineurial glia cell type that is molecularly very distinct from brain subperi-
neurial glia cells.

The carpet cells function as a scaffold for undifferentiated retinal perineurial glia cells,
which migrate into the disc to find the nascent axons of differentiating photoreceptors [34]
and to guide them through the optic stalk [35]. In accordance with these roles, our Hb target
gene analysis revealed many candidate target genes with GO terms related to axon guidance
(S5 Table). Upon loss of Hb function, the most obvious phenotype was the lack of polyploid
cell nuclei and carpet cell membranes in the eye-antennal discs. In contrast to our results, pre-
vious studies have shown that carpet cell ablation or a reduction of their size causes over
migration of perineurial glia cells anterior to the morphogenetic furrow [34,113]. The corre-
sponding experiments are based on the induction of cell death in moody expressing cells [34]
and thus affect not only the carpet cells, but also for instance all other subperineurial glia of the
brain. Since hb is specifically expressed carpet cells, the phenotype obtained here may be more
specific. It remains to be studied, however, how carpet cells and subperineurial glia cells of the
brain may interact to regulate perineurial glia cell migration in the eye-antennal discs.

Carpet cells possess a high level of plasticity since the loss of one carpet cell from the retinal
field resulted in one larger carpet cell (i.e. larger polyploid nucleus) located in the midline of
the eye field. In these cases, also no perineurial glia cell over migration could be observed and
the membrane of this single cell seemed to sufficiently cover the full retinal field indicating
that a single carpet cell could compensate the loss of the other one.

Carpet cells are an integral part of the blood-brain barrier

The loss of hb expression affected the integrity of the blood-eye barrier, a subset of the blood-
brain barrier (Fig 7). This phenotype was not as striking as previously published for moody
mutant flies [39], where all surface glia cells were affected, suggesting that the carpet cells may
indeed only contribute to the retinal part of the blood-brain barrier (i.e. the blood-eye barrier).
Additionally, in our analysis of the moody positive cell membranes present in the optic stalk in
hb™™N flies we found still carpet cell membranes in the optic stalk in up to 80% of the knock-
down discs (Fig 6D). This is a similar proportion as we find in our blood-brain barrier assay
(Fig 7).
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The largest portion of the blood-brain barrier is already established by the end of embryo-
genesis [142,143], while the eye-antennal disc and developing photoreceptors seem to be acces-
sible for the hemolymph during larval and very early pupal stages. Indeed, the final closure of
the blood-brain barrier in the region where the optic stalk contacts the brain (i.e. the blood-eye
barrier) is only established late during pupal development [109,144]. The rather late formation
of the blood-eye barrier may be related to the dual role of carpet cells, which first migrate into
the eye-antennal disc and only during pupal stages migrate back into the optic stalk towards
the brain lobes. By mid-pupa stages they are located at the base of the brain lamina [40], where
they remain throughout adult life and form septate junctions that isolate the brain and retina
from the hemolymph [109]. The use of the newly analyzed driver lines, which drive expression
specifically in the carpet cells represent an excellent starting point to study the migration of
these cells throughout late larval and pupae stages in more detail.

Implications on the role of Hb and the origin of carpet cells

The lack of ployploid large carpet cells during larval stages and the loss of blood-brain barrier
integrity could either indicate a central role of Hb in specifying carpet cell identity entirely or a
more specific role in defining aspects of carpet cell identity such as polyploidy and/or its
migratory behavior. Based on our data, we propose the following cellular functions:

First, the lack of polyploid nuclei could hint towards a role of Hb in regulating the extensive
endoreplication process necessary to generate such huge cell nuclei. Indeed, in our target gene
analysis we found archipelago (ago) as one potential target. Ago has been shown to induce deg-
radation of CyclinE (CycE) [145], a crucial prerequisite for efficient endoreplication cycles
[146]. Second, Hb could be involved in establishing the migratory behavior of carpet cells. In
the list of putative Hb target genes, we found many genes with GO terms related to cell migra-
tion and, some even specifically with the “glia cell migration” term. Additionally, many of the
identified Hb target genes are involved in the epidermal growth factor (EGF) pathway that has
various roles in development and cancer [147-149] including cell division, differentiation, cell
survival and migration [150,151]. The list of Hb target genes up-regulated at 96h and 120h
AEL in eye-antennal disc development includes both positive (rhomboid, Star and CBP) and
negative regulators (Fasciclin2 and sprouty) of this pathway. Fas2 and sprouty are specifically
expressed in carpet cells (Fig 9C and 9D), suggesting that Hb may actively influence the migra-
tory behavior of carpet cells by activating genes involved in EGFR signaling regulation.
Another putative target gene of Hb is Ets98b (Fig 8B), the ortholog of which has recently been
shown to induce ectopic cell migration upon misexpression during early embryonic develop-
ment in the common house spider Parasteatoda tepidariorum [152]. Finally, Nejire has been
shown to be involved in glia cell migration in the peripheral nervous system in Drosophila
[153], and we found it as putative regulator of genes in cluster 13. It remains to be established,
whether Nejire and Hb may collaborate during carpet cell development.

Although carpet cells fulfill fundamental functions, it is still unclear where these cells origi-
nate from. Based on observations by Choi and Benzer (1994) using the enhancer trap line M1-
126, these cells originate in the optic stalk where they are present at late L2 stage [36]. It has
also been proposed that carpet cells may originate from a pool of neuroblasts in the neuroecto-
derm during embryogenesis [154] or in the optic lobes [155]. A clonal analysis using the FLP-
out system suggests that various retinal glia cell types, including the carpet cells, originate from
at least one mother cell at L1 larval stage [35]. Since only one polyploid cell nucleus seems to
originate from one clone [35] and we show that in some loss of Hb imaginal discs only one
polyploid cell nucleus is present, we propose that the two carpet cells may originate indepen-
dently probably from two mother cells defined during L1 stages. Our observation that loss of
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Hb function resulted in loss of polyploid carpet cell nuclei when h
ferred to the restrictive temperature during the L1 larval stage, further supports an involve-
ment of Hb during this stage (Fig 5 and S5 Fig).

The exact role of Hb, however, is still unclear and will require further in-depth analyses.
The newly analyzed driver lines in combination with the extensive list of potential Hb target
genes, of which many are likely to be expressed in this specific glia cell type, represents a valu-

able resource to address the questions concerning the origin of these cells in more detail.

Conclusions

The identification of Hb has only been possible because we studied the dynamic expression
profiles of all genes expressed during eye-antennal disc development. Since the RNA levels of
hb in the entire eye-antennal disc are negligible, we could identify Hb as central factor only
through the expression profiles of its putative target genes, which are steadily up-regulated
throughout development. This up-regulation is very likely due to the large cell bodies of the
carpet cells, which need to produce high amounts of cytosolic or membrane bound proteins.
At earlier stages, carpet cells are not yet in the eye-antennal discs, and hb expression could
only been have identified by studies focused on the optic stalk. Moreover, we could show that
refining the putative Hb target genes by incorporating the expression data results in a list that
contains genes with GO terms highly specific for the putative function of Hb in carpet cells.
Following the stepwise identification of putative target genes, we could confirm a high number
of those experimentally.

All these findings demonstrate that the combination of high throughput transcript sequenc-
ing with a ChIP-seq data based transcription factor enrichment analysis can reveal previously
unknown factors and their target genes, and therefore increase the number of connections
within the underlying developmental GRNs. Other studies have searched for regulating tran-
scription factors that were in the same co-expression clusters as its targets genes [44]. However,
upstream orchestrators do not necessarily have the same expression levels as their targets.
Therefore, the combination of ChIP-seq methods with RNA-seq co-expression analyses has
proven to be a powerful tool to identify new developmental regulators that can complement
other studies based on reverse genetics.

Materials and methods
RNA extraction and sequencing

D. melanogaster (OregonR) flies were raised at 25°C and 12h:12h dark:light cycle for at least
two generations and their eggs were collected in 1h windows. Freshly hatched L1 larvae were
transferred into fresh vials in density-controlled conditions (30 freshly hatched L1 larvae per
vial). At the required time point, eye-antennal discs of either only female larvae (96h and 120h
AEL) or male and female larvae (72h AEL) were dissected and stored in RNALater (Qiagen,
Venlo, Netherlands). Please note that a mix of males and females was dissected for the 72h
AEL samples because it is not possible to morphologically distinguish the sex at this stage. 40—
50 discs were dissected for the 120h samples, 80-90 discs for the 96h samples and 120-130
discs for the 72h samples. Three biological replicates were generated for each sample type.

Total RNA was isolated using the Trizol (Invitrogen, Thermo Fisher Scientific, Waltham,
Massachusetts, USA) method according to the manufacturer’s recommendations and the
samples were DNAsel (Sigma, St. Louis, Missouri, USA) treated in order to remove DNA con-
tamination. RNA quality was determined using the Agilent 2100 Bioanalyzer (Agilent Tech-
nologies, Santa Clara, CA, USA) microfluidic electrophoresis. Only samples with comparable
RNA integrity numbers were selected for sequencing.
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Library preparation for RNA-seq was performed using the TruSeq RNA Sample Prepara-
tion Kit (Illumina, catalog ID RS-122-2002) starting from 500 ng of total RNA. Accurate quan-
titation of cDNA libraries was performed using the QuantiFluordsDNA System (Promega,
Madison, Wisconsin, USA). The size range of final cDNA libraries was determined applying
the DNA 1000 chip on the Bioanalyzer 2100 from Agilent (280 bp). cDNA libraries were
amplified and sequenced (50 bp single-end reads) using cBot and HiSeq 2000 (Illumina).
Sequence images were transformed to bcl files using the software BaseCaller (Illumina). The
bcl files were demultiplexed to fastq files with CASAVA (version 1.8.2).

Bioinformatics analysis

Quality control. Quality control was carried out using FastQC software (version 0.10.1,
Babraham Bioinformatics). All samples but one (“72hC” sample) had quality score >Q28 for
all read positions. 12% of reads in sample “72hC” had an “N” in position 45, probably due to
an air bubble in the sequencer. Following recently published guidelines [156,157], sequences
were not trimmed but the aligner software was used to this purpose instead with very stringent
parameters (see below). All raw fastq files are available through GEO Series accession number
GSE94915.

Read mapping. Transcript sequences (only CDS) of D. melanogaster (r5.55) were down-
loaded from FlyBase and only the longest transcript per gene was used as reference to map the
reads using Bowtie2 [158] with parameters—-very-sensitive-local-N 1.The number
of reads mapping to each transcript were summarized using the command idxstats from
SAMtools v0.1.19 [159]. A summary of raw read counts mapped to each gene and time point
is available at the GEO repository (GSE94915).

Pairwise comparison of gene expression and GO annotation. For each pair-wise com-
parison (72h AEL vs. 96h AEL and 96h AEL vs. 120h AEL) HTSFilter [160] was used with
default parameters to filter out genes with very low expression in all samples. For the remain-
ing genes in each pair-wise comparison, differential expression was calculated using DESeq2
v1.2.7. with default parameters [161]. Gene Ontology (GO) terms enrichment analysis for Bio-
logical Process was performed with GO TermFinder [162] with default parameters. Only the
first non-redundant terms were plotted.

To gain some superficial estimate of the number of differentially expressed genes between
72h AEL and 96h AEL that may be a result of sex differences (note that a mix of both sexes is
present at 72h, while only females were sequenced at 96h) we extracted a list of 165 GO terms
associated with the search term “sex” from the gene ontology website (http://www.
geneontology.org/) and searched for an overlap with enriched GO terms in the pairwise stage
comparisons.

Gene expression clustering. HTSFilter [160] was used with default parameters to discard
lowly expressed genes across all samples. The function PoisMixClusWrapper from the
library HTSCluster [67] was applied on the rest of genes with the parameters: gmin = 1,
gmax = 25, lib.type =“DESeqg”.

Different model selection approaches are used by HTSCluster (i.e. to identify the number
of clusters that best describe the data (see [67]). Our previous experience with this package had
shown that the BIC and ICL methods report always as many clusters as we have allowed to test
for (corresponding to the “gmax” parameter). Also for this analysis, both methods reported 25
as the most likely number of clusters, which was the input “gmax” value. Consequently, we dis-
carded these results and we only analyzed the results of the methods that use slope heuristics
to calculate the best number of clusters, namely DDSE and Djump. The DDSE method
reported 19 clusters, with 8,626 genes having MAP > 99% while the Djump method reported
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13 clusters, with 8,836 genes having MAP > 99%. Careful inspection of the lambda values of
each of these clusters showed that the additional clusters predicted by the DDSE method pre-
sented negligible variation to the 13 clusters predicted by Djump. Additionally, GO term anal-
ysis (see below) of the genes in the 19 clusters predicted by DDSE showed redundant terms for
the very similar additional clusters, which was not the case with the 13 clusters predicted by
Djump. Therefore, we concluded that the additional clusters present in the DDSE prediction
were unlikely to represent significant biological differences and that the 13 clusters predicted
by Djump could sufficiently describe the profiles of the groups of co-expressed genes and we
used them for all following analyses.

Genes with predicted MAP < 99% were discarded. Cluster assignment results can be found
at the GEO repository (GSE94915) and easily accessible here: http://www.evolution.uni-
goettingen.de/posnienlab/clusterSearch/search.html. For the plots, the variance stabilizing
transformation from DESeq2 [163] library was used to normalize the background read count
of the genes belonging to each cluster.

The Gene Ontology terms enriched in each cluster of genes were obtained with the plugin
BiNGO [164] in Cytoscape v3.1.1 [165] with default parameters. The ontology terms and cor-
responding D. melanogaster annotations were downloaded from geneontology.org [166,167]
(as of January 2015).

The transcription factors enriched to regulate the genes of each cluster were obtained with
the i-cisTarget method [81] with the following parameters: dm3 assembly, only “T’F binding
sites”, 5 Kb upstream and full transcript as mapping region, 0.4 as minimum fraction of over-
lap, 3.0 as NES threshold and 0.01 ROC threshold.

Identification of Hb target genes. The i-cisTarget method [81] to detect transcription
factor enrichment in the regulatory regions of co-regulated genes is based on the arbitrary par-
tition of the D. melanogaster genome in more than 13,000 regions. All genes included in a par-
ticular region are associated to the transcription factor binding interval, resulting maybe in an
unspecific association between transcription factor and target genes. Therefore, we aimed to
generate a more confident list of putative Hb target genes in the eye-antennal disc. From
Berkeley Drosophila Transcription Network Project (BDTNP) site [83], BED files were down-
loaded for the Hb (anti-Hb (antibody 2), stage 9) ChIP-chip experiment (Symmetric-null test
and 1% FDR cutoff). The LiftOver tool from UCSC Browser [168] was used to transform the
dm?2 coordinates into the dm3 assembly. The closest gene to each ChIP-chip interval was iden-
tified with the script annotatePeaks. pl from the HOMER suite of tools [169]. Enrich-
ment for the Hb motif in the regulatory regions of the identified genes were confirmed with
the script findMotifGenome . pl from the same suite. The identified enriched Hb motif
(as matrix) was used to search again the closest genes to the ChIP-chip intervals using the
script annotatePeaks . pl with the parameters tss—size -1000,1000 —m motif_matrix. The
genes with at least one instance of the motif were selected as Hb high confident targets. Cytos-
cape v3.1.1 [165] was used to visualize high confidence Hb targets which are significantly up-
and down-regulated in the 72h AEL to 96h AEL and 96h AEL to 120h AEL transitions.

Experimental procedure

Fly lines and crosses. The following fly lines were used: UAS-hb**™* (Bloomington
Stock Center #54478, #29630 and #34704 and Vienna Drosophila Research Center #107740),
hb-Gal4 (Vienna Tile library [104] VT038544 and VT038545), UAS-hb (Bloomington Stock
Center #8503), repo-Gal4/TM6B (kindly provided by Marion Sillies), moody-Gal4 ([107]
kindly provided by Christian Klambt), DMef2-Gal4 (Bloomington Stock Center #25756) UAS-
stinger-GFP (nGFP) ([170] kindly provided by Gerd Vorbriiggen), UAS-H2B:RFP (kindly
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provided by Andreas Wodarz) and 20xUAS-mCD8::GFP (Bloomington Stock Center #32194).
Lines expressing Gal4 under control of regulatory regions of the Hb putative target genes were
obtained from Bloomington Stock Center (ago-Gal4 (#103-788), brk-Gal4 (#53707), CadN-
Gal4 (#49660), DI-Gal4 (#45495), Fas2-Gal4 (#48449), kni-Gal4 (#50246), rho-Gal4 (#49379),
robo3-Gal4 (#41256), Sox21b-Gal4 (#39803), Src64B-Gal4 (#49780), sty-Gal4 (#104304) and
tkv-Gal4 (#112552)).

All crosses were performed with an approximate ratio of 4:3 female:male flies. Crosses were
always provided with additional yeast and were kept at 12h:12h dark:light cycle and controlled
humidity, except the RNAi experiments, that were kept at 28°C and constant darkness.

hb RNA interference. We obtained 4 different UAS-hb**™* lines from Bloomington
Stock Center (#54478, #29630 and #34704) and from the Vienna Drosophila Research Center
(#107740). To evaluate the knock-down efficiency of these RNAi lines, we took advantage of
the fact that Hb is known to be necessary during early embryogenesis (Lehmann and Niiss-
lein-Volhard, 1987; Niisslein-Volhard and Wieschaus, 1980). UAS-hb%RNA flies were crossed
to the hb-Gal4 lines (VT038544 and VT038545) and embryonic lethality was evaluated for all
four RNAI lines. Only one of the RNAi lines, namely #34704, produced no adult flies and few
dead pupae when crossed with the hb-Gal4 flies. The other three lines produced a normal
number of offspring with no obvious embryonic or larval lethality phenotype. Consequently,
we used the #34704 line for the knock-down experiments in eye-antennal imaginal discs.
Please note that the evaluation of knock-down efficiency in the developing eye-antennal discs
using quantitative PCR is very limited because hb is only expressed in two cells in the entire
disc and thus the expression is very low (practically no reads are detected by RNA-seq, see raw
read counts available via GEO submission GSE94915). However, since we obtain the same
qualitative phenotype on carpet cells with the RNAi experiments and the temperature sensitive
mutant (see below), we are confident that the RNAI affects hb expression specifically.

hb™S cross.  hb™L, rsd'/TM3, Sb’ flies (Bloomington Stock Center #1753) were crossed to
hb'?, st', e'/TM3, Sb" flies (Bloomington Stock Center #1755) to generate a hb”*'/hb'? stock.
This line was kept at 18°C and constant light and larvae were only transferred to the restrictive
temperature (28°C) for the loss of function experiments.

in-situ hybridization. Standard procedures were followed to clone a fragment (872 bp) of
hunchback gene sequence into pCRII vector and to synthesize an antisense digoxigenin-labeled
RNA probe (and sense probe for the negative control). RNA probes were hydrolyzed with Na-
Carboante buffer for 30.5 minutes. Eye-antennal discs were dissected in cold PBS and fixed
with 4% paraformaldehyde. Hybridization was carried out at 63°C overnight with 5 ul of RNA
probe (291 ng/pl) in 50 yl of hybridization buffer. Anti-Dig antibody (1:2000, Sigma-Aldrich)
was used to detect the probe and revealed with NBT/BCIP reaction mix. Pictures were taken
with a Zeiss Axioplan microscope.

Immunohistochemistry. Antibody stainings were performed using standard procedures
[171]. In all cases, dissected eye-antennal discs were fixed with 4% paraformaldehyde before
incubating with primary and secondary antibodies. If not stated otherwise in the text, all eye-
antennal discs were dissected from wandering late L3 larvae.

Antibodies used were: rabbit o-Repo ([143], 1:1000), guinea-pig o-Hb ([172], 1:50), mouse
o-cut (Invitrogen, 1:100), rabbit a-Hb (kind gift from Chris Q. Doe, 1:100), rat o-CadN (kind
gift from Dr. Marion Silies, 1:50), mouse o.-Fas2 (Developmental Studies Hybridoma Bank
(DSHB), 1:10), Cy3-0-HRP (kind gift from Martin Gopfert, 1:300), goat o-rabbit Alexa Fluor
488 (Invitrogen, 1:1000), goat o.-rabbit Alexa Fluor 555 (Invitrogen, 1:100) and goat o-guinea-
pig Alexa Fluor 555 (Invitrogen, 1:1000). A solution of 80% glycerol + 4% n-propyl gallate in
PBS was used as mounting medium for all stained discs. Pictures were taken on a Zeiss LSM-
510 confocal laser scanning microscope.
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The area of the nuclei of different glia cells was measured from discs stained with rabbit a-
Repo using Image] 1.48v. In each disc, the largest one or two nuclei were identified as carpet
cells and measured (“one CC” and “two CCs” in Fig 5D). Additionally, four more Repo-posi-
tive glia cell nuclei in each disc were measured that were in the same region and identified as
“other glia” in Fig 5D.

Blood-eye barrier assay. The integrity of the blood-eye barrier of hunchback knock-down
flies was studied following the protocol from [173]. moody-Gal4 virgin females were crossed
with UAS-hb**N* males at 28°C. UAS-hb™ ™ flies were used as control and also raised at
28°C. 2-3 day old adults from these crosses were injected in the abdomen with 3-5 kDa FITC
dextran (Sigma-Aldrich) (0.3 pl the females and 0.2 pl the males of 25 mg/ml solution). Ani-
mals were allowed to recover in fresh food over-night. Only surviving animals were scored.
Dye penetrance in each eye was assessed qualitatively using a LEICA M205 FA fluorescent ste-
reo microscope.

Supporting information

S1 Fig. Multi-dimension scaling plot of RNA-seq samples. (A) Count data of all three time
points (72h AEL, 96h AEL and 120h AEL). (B) Count data of only 96h AEL and 120h AEL.
(TIF)

S2 Fig. Mef2 driver line expression. Mef2-expressing cells are visualized with a Mef2-Gal4
driver line crossed with UAS-H2B::RFP reporter (red).
(TTF)

S3 Fig. hb expression in the eye-antennal disc. Different detection methods showing hb
expression in eye-antennal discs. (A) in-situ hybridization of hb mRNA. hb is expressed in two
large domains (black arrows) at the posterior end of the eye field. (B) Antibody staining of Hb
protein (rabbit a-Hb) in late L3 eye-antennal discs. Co-staining with Phalloidin (B’, B”) shows
that the Hb positive cells are located between the photoreceptor axons on their way to the
optic stalk. (C) Antibody staining of Hb protein (rabbit c-Hb) in late L2 eye-antennal imaginal
discs. (D) Expression of histone-bound RFP (UAS-H2B::RFP) driven by VT038544 line (hb-
Gal4) containing an enhancer region near the hb locus. (E) Expression of histone-bound RFP
(UAS-H2B::RFP) driven by VT038545 line (hb-Gal4) containing an enhancer region near the
hb locus. (VT038544-Gal4 and VT038545-Gal4 driver lines were obtained from the Vienna
Tile collection, see S4 Fig for details). In all pictures, anterior is to the right. Eye disc (ed), optic
stalk (0s). Scale bar = 20 um.

(TIF)

$4 Fig. Genomic location of Vienna Tile hb driver lines. Arrows indicate the regions used to
drive hb expression with Gal4 system. Bellow, are colored tracks provided by the BDTNP proj-
ect [83] showing open chromatin profiles and transcription factor binding. The last black
tracks show sequence conservation across different insect species. These tracks were visualized
using UCSC Browser [168].

(TIF)

S5 Fig. The strength of the effect of loss of Hb function in carpet cells is not significantly
different at different time points. (A) A significant difference in the distribution of the num-
ber of polyploid glia cells in #b"* flies is only observed between raising larvae at the restrictive
temperature 48h AEL and 72h AEL. However, this difference is also significant in the wild
type (WT). This can be due to the fact that more larvae die when transferred to the restrictive
temperature too early (at 24h AEL or 48h AEL). (B) Pearson’s Chi-squared test was performed
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to determine if the distribution of the different number of cells (0, 1 or 2) was equal across the
time points for the same conditions (WT or hb™). *: p-val < 0.05, ***: p-val < 0.0005.
(TIF)

S6 Fig. Expression of Hb targets CadN (rat a-CadN), Fas2 (mouse a-Fas2) and brk (brk-
Gal4 #53707) in late L3 eye-antennal imaginal discs.
(TIF)

S1 Table. Significantly enriched GO terms in the expression clusters.
(XLSX)

$2 Table. Significantly enriched transcription factors in the expression clusters.
(XLSX)

$3 Table. Cluster assignment of So and Eya target genes.
(XLSX)

$4 Table. Putative Hb target genes differentially expressed. Table contains two sheets: first
sheet lists putative Hb targets differentially expressed between 72h AEL and 96h AEL and sec-
ond sheet lists the differentially expressed genes between 96h AEL and 120h AEL. “Instances™
number of Hb motifs found 1000 bp from TTS. Right-side table shows how many of these
genes belong to each cluster and the percentage over the total number of genes in that cluster.
(XLSX)

S5 Table. Putative Hb target genes in clusters 12 and 13. Table contains three sheets: first
sheet contains the gene ID, name and symbol of the 77 genes, and the cluster they belong to;
second sheet lists the GO terms associated to each of the 77 genes; third sheet contains the
number of times each GO term appears in the second sheet.

(XLSX)

S6 Table. Results of Hb motif search in sequences covered by the used Gal4 driver lines.
(DOCX)
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