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Interactions between genetic variants (epistasis) are ubiquitous in the model system and can significantly affect evolutionary
adaptation, genetic mapping, and precision medical efforts. In this paper, we proposed a method for epistasis detection, called
EpiMIC (epistasis detection through a maximal information coefficient (MIC)). MIC is a promising bivariate dependence
measure explicitly designed for rapidly exploring various function types equally and for interpreting and comparing them on
the same scale. Most epistasis detection approaches make assumptions about the form of the association between genetic
variants, resulting in limited statistical performance. Based on the notion that if two SNPs do not interact, their joint
distribution in all samples and in only cases should not be substantially different. We developed a statistic that utilizes the
difference of MIC as a signal of epistasis and combined it with a permutation resampling strategy to estimate the empirical
distribution of our statistic. Results of simulation and real-world data set showed that EpiMIC outperformed previous
approaches for identifying epistasis at varying degrees of heredity.

1. Introduction

Genome-wide association studies (GWAS) is an emerging
research strategy for discovering associations between
genetic variation (e.g., single nucleotide polymorphism
(SNP)) and traits like human diseases. More than 71,000
SNPs have been confirmed to be related significantly to dis-
eases [1–3] since the first GWAS study was published in Sci-
ence in 2005 [4]. The majority of these markers, however, are
common genetic variants with small effects. Even though the
whole genome sequencing enables us to detect several rare
variants with large effect, “missing heritability” for the com-
plex disease remains extensive [5–7]. For instance, only 75%
of the phenotypic variance of Alzheimer’s disease has been
explained by known variants [8]. One possible explanation
for “missing heritability” is that complex diseases are poly-

genic, with multiple genes, environmental variables, and
interactions involved in their etiology [9, 10]. Genetic inter-
actions are thought to provide a potential answer to the
problem of “missing heritability.” The solution may be par-
tial, but it may help develop novel gene pathway topolo-
gies [11].

Epistasis is generally detected in two ways: biologically
and statistically. Bateson and Mendel [12] introduced the
concept of biological epistasis, which evaluates the interde-
pendence of genetic variants. It occurs when the effect of
one allele on one genetic mutation is dependent on the pres-
ence or absence of another genetic mutation and subse-
quently suppresses or activates the expression of other
genes. Several studies reported novel epistasis in diseases.
For instance, interactions between SNPs have been associ-
ated with pulmonary tuberculosis [13, 14], recurrent
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miscarriage [15], polycystic ovary syndrome [16], and many
more [17–20]. These findings highlight the potential and sig-
nificance of epistasis research.

Statistical epistasis, coined by Fisher [21], is defined as
the deviation from additive effects of genetic mutations at
separate loci in terms of their overall contribution to the
model. Biological epistasis, on the other hand, refers to the
physical interaction of two or more biological components.
Studies in model organisms [22–24] have shown that epista-
sis found using computational and statistical approaches
may be physiologically connected in these species. The pres-
ence of statistical epistasis, however, does not imply the pres-
ence of biological epistasis. Bridging the statistical and
biological epistasis gap is a crucial step toward understand-
ing the underlying genetic architecture of complex diseases.

Currently available approaches for detecting statistical
epistasis can be divided into three groups depending on their
strategy: exhaustive methods, search methods, and machine
learning-based methods [25, 26]. Exhaustive methods have
evaluated the association of all SNP combinations with phe-
notypes. Wan et al. [27] proposed BOOST, a multistage
exhaustive approach that uses bitwise storage technology to
speed up logistic regression test calculation. Zhang et al.
[28] developed TEAM that calculates contingency tables by
introducing a minimum spanning tree structure to detect
pairwise SNP interactions. Ritchie et al. [29] used multifac-
tor dimensionality reduction (MDR) to identify epistasis,
which reduced the multiple SNP combinations into one
dimension with high risk and low risk. It is one of the widely
used methods in this field, and many methods have been
developed based on it [30–33].

Exhaustive methods can effectively avoid omitting epis-
tasis detection, but it requires massive computation. Sto-
chastic techniques and heuristic searches are examples of
search algorithms. The performance of stochastic methods
involves random sampling and probability calculation.
BEAM was created by Zhang and Liu [34] to find epistasis
by partitioning SNPs into three nonoverlapping groups
based on their posterior probability using Markov Chain
Monte Carlo sampling. Schork et al. introduced EpiMODE
[35], which combined the epistasis module idea with a Gibbs
sampling strategy. Heuristic search is an approximation
search guided by heuristic information that can reduce the
search space and find the optimal solution effectively but
may be limited by local optimal solutions. EpiACO [36]
and AntEpiSeeker [37], both based on ant colony optimiza-
tion, are examples of this sort of approach. Epi-GTBN [38] is
an epistasis search approach that incorporates genetic algo-
rithms to the Bayesian network heuristic search strategy.

SNP epistasis is also detected using machine learning-
based approaches such as the neural network [39], support
vector machine [40], random forest, or association rules
[41]. SNPrule [42] is an epistasis detection method based
on learning predictive rules, and by identifying the predic-
tive rules involved in epistasis, higher-order epistasis may
be inferred. EpiForest [43], random Jungle [44], and SNPIn-
terforest [45] are examples of random forests that have been
used in GWAS. They treated the random forest output as the
most crucial variable set.

This paper introduces EpiMIC (epistasis detection via
maximal information coefficient), an epistasis detection
method that uses the maximal information coefficient
(MIC) to identify marker-level interactions of complex dis-
eases in case-control studies [14, 46]. MIC is a good bivariate
dependency measure explicitly designed for rapid explora-
tion of almost all types of data relationships, which means
it can detect linear, exponential, and cyclical functions. Spe-
cifically, it can detect various function types equally, inter-
pret them, and compare them on the same scale. We
establish a statistic that utilizes the difference of MIC as an
indicator of the occurrence of epistasis and also use the per-
mutation resampling strategy to learn our statistic’s empiri-
cal distribution. In simulated data sets with a variety of
parameters, our method has demonstrated outstanding per-
formance in finding underlying paired epistasis. Its use of
WTCCC (Wellcome Trust Case Control Consortium) rheu-
matoid arthritis (RA) data shows accurate epistasis
detection.

2. Materials and Methods

This section describes the EpiMIC statistical framework. The
various parameter choices for simulation studies are pre-
sented to assess the power to detect type-I error and pairwise
epistasis. Then, using the rheumatoid arthritis data set from
the WTCCC database, we evaluated the efficiency of our
method in a real-world setting.

2.1. EpiMIC

2.1.1. Preliminaries and Notation. Suppose we have n ran-
dom samples with a collection of p SNPs, then the observed
genotypes Rp can be represented by a n × p matrix:

G = gl,i
� �

l∈1⋯n,i∈1⋯p
, ð1Þ

where gl,i is the random variable that models the genotype
for SNP i of lth sample. It is a categorical variable with three
levels denoted by gl,i ∈ fAA, Aa, aag = f0, 1, 2g. The homo-
zygote genotypes are represented by AA and aa, whereas
the heterozygote condition is represented by Aa. A and a
denote the major and the minor alleles of SNP i, respectively.
The value indicates the copy number of SNP i’s minor
alleles. In case-control studies, yi ∈ f0, 1g is a categorical
label where 0 represents a control subject and 1 represents
a case subject.

To determine whether there was a statistical interaction
between two SNPs in a case-control study, we developed a
statistic through the maximal information coefficient to
quantify the strength of pairwise epistasis. We then used
the permutation resampling strategy to estimate the statis-
tic’s empirical distribution. Intuitively, any pair of SNPs
may have an original dependency or not without the pheno-
typic background. EpiMIC tried to capture the conditional
dependency between a pair of SNPs under a disease status,
which is the task-related correlation. It is based on the idea
that because control samples are frequently picked at ran-
dom, the epistasis pattern in case samples is more
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representative for understanding the underlying disease eti-
ology. If there is no epistasis between two SNPs for disease,
their dependence should show nothing significantly different
in both cases and all samples; if they interacted under a dis-
ease, their dependency should be significantly different in
cases and in all samples. Some methods can be used to calcu-
late the dependency between two variables but may be lim-
ited by the functional form; for example, Pearson’s
correlation only measures linear dependence. Hence, we
propose instead quantifying them using the maximal infor-
mation coefficient.

2.1.2. Maximal Information Coefficient. MIC [46] is an effi-
cient measure of reliance for bivariate associations that
encompasses a wide range of functional and not functional
associations. It has two heuristic properties: generality and
equitability. Generality means that if the sample size is suffi-
cient, MIC covers not only certain types of functions but also
various interesting associations or functional relationships
that are not well modeled by a function, such as a superpo-
sition of functions. Equitability means MIC should assign
identical ratings to similarly noisy associations of all kinds.

Let D ⊂R2 be a bivariate finite collection of ordered
pairs, with x values and y values of D separated into x bins
and y bins, respectively. An ðx, yÞ grid is the term given to
such a pair of partitions. The distribution DjG for a grid G
can be determined from the data points in D on the cells
of G. It is calculated by taking the probability mass in each
cell and dividing it by the proportion of data points in D that
fall into that cell. Given a constant D, different grids G pro-
duce distinct distributions of DjG. With positive integers ðx
, yÞ, define I∗ðD, x, yÞ as

I∗ D, x, yð Þ =max I DjG
� �

, ð2Þ

where the maximum is across all grids ðx, yÞ and IðDjGÞ rep-
resents the mutual information of DjG.

The characteristic matrix MðDÞ of a bivariate data col-
lection D is an infinite matrix with elements:

M Dð Þ x,yð Þ =
I∗ D, x, yð Þ

log min x, yf g : ð3Þ

With Equation (3), the MIC of a bivariate data set D with
n samples and a grid size smaller than BðnÞ is defined as fol-
lows:

MIC Dð Þ = max
xy<B nð Þ

M Dð Þ x,yð Þ
n o

, ð4Þ

where ωð1Þ < BðnÞ ≤Oðn1−εÞ for some 0 < ε < 1. The func-
tion BðnÞ upper binds the sizes of the grids over which
MIC searches. Usually, its default setting is n0:6 because it
works well in practice.

To calculate MðDÞ, it is optimized ideally on all possible
grids. But in practice, MIC uses dynamic programming algo-
rithms that optimize only a subset of possible grids for com-
putational efficiency, and it seems to be approaching the true
value of MIC.

MIC satisfies the following properties:

(i) Symmetry: MICðX, YÞ =MICðY , XÞ
(ii) Comparability: MIC ∈ ½0, 1�, MIC = 0 denotes that

two variables are independent statistically; MIC = 1
implies a strong association

(iii) Generality: MIC could capture a wide range of
relationships

(iv) Equitability: MIC is robust to noisy relationships. It
provides the same ratings to similarly noisy associa-
tions of various sorts

2.1.3. Illustration of the EpiMIC Framework. Assume there
are n samples in a case-control study, with n2 of them being

Data: Genotype Gðn1+n2Þ∙p, Phenotype y, permutation times m
Result: The p-value of epistasis for each pair of SNPs
1 fori = 1 to p − 1do
2 forj = i + 1 to pdo
3 Apply MIC to cases and all samples for pair of SNPs ðgi, gjÞ, to calculate

MICall
n1+n2ðgi, gjÞ and MICD

n2
ðgi, gjÞ;

4 Calculate the difference ΔMIC0 between MICall
n1+n2ðgi, gjÞ and MICD

n2
ðgi, gjÞ ;

5 for k= 1 to mdo
6 Randomly shuffle label y, and generate the new data set;
7 Repeat Steps 3 and 4;
8 end
9 The estimated p-value of ΔMIC0 is the number of ΔMICi, i = 1,⋯,m, larger than

ΔMIC0, divided by m.
10 end
11 end
12 Output all the p-value for each pair of SNPs.

Algorithm 1: EpiMIC.
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cases. Let MICnðgi, gjÞ be the sample correlation score
between the ith SNP and the jth SNP. First, we calculated
the MICall

n ðgi, gjÞ for all the samples and MICD
n2
ðgi, gjÞ for

case samples. Second, we devised a statistic ΔMIC = jMICall
n

ðgi, gjÞ −MICD
n2
ðgi, gjÞj/MICall

n ðgi, gjÞ to compare the MIC
in cases and in all samples. ΔMIC denotes how dissimilar
the relationship ðgi, gjÞ was in cases and across all samples.

The greater the ΔMIC, the more likely it is that gi and gj

interacted.
We wanted to learn the empirical distribution of ΔMIC0

under the null hypothesis to derive a p value. In this case, we
employed a nonparametric permutation strategy: first, shuf-
fled the y with m times, computed ΔMIC by the same proce-
dure described above, and used the resultant sample
distribution as an estimate for the distribution of ΔMIC. If
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Figure 1: Illustration of the EpiMIC framework for pairwise epistasis detection.
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the outcome of these m permutations is ΔMIC1,⋯, ΔMICm,
an estimated p value under the null hypothesis is

p =
i : ΔMICi≥ΔMIC0� ��� ��

m
: ð5Þ

In Algorithm 1, we summarized the EpiMIC procedure
and showed the whole workflow in Figure 1.

2.2. Simulation Study. To evaluate EpiMIC’s ability to con-
trol type-I error and detect marker-based pairwise epistasis,
we compared EpiMIC with BEAM [34], MDR [29], BOOST
[27], and Epi-GTBN [38].

2.2.1. Simulation with GAMETES. The performance of the
EpiMIC to detect marker-based, pairwise epistasis was
examined in this simulation study. We assigned 10 SNPs
to each simulation data set. There were two functional SNPs
and eight nonfunctional SNPs among them. To produce the
simulated genotype data, we used the freely accessible pro-
gram GAMETES [47]. This program was created to produce
pure and strict epistasis models, which are the most chal-
lenging to discover if all n-loci are included in the disease
model. Because of this requirement, these models are a
desirable gold standard for simulation research on complex
epistasis [47, 48].

(1) Type-I Error Evaluation. Type-I error demonstrates a
method’s capacity to reject the null hypothesis when it is
true. We utilized the GAMETES to create two custom dis-
ease models without epistasis (Table 1). The baseline odd
was denoted by γ. We conducted the simulation for each
model 100 times with the following sample size n ∈ f1k, 2k
, 3k, 4k, 5kg, γ = 1, and θ = 5. The threshold of significance
was fixed at 0.05.

(2) Evaluation of Test Power. The power of a test reflects the
likelihood that the procedure will properly accept the alter-
native hypothesis when the null hypothesis is false. This sim-
ulation study used two experimental setups: epistasis models
without marginal effects (NME) and epistasis models with
marginal effects (ME).

For each parameter setting in the NME scenario, we cre-
ated 100 data sets. The power under each parameter value
was stated as the frequency at which the approach success-
fully rejects the null hypothesis at a significance level of α
= 0:05.

(i) We used h ∈ f0:005, 0:01,0:025,0:05,0:1,0:2g and
two distinct minor allele frequencies ðMAFÞ ∈ f
0:2,0:4g to analyze the influence of heritability h.
Five models were developed for each parameter
combination, yielding 60 models following Hardy-
Weinberg proportions. For all these models, popula-
tion prevalence was set to 0.2, and the sample size
was set to 4,000. The five models were labeled M1
to M5, and they were sorted in general by rising cus-
tomized odds ratio (COR) using GAMETES. COR is

a detectability statistic derived directly from the
genetic model. The higher the value, the simpler it
is to identify epistasis

(ii) To assess the effect of sample size, we set heritability
to 0.025, MAF ∈ f0:2, 0:4g, and prevalence to 0.2,
with a sample size of 10,000. Then, using this big
data set, 100 data sets were created at random for
each of the sample size n ∈ f1k, 2k, 3k, 4k, 5kg. In
this case, we had a total of 1,000 data sets

In the ME scenario, we generated six models in accor-
dance with Namkung et al. [49]. For each model, 100 repli-
cated data sets with balanced case subjects and control
subjects were constructed with a sample size of 4,000
(Table 2).

For BEAM, MDR, BOOST, and Epi-GTBN, let the num-
ber of data sets where they identified the epistasis correctly
bem1, then the power can be determined using the following
formula:

power =
m1
100

: ð6Þ

We ran BEAM and Epi-GTBN with the default parame-
ter setting. MDR and BOOST had no parameters to be spe-
cific. In EpiMIC, n0:7 ~ n0:8 is effective experimentally. We
use n0:8 as a default parameter.

2.3. Experiments Using Data from Rheumatoid Arthritis. To
test EpiMIC’s capacity to handle true epistasis in a case-
control data set, we examined the susceptibility of a series
of pairings of SNPs in rheumatoid arthritis (RA), an inflam-
matory disease characterized by pannus development in
synovial joints and cartilage and bone loss. The detailed data
set construction can be found in our previous work [48].

Table 1: Odds table for two models: (a) no effect model with no
epistasis between two SNPs; (b) one marginal recessive model
with no epistasis between two SNPs.

(a) No effect model

AA Aa aa

BB γ γ γ

Bb γ γ γ

bb γ γ γ

(b) One marginal recessive model

AA Aa aa

BB γ γ γ

Bb γ γ γ

bb γ 1 + θð Þ γ 1 + θð Þ γ 1 + θð Þ
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3. Results and Discussion

All results were obtained on a workstation equipped with an
Intel Xeon CPU E5-2620 v2 @ 2.10GHz, 96GB of DDR3, R
4.0.3, and RStudio programming implementation.

3.1. Simulation Study

3.1.1. Type-I Error Evaluation. For type-I error, we set MAF
to 0.2 and population prevalence to 0.2, then ranged sample
sizes from 1,000 to 5,000. For the no-effect model without
epistasis, all the methods tested had a type-I error compara-
ble to the significance level α = 0:05 (Table 3(a)). For the dis-
ease model without epistasis, but with one marginal SNP,
BEAM and BOOST still controlled type-I error, although
MDR, Epi-GTBN, and EpiMIC had little inflation. The
result implied that we should choose a lower significance
level in practical application to reduce the probability of false
positive results.

3.1.2. Evaluation of the Power of EpiMIC

(1) The Influence of Heritability. We investigated two types
of epistasis disease models to assess the statistical strength
of our EpiMIC and the other four methods: epistasis models
without marginal effects (NME) and epistasis models with
marginal effects (ME).

In the NME scenario, we examined 12 heritability-MAF
combinations, with heritability ranging from 0.005 to 0.2

Table 3: Type-I error for methods BEAM, BOOST, MDR, Epi-
GTBN, and EpiMIC. Sample sizes varied from 1,000 to 5,000
under two disease models: (a) no effect model with no epistasis
between two SNPs and (b) one marginal recessive model with no
epistasis between two SNPs.

(a) No effect disease model

Methods
Sample size

1,000 2,000 3,000 4,000 5,000

BEAM 0 0 0 0 0

BOOST 0 0 0 0 0

MDR 0.03 0.02 0 0.01 0.04

Epi-GTBN 0.01 0 0.02 0.01 0.05

EpiMIC 0.02 0.03 0.05 0.02 0.04

(b) Marginal disease model

Methods
Sample size

1,000 2,000 3,000 4,000 5,000

BEAM 0 0 0 0 0

BOOST 0 0 0 0 0

MDR 0.04 0.06 0.06 0.08 0.06

Epi-GTBN 0.06 0.07 0.06 0.08 0.11

EpiMIC 0.03 0.03 0.06 0.05 0.03

Table 4: The statistical power of simulation studies for BEAM,
BOOST, MDR, Epi-GTBN, and EpiMIC with h ∈ f0:005, 0:01,
0:025, 0:05, 0:1, 0:2g and MAF ∈ f0:2, 0:4g. There are five models
for each heritability-MAF combinations. The best-performing
approach for each model is shown with a bold font. The results of
some heritability-MAF combinations are not listed in the table
because all methods under these parameter combinations are 1.
These parameter combinations include MAF = 0:2 with h ∈ f0:025
, 0:05, 0:1, 0:2g and MAF = 0:4 with h ∈ f0:01, 0:025, 0:2g:

MAF Heritability Method
Models

M1 M2 M3 M4 M5

0.2

0.005

BEAM 0.53 0.95 0.95 0.98 0.97

BOOST 0.96 1 1 1 1

MDR 0.14 0.84 1 1 1

Epi-GTBN 0.94 1 1 1 1

EpiMIC 0.98 1 1 1 1

0.01

BEAM 1 1 1 1 1

BOOST 1 1 1 1 1

MDR 0.34 0.99 1 1 1

Epi-GTBN 1 1 1 1 1

EpiMIC 1 1 1 1 1

0.4

0.005

BEAM 0.87 0.93 0.9 0.93 0.93

BOOST 1 1 1 1 1

MDR 0.99 1 1 1 1

Epi-GTBN 1 1 1 1 1

EpiMIC 1 1 1 1 1

0.05

BEAM 0.76 1 1 0.98 1

BOOST 1 1 1 1 1

MDR 1 1 1 1 1

Epi-GTBN 1 1 1 1 1

EpiMIC 1 1 1 1 1

Table 2: The detailed information of the six disease models with marginal effects, which included prevalence, MAF, and penetrance for each
combination of genotypes.

Models Prevalence MAF
Genotypes

AABB AABb AAbb AaBB AaBb Aabb aaBB aaBb aabb

Model 1 0.050 0.1 0.061 0.017 0.017 0.017 0.136 0.136 0.017 0.136 0.136

Model 2 0.050 0.1 0.060 0.021 0.021 0.021 0.116 0.116 0.021 0.116 0.116

Model 3 0.046 0.1 0.030 0.080 0.090 0.090 0.010 0.010 0.070 0.040 0.000

Model 4 0.026 0.1 0.030 0.010 0.020 0.010 0.090 0.050 0.020 0.050 0.070

Model 5 0.017 0.1 0.020 0.005 0.020 0.007 0.070 0.001 0.003 0.080 0.090

Model 6 0.052 0.2 0.044 0.066 0.073 0.069 0.021 0.007 0.042 0.073 0.054
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(Table 4). Table 4’s bold font indicates the best-performing
approach in each model for a given heritability-MAF combi-
nation. It is worth noting that a higher value suggests better
performance. Except for the disease model M1 with h =
0:005 with MAF = 0:2, EpiMic was slightly better than other
methods. For most parameter combinations, EpiMic had the
same great performance as BOOST and Epi-GTBN. The sta-
tistical power of all the methods achieved 1 whenMAF = 0:2
, h > 0:01 and MAF = 0:4, h > 0:005 except for BEAM.

Heritability had a significant impact on the power of all
methods, and the power increased monotonically with an

increase in h under a certain MAF (Table 5). Heritability
ranged from 0.005 to 0.01, and all methods demonstrated a
consistent rising trend (Table 5). The power was also
affected by the epistasis SNP pair’s minor allele frequencies
(MAF). Although BEAM fluctuated under model M1 with
MAF = 0:4 and h = 0:05, for other methods, the increase in
MAF was evident in the improved performance, especially
when h = 0:005. Heritability is the effect size of epistasis.
When it was small, the larger MAF increased the chances
for causal genotypic combinations of epistasis SNP pairs to
emerge in simulation data sets. For example, for the cases

1 2 3 4 5

10–3× Sample size 
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0.2

0.4

0.6

0.8

1.0
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w
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BEAM
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MDR

EPi-GTBN
EpiMIC

MAF = 0.2

Figure 2: The statistical power of simulation studies for BEAM (blue), BOOST (orange), MDR (green), Epi-GTBN (red), and EpiMIC
(purple) under disease model with heritability = 0:005, MAF = 0:2, population prevalence = 0:2, and sample sizes that ranged from 1,000
to 5,000.

Table 5: Average power for the methods BEAM, BOOST, MDR, Epi-GTBN, and EpiMIC to detect epistasis under 12 heritability-MAF
combinations.

MAF Heritability
Methods

BEAM BOOST MDR Epi-GTBN EpiMIC

0.2

0.005 0.876 0.992 0.796 0.988 0.998

0.01 1 1 0.866 1 1

0.025 1 1 1 1 1

0.05 1 1 1 1 1

0.1 1 1 1 1 1

0.2 1 1 1 1 1

0.4

0.005 0.912 1 0.998 1 1

0.01 1 1 1 1 1

0.025 1 1 1 1 1

0.05 0.948 1 1 1 1

0.1 1 1 1 1 1

0.2 1 1 1 1 1
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of h = 0:005, the average power of BEAM was 0.876 with
MAF = 0:2, which was lower than 0.912 for MAF = 0:4.
Although the performance of the methods under the same
model was different, the epistasis detected by the high-
power method did not entirely cover epistasis detected by
the low-power method. Because these methods were based
on different definitions of epistasis, the methods could not
simply replace each other; instead, they had a complemen-
tary relationship.

It is worth mentioning that, as compared to BEAM or
MDR, EpiMIC, BOOST, and Epi-GTBN were more stable
for disease models M1 to M5 with varying COR under
the same heritability-MAF combination. In the ME sce-
nario, the power to detect epistasis for all methods
achieved a 1 that the epistasis disease model with mar-
ginal effect was easier to analyze than models without
marginal effect.

(2) The Influence of Sample Size. Let the sample size be n ∈
f1k, 2k, 3k, 4k, 5kg, with h = 0:005, and MAF = 0:2
(Figure 2). As the sample size increased, the power of all

methods increased almost monotonically. A larger sample
size corresponds to improved performance in all methods.

In conclusion, EpiMIC had superior or comparable
performance to detect purely and strictly epistasis in sim-
ulation studies, which was the most difficult disease-related
patterns with or without marginal effects. EpiMIC
benefited from the powerful ability of MIC to capture a
wide range of relationships and our designed statistic Δ
MIC. If two SNPs interacted under a specific disease
model, SNPs showed a more obvious relationship in some
cases. Adding control samples decreases the strength of
this relationship.

However, the nature of EpiMIC made it likely that it was
affected by linkage disequilibrium (LD); because LD is a
strong dependency, SNPs in a strong LD block may produce
false positives.

3.2. Experiments Using Rheumatoid Arthritis Data. RA is an
autoimmune disease in which IL-6, RANK, and TNF − α are
key hereditary risk factors [50]. In the RA investigation, each
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Figure 3: Variant network of rheumatoid arthritis results from the EpiMIC model with identified SNP pairs. The nodes were SNPs, and the
edges represented the epistasis relationship. Node size and color reflected the number of epistasis that the node involved in. Edge thickness
indicated the maximal information coefficient of SNPs in case samples. The node labels with highlights were the top 15 SNPs ranked by
node degree.
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unique SNP pair of the hsa05323 pathway was analyzed,
yielding C2

385 = 73, 920 total pairings for 385 SNPs. We chose
522 results with a significance level α = 0:005; after filtering
SNP pairs in the same gene, we got 517 epistasis to do the
following analysis.

We generated the epistasis network (Figure 3) from 517
epistasis using the network analysis software Gephi, in
which the nodes were the SNPs with epistasis and the edge
indicated the epistasis relationship. We generated Figure 3
by running the Multigravity Force Atlas algorithm, which
prevented nodes from overlapping and controlled the scale
of the expansion of the graph while clustering intercon-
nected nodes. The degree of each node represents the num-
ber of epistasis that it was involved in, and the edge was
weighted by the MIC of pairs of SNPs in case samples. The
average degree of the network was 3.009. We filtered the
nodes with degree < 5, then ordered the node size and color
by its degree. Nodes labeled purple were the top 15 nodes
ranked by the node’s degree.

Table 6 gives a detailed information of the top 15 nodes,
which included their degree, the gene where the SNP was
located, and the genes where the interacting SNPs were
located. We grouped the interacting SNPs into genes. The
higher the node’s degree was, the greater the chance that it
interacted with more genes. But the number of genes that
showed epistasis did not increase monotonically with the
degree of a node; due to the different numbers of SNPs that
were contained in each gene in the data set and their underly-
ing interval LD pattern, one SNP may be detected as epistatic
with multiple SNPs in the LD region from a long gene. From
the network, we found some valuable hub genes, such as
IL15, CD28, Ang1, Tie2, LFA1, and TLR4, which had at least
five interacting genes in the RA pathway. For instance, IL-15
[51], which is a member of the 4 α-helix bundle cytokine fam-
ily, was detected in the serum of RA patients and synovial fluid

and in mouse models of arthritis. In addition, the administra-
tion of IL-15 led to the development of severe inflammatory
arthritis, indicating that IL-15 may be related to RA treatment.
Targeting IL-15 is very critical and valuable.

We also analyzed the top 10 epistasis ranked by the MIC
in case samples for each pair of SNPs (Table 7) and found
that five of the top 10 results were supported by prior
research [52–55]. For example, the first epistasis was
between gene CD80 (rs4675363) and CTLA4 (rs1427676).
Costimulatory molecules have a crucial role in the immuno-
regulatory regulation of T lymphocyte-mediated immuno-
logical and inflammatory responses [53]. The best-studied
costimulatory signaling pathway was CD28/CTLA4-CD80/
CD86. CTLA-4 is a structural homolog of CD28, and it
binds the CD80 and CD86 ligands. CTLA-4, on the other
hand, has a 20-to-50-fold greater affinity to CD28, which

Table 6: Detailed information of the top 15 nodes ranked by the node’s degree of SNP epistasis network generated using EpiMIC with RA
data. The column “corresponding gene” indicates the gene where SNP was located, and the column “gene interaction” shows the genes
where the interacting SNPs were located.

rsID Corresponding gene Degree Gene interaction

rs10805069 IL15 12 GM-CSF, Tie2, TLR4, MMP3, FLT1

rs4796119 CCL2 11 M-CSF, CD28, CTLA4, Ang1

rs684 LFA1 10 M-CSF, Ang1, CTSL, RANK, LFA1

rs10490573 CD28 9 CD80, IL15, Ang1, Tie2, CCL2, CCL5, LFA1

rs10505107 Ang1 9 TGFβ, CXCL1, IL15, TLR4, MMP3

rs11938228 CXCL1 9 IL1, IL6, Ang1, APRIL

rs3850890 CD80 9 TLR2, MMP3, IFNγ, AP1, CD28

rs1283659 Ang1 9 CD28, CXCL1, FLT1, CCL2

rs534129 Tie2 9 IL15, Ang1,TLR4, MMP1, MMP3

rs10519613 IL15 8 IL1, IL6, Ang1, APRIL

rs7855140 TLR4 8 IL15, IL17, Tie2, MMP1, IL18

rs544354 IL18 8 IL15, Tie2

rs6808536 CD80 8 M-CSF, Tie2, MMP3, FLT1

rs17069845 RANK 8 TLR2, Tie2

rs2367291 IL15 8 IL8, Tie2, FLT1, RANK, LFA1

Table 7: Detailed information of the top 10 epistasis ranked by the
MIC in case samples for each pair of SNPs and genes where SNPs
were located. The column “Ref” references the literature that
showed the regulatory relationship between two genes.

rsID of
SNP1

rsID of
SNP2

Corresponding
gene 1

Corresponding
gene 2

Ref

rs4675363 rs1427676 CD28 CTLA4 [52]

rs7537752 rs6574222 M-CSF FOS [53]

rs4422395 rs7037246 TLR2 TLR4

rs13285984 rs1634507 Tie2 CCL4

rs12089727 rs6808536 MCSF CD80

rs2564594 rs1800795 TLR2 IL6 [54]

rs246841 rs266089 GM-CSF CXCL12 [51]

rs550982 rs1569328 Tie2 AP1

rs951759 rs266089 Ang1 CXCL12

rs2256849 rs1474552 FLT1 ITGB2
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gives a different regulatory function for CTLA to downregu-
late T cell immunity while allowing CD28 to initiate ampli-
fication and to maintain the positive immunity of T cells. T
cells were not stimulated abnormally due to the tight and
coordinated costimulation signaling pathway of CD28/
CTLA4-CD80/CD86.

4. Conclusions

Epistasis between genetic variants is ubiquitous and crucial
in uncovering the underlying genetic structure of complex
diseases and traits. In this paper, we developed EpiMIC
(epistasis detection via maximal information coefficient),
which combined maximal information coefficient (MIC)
with permutation strategy for case-control studies in GWAS.
We transformed the epistasis detection problem by measur-
ing the degree of difference of MIC between pairwise SNPs
in cases and in all samples. The method benefits from the
powerful ability of MIC to explore various function types
equally and to interpret and compare them on the same
scale. Because of the weak assumptions about the nature of
epistasis and MIC’s powerful and practical capacity to cap-
ture complicated functional and nonfunctional correlations,
our method accurately and effectively recognized additional
sorts of interpretable epistasis.

To assess EpiMIC’s performance, we conducted simu-
lated and retrospective investigations. For most of the set-
tings tested, EpiMIC’s statistical power to detect epistasis
was better or equivalent to prior methods, and its power
grew monotonically with heritability, MAF, and sample
size. Based on a test of type-I error, the method was
shown to be stable to sample size. Simulation results also
indicated that epistasis detected by the high-power method
did not entirely cover epistasis detected by the low-power
method. These methods were based on different defini-
tions of epistasis that methods could not simply replace
each other but had a complementary relationship. In our
analysis of real data, we found several key genes of RA
from an epistasis network and significant epistasis that
was supported by prior research. We found that local LD
inflated EpiMIC’s statistical power slightly. SNP pairs in
the same gene with a LD pattern were detected as epistasis
occasionally. In practice, we suggest filtering out SNP pairs
within a local LD structure or select tagSNPs to detect
epistasis. Moreover, due to different sequencing coverage,
some causal SNPs may be missing in some data sets,
and only markers linked to it are found to be epistasis.
Therefore, it would be better to locate the interacting
genes through marker-based epistasis first and then to
combine more biological information to locate the real
causal epistasis. In conclusion, EpiMIC is a useful addition
to the current toolkit of statistical methods for elucidating
epistasis in GWAS case-control studies.
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