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Background and objective: Epilepsy is associated with alterations in the structural framework of the cerebral net-
work. The aim of this study was to measure the potential of global metrics of network architecture derived from
resting state functional MRI to capture the impact of epilepsy on the developing brain.
Methods: Pediatric patients were retrospectively identifiedwith: 1. Focal epilepsy; 2. BrainMRI at 3 Tesla, includ-
ing resting state functional MRI; 3. Full scale IQ measured by a pediatric neuropsychologist. The cerebral cortex
was parcellated into approximately 700 gray matter network nodes. The strength of a connection between
two nodeswas defined as the correlation between their resting BOLD signal time series. The following global net-
work metrics were then calculated: clustering coefficient, transitivity, modularity, path length, and global effi-
ciency. Epilepsy duration was used as an index for the cumulative impact of epilepsy on the brain.
Results: 45 patients met criteria (age: 4–19 years). After accounting for age of epilepsy onset, epilepsy duration
was inversely related to IQ (p: 0.01). Epilepsy duration predicted by a machine learning algorithm on the basis
of the five global network metrics was highly correlated with actual epilepsy duration (r: 0.95; p: 0.0001). Spe-
cifically, modularity and to a lesser extent path length and global efficiency were independently associated with
epilepsy duration.
Conclusions: We observed that a machine learning algorithm accurately predicted epilepsy duration based on
globalmetrics of network architecture derived from resting state fMRI. These findings suggest that networkmet-
rics have the potential to form the basis for statistical models that translate quantitative imaging data into pa-
tient-level markers of cognitive deterioration.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Epilepsy has a substantial influence on the development and main-
tenance of cognitive functions. Although it is not clear whether such ef-
fects are mediated by ongoing seizure activity, anti-seizure medication
or both, long-term epilepsy and poor seizure control have been consis-
tently associated with poor cognitive outcomes (Elger et al., 2004;
Hermann et al., 2002; Czochanska et al., 1994). These effects on intellec-
tual function are exaggerated in children,whichmay reflect the fact that
developmental physiology is primed to prioritize cerebral growth and
reorganization (Bjornaes et al., 2001). While together these observa-
tions suggest that neural plasticity acts as a negative prognostic factor
in children with epilepsy, these same characteristics likely contribute
to their capacity for cognitive and neurologic recovery after successful
pendent components analysis;

, 6621 Fannin St., Houston, TX

ino).

. This is an open access article under
epilepsy surgery (Spencer and Huh, 2008; Freitag and Tuxhorn, 2005).
Despite the benefits of early intervention, however, surgery is frequent-
ly deferred, especially in imperfect candidates or in patients whose sei-
zures have yet to meet the standard for intractability. Early markers of
cognitive deterioration in these childrenwould be of great value toward
defining the optimal timing of surgical intervention.

As a result of advances in computational neuroscience, network or-
ganization of the brain is now accessible to systematic study. Although
the field capitalizes on diverse techniques, one prominent approach le-
verages graph theory to characterize global topological features of the
cerebral network (Hagmann et al., 2008). In this context, the brain is
represented as a collection of nodes, or anatomical elements in the net-
work, and their mutual connections as edges (Bullmore and Sporns,
2009; Guye et al., 2010; Xia andHe, 2011). Graph theory-based analyses
of networks constructed from functional imaging data have demon-
strated that focal epilepsies are associated with global alterations in
the cerebral network (Liao et al., 2010; Bernhardt et al., 2011;
Vlooswijk et al., 2011; DeSalvo et al., 2014; Vaessen et al., 2013). More
recently, it was observed that inter-individual differences in network ef-
ficiency, as quantified by graph theory, correlatewith cognitive function
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
Characteristics of the patient cohort.

Patient characteristics

Sample size 45 patients
Gender 26 males; 19 females
Age Mean (SD): 12.1 (4.7) years
Age at epilepsy onset Mean (SD): 5.1 (4.1) years
Duration of epilepsy Mean (SD): 7.1 (5.3) years
Findings at MRI Focal cortical dysplasia 14

Mesial temporal sclerosis 7
Low-grade tumor 5
Hypothalamic hamartoma 4
Tuberous sclerosis complex 3
Sturge-Weber syndrome 2
Subependymal gray matter heterotopia 1
Cavernous malformation 1
Hypoxic ischemic injury 1
Rasmussen's encephalitis 1
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in healthy populations of adults and children (Kim et al., 2016; Li et al.,
2009; van den Heuvel et al., 2009). Together, these findings support the
potential for topological features of the brain to providemarkers of cog-
nitive function in children. However, at any given time, the cognitive
abilities of a childwith epilepsywill reflect the intersection of his/her in-
dividual trajectory of brain development with maladaptive changes re-
lated to the cumulative impact of his/her disease. As yet, no data exist
regarding the potential for network analyses to dissociate these pro-
cesses to specifically capture those alterations that relate to epilepsy
and its treatment.

The aim of this studywas tomeasure the potential of global network
metrics derived from resting state functional brain networks to capture
the impact of epilepsy on the developing brain. Although there is no
gold standard to measure these effects, the duration of a patient's dis-
ease has been shown to be a meaningful marker of the cumulative bur-
den of epilepsy, particularly with regard to cognitive function (van
Iterson et al., 2014).We therefore used theduration of each patient's ep-
ilepsy as an index for the overall impact of their disease on the brain.

2. Material and methods

2.1. Study population

This HIPAA-compliant, retrospective study was approved by the
local institutional review board. Written informed consent was waived.
Consecutive patients were identified from the medical record with the
following inclusion criteria: 1. Pediatric age (less-than-or-equal-to
21 years), 2. a clinical diagnosis of focal epilepsy (Berg et al., 2010) by
a pediatric epileptologist based on clinical history and seizure semiolo-
gy, 3. available 3 TeslaMRI of the brain, including a resting state fMRI se-
quence, 4. Full scale intelligence quotient (IQ) according to an age-
appropriate version of the Wechsler Intelligence Test administered by
a pediatric neuropsychologist within 3 months of theMRI. Refinements
to the above-defined population were planned based on the following
exclusions: 1. prior brain surgery.

2.2. Neuropsychological assessment

Intelligence tests were performed by a single pediatric neuropsy-
chologist (MC) withmore than 25 year experience using an age-appro-
priate Wechsler Intelligence Scale test. In each patient, full scale IQ was
determined by evaluation of 4 cognitive domains including verbal com-
prehension, perceptual/fluid reasoning, working memory, and process-
ing speed.

2.3. MR imaging

All imaging was performed on a 3 Tesla magnet (Philips, Achieva
Platform, Andover, Massachusetts) equipped with a 32-channel phased
array head coil. For structural imaging, a T1-weighted, axial three-di-
mensional volume acquisition fast field echo was obtained with TR/
TE: 7.2/2.9 ms, flip angle: 7°, inversion time: 1100 ms, voxel size:
0.9 × 0.9 × 0.9 mm3. Functional MRI data were acquired in the resting
state using a single-shot echo planar acquisition depicting blood oxy-
genation level dependent contrast with TR/TE: 2000/30 ms, flip angle:
80°, voxel size: 3 × 3 × 3.75 mm3. Functional imaging was performed
for 10 min, resulting in 300 volumes for each patient. Patients were
instructed to lie quietly in the scanner with their eyes closed. All images
were visually inspected for artifacts, including susceptibility and subject
motion.

2.4. Image processing and analysis

2.4.1. Network node definition
Nodes in the network were defined for each patient according to

parcellation of whole-brain gray matter on the structural images. The
processing pipeline was implemented using MATLAB scripts (version
7.13, MathWorks, Inc.) in which adapter functions were embedded to
execute FreeSurfer reconstruction (version 5.3.0; http://surfer.nmr.
mgh.harvard.edu) and several FMRIB Software Library (FSL) suite
tools (Smith et al., 2004). First, FreeSurfer reconstruction of cerebral cor-
tical surfaces was performed on the T1 structural image. This processing
stream includes motion correction, skull stripping, intensity normaliza-
tion, segmentation of white matter and gray matter structures,
parcellation of the gray matter and white matter boundary, and surface
deformation following intensity gradients which optimally place the
gray matter/white matter and gray matter/cerebrospinal fluid borders
(Fischl et al., 2001; Fischl et al., 2004). The pial and gray white surfaces
were visually inspected using the Freeview software for accurate
placement.

Next, a self-developed MATLAB program was applied to the
FreeSurfer output to further subdivide the 75 standard graymatter par-
cels according to their surface area. During this process, each parcel was
iteratively divided into two new parcels of equal size until the surface
area of each parcel (as defined on the FreeSurfer gray-white surface
mesh) was less than a 350-mm2-threshold value. Each surface parcel
was then converted into a volume mask of gray matter at that region
to form a node on the network. The number of nodes in each patient's
network ranged from 511 to 841 (mean: 684; standard deviation: 68).

2.4.2. Network edge definition
The first 5 volumes in each resting state functional data were re-

moved to allow magnetization to reach equilibrium. Preprocessing
and independent component analysis (ICA) of the functional data sets
was performed using FSL MELODIC (Smith et al., 2004), consisting of
motion correction, interleaved slice timing correction, brain extraction,
spatial smoothingwith a Gaussian kernel full width at half maximumof
5 mm, and high pass temporal filtering equivalent to 100 s (0.01 Hz).
Noise related to motion and other physiologic nuisance was addressed
according to an ICA technique (Thomas et al., 2002). All non-signal com-
ponents were removedmanually by an expert operator. Motion param-
etersmeasuredduringpreprocessingwere summarized for each patient
as “translation” (the root mean square of the three translational param-
eters) and “rotation” (rootmean square of three rotational parameters).
FSL's FLIRTwas then used to align the functional image volumes for each
patient to that individual's structural T1 dataset using linear registra-
tion. Mean BOLD-signal time series were computed for each node. The
strength of an edge between two nodes was defined as the absolute
value of the Pearson correlation coefficient between their time series.

2.4.3. Construction of the brain functional network
Weighted, undirected graphs were constructed for each patient

consisting of the pair-wise correlation between BOLD signal time series
over all network nodes. Non-significant correlations were excluded
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based on Bonferroni adjusted p-values. To this end, the p-value of each
pairwise correlation in the connection matrix was multiplied by total
number of node pairs [(N2−N)/2] and thresholded at 0.05.

2.4.4. Network metric calculation
WeusedMATLAB scripts available from the Brain Connectivity Tool-

box (BCT, http://www.brain-connectivity-toolbox.net) to compute
common metrics that summarize global network architecture includ-
ing: Clustering coefficient: the fraction of a node's neighbors that are
neighbors of each other. Clustering coefficient of a graph is the average
clustering coefficient over all nodes in the network. Networks with high
clustering coefficient are considered locally efficient networks (Rubinov
and Sporns, 2010). Modularity: the degree to which the network tends
to segregate into relatively independent modules, or subnetworks
(Rubinov and Sporns, 2010; Newman andGirvan, 2004).Modularity re-
flects the capacity of a network to support functional sub-specialization.
Transitivity: Transitivity is a variant of clustering coefficient, reflecting
connectivity of a given region to its neighbors. Unlike clustering coeffi-
cient, nodes of lesser importance in the network (i.e. those with low de-
gree) do not influence transitivity (Rubinov and Sporns, 2010;
Newman, 2003). Modularity, clustering coefficient and transitivity are
metrics that measure the brain's tendency to segregate into relatively
independent, local neighborhoods. In other words, these measures re-
flect the ability of the brain to process specialized functionswithin high-
ly interconnected functional sub networks. Characteristic path length:
the path length between two nodes is the minimum number of edges
that must be traversed to get from one node to the other. Characteristic
path length is the average shortest path length between all pairs of
nodes in the graph, indicating howeasily information can be transferred
across the network (Rubinov and Sporns, 2010). Global efficiency: relat-
ed to characteristic path length, global efficiency is the average of the in-
verse of the shortest path length over the network. Compared to
characteristic path length, global efficiency is less influenced by nodes
that are relatively isolated from the network (ie. infinite path length)
(Rubinov and Sporns, 2010; Latora and Marchiori, 2001). Characteristic
path length and global efficiency are measures of global connectedness,
providing an estimate of how easily information can be integrated
across the network.

In order to account for differences in network size inherent to a pe-
diatric cohort, we computed normalized networkmetrics as follows: for
Fig. 1. Relationship between IQ and epilepsy duration. IQ was negatively associated
each patient, eachmetricwas divided by the samemetric computed in a
random network of identical size (Rubinov and Sporns, 2011).

2.5. Statistical analyses

All statistical analyses were performed using R Language, version
3.0.2 (R Foundation for Statistical Computing, Vienna, Austria). We
used the duration of each patient's epilepsy (measured as the span of
time from epilepsy onset to the date of MR imaging) as an index of
the overall impact of their disease on the brain (van Iterson et al.,
2014). Linear regression (alpha: 0.05) was used to assess the relation-
ship between epilepsy duration and IQ (after accounting for age of epi-
lepsy onset) in our patient cohort. Bonferroni was used to adjust for
multiple comparisons.

In the primary analysis, we used amachine learning algorithm (Ran-
dom Forest Approach) to predict epilepsy duration on the basis of the
five global network metrics. To be specific, the algorithmwas given ac-
cess solely to the network metrics and no other variables during this
step. This machine learning method was selected because it tests the
predictive capacity of a “learned” statistical model on a subset of the co-
hort omitted during training. In other words, the ability of the model to
predict epilepsy duration in each individual was tested in a previously
unseen subset of patients. Machine learning approaches, therefore, rep-
resent an effective method by which metrics derived from quantitative
imaging can be assessed with respect to their potential translation into
clinicallymeaningful information at the level of a single patient (Paldino
et al., 2014). Details regarding this particular technique have been pre-
viously described (Breiman, 2001).

In addition to prediction of epilepsy duration, the Random Forest al-
gorithm also measures the independent contribution of individual var-
iables to that prediction. This step is accomplished for each variable by
comparing the prediction error over the cohort to that error which re-
sults when that variable has been removed from the model. Hence,
the importance of each network metric toward accurate prediction of
epilepsy duration was measured after adjusting for the contribution of
all other variables.

For each variable deemed to be important to the predictive model,
the relationships to epilepsy duration were further quantified in a uni-
variate analysis using linear regression. To be specific, this step was
not performed to verify the results of the above analysis; rather it was
with epilepsy duration after adjusting for the age of epilepsy onset (p: 0.01).

http://www.brain-connectivity-toolbox.net


Fig. 2. Relationship between epilepsy duration predicted based solely on network metrics and true epilepsy duration (r: 0.95, p: 0.0001).
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used to demonstrate graphically the direction of the relationships mea-
sured by the Random Forest algorithm.

It is important to note that a relationship between network metrics
and global intelligence has been previously reported (Kim et al., 2016;
Li et al., 2009). Hence, a “control model” was developed to confirm
that the primary analysis measured the effects of epilepsy on the
brain, rather than a transitive relationship between network metrics
and epilepsy duration mediated by IQ. The control model included IQ
as well as other potential confounders, including physiologic (gender,
the use of anesthesia during imaging, and the number of network
nodes) and nuisance variables (rotational and translational motion dur-
ing MRI). To be specific, network metrics were not included in the con-
trol model. The control model was then used to predict epilepsy
duration using an otherwise identical Random Forest algorithm. The
Fig. 3. Importance of networkmetrics to the accurate prediction of epilepsy duration by the Ran
error of themachine learning algorithm's prediction of epilepsy duration compared to that error
defines the limit of noise. Hence, variables with importance greater in magnitude than the mo
relationship to true epilepsy duration was assessed using linear
regression.

3. Results

3.1. Patients

Forty-seven patients were eligible for the study based on inclusion
criteria. Two patients with cavernous malformations were excluded
on the basis of susceptibility-related artifact obscuring the cortex. Char-
acteristics of the forty-five patients (age range: 4–19 years) comprising
thefinal study group are provided in Table 1. In 29 patients, MR imaging
was performed under general anesthesia; 16 patients were imaged
without sedation. Thirty-nine (87%) patients had identifiable structural
dom Forest algorithm. The independent contribution of eachmetric was estimated as the
which resultswhen thatmetric is negated. The greatestmagnitude of negative importance
st negative variable are significantly associated with the outcome.



Fig. 4. Univariate relationships between epilepsy duration and (a) modularity (p: 0.0015), (b) characteristic path length (p: 0.028) and (c) global efficiency (p: 0.036).
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Fig. 5. Relationship of true epilepsy duration (blue) and predicted epilepsy duration (red) to IQ (True duration: r:−1.2, p: 0.0106, R2: 0.1422; Predicted duration: r:−1.7, p: 0.0102, R2:
0.1439). Blue data in the graph is identical to Fig. 1.
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abnormalities at MR imaging (Table 1). Time between neuropsycholog-
ical assessment and neuroimaging ranged from 1 day to 3months (me-
dian: 1 month).

3.2. Epilepsy duration and global intelligence

After accounting for age of epilepsy onset, epilepsy duration was in-
versely related to IQ (p: 0.039; Fig. 1).

3.3. Network architecture and epilepsy duration

Epilepsy duration predicted by themachine learning algorithm sole-
ly on the basis of the five global network metrics was highly correlated
with true epilepsy duration (r: 0.95; p: 0.0004; Fig. 2). After accounting
for age and age of epilepsy onset, modularity, path length, and global ef-
ficiency were independently associated with epilepsy duration (Fig. 3).
Notably, the use of anesthesia during imaging, IQ, and parameters sum-
marizing translational and rotational motion did not impact the accu-
rate prediction of epilepsy duration (Fig. 3). Similarly, prediction error
was not related to the type of structural abnormality. Univariate rela-
tionships of the three important variables with epilepsy duration are
provided in Fig. 4. Metric-predicted epilepsy duration closely paralleled
true epilepsy duration in terms of its association with declining IQ (p:
0.036; Fig. 5).

Epilepsy duration predicted using the control model (based on IQ
and other potential confounders) without access to network metrics
was poorly correlated with true epilepsy duration (r: 0.04; p: 0.45; Fig.
6a). Similarly, no individual variable in the control model was signifi-
cantly associated with epilepsy duration (Fig. 6b).

4. Discussion

We report the following main findings in a cohort of children with
focal epilepsy: 1. IQ declinedwith increasing duration of epilepsy. 2. Ep-
ilepsy duration predicted by a machine learning algorithm on the basis
of network metrics was highly correlated to true epilepsy duration. 3.
Three networkmetrics (modularity, characteristic path length, and effi-
ciency) were independently associated with epilepsy duration after ac-
counting for all other variables. Taken together, these findings suggest
that metrics of network architecture have the potential to capture the
pathophysiologic impact of this debilitating disease on the cerebral
network.

Graph theoretical analyses offer a promising framework in which to
explore complex networks. Several studies have used such analyses to
quantify brain network architecture in patients with epilepsy (Liao et
al., 2010; Bernhardt et al., 2011; Vlooswijk et al., 2011; van Dellen et
al., 2009; van Diessen et al., 2013; Bernhardt et al., 2015). These studies
have received considerable attention for demonstrating that focal epi-
lepsies are associated with widespread alterations in the architecture
of the cerebral network when compared to healthy control subjects.
Our findings are not only compatible with the idea of such group level
alterations, they further point to the potential for these metrics to cap-
ture physiologically-important differences in network architecture be-
tween individuals with epilepsy. Although information regarding the
relationship between global network measures derived from resting
state fMRI and the duration of epilepsy is limited, our findings are com-
patible with work by Van Dellen et al., who observed epilepsy duration-
related alterations in temporal lobe networks using electrocorticogra-
phy (van Dellen et al., 2009).

In terms of individual networkmetrics, we observed thatmodularity
made the greatest contribution to accurate prediction of epilepsy dura-
tion. Specifically, longer duration of epilepsy was associated with
increasingmodularity. These findings are consistentwith an increasing-
ly fragmentary network over time and, therefore, point to a relative
paucity of effective long range connections between sub-specialized
modules in the brain. Interestingly we observed that decreasing path
length and increasing global efficiencywere also importantwith respect
to capturing the impact of epilepsy on the brain. It may seem counterin-
tuitive that increased long range connections are associatedwith amore
fragmentary network. However, in the setting of epilepsy, Hebbian pro-
cesses strengthen synapses along pathways related to seizure propaga-
tion, rather than those contributing to efficient and functional
subnetworks (Hernan et al., 2013). Connectivity in this setting, then, is
potentiated without regard to network function, resulting in aberrant
and potentially maladaptive pathways (Galicia et al., 2009; Koh et al.,
2005). Our findings suggest that, although increased in number, many
long range connections in epileptic brains are indeed maladaptive as
they do not contribute to effective integration of functionally-special-
ized subnetworks (modules) in the brain.

To date, data regarding the capacity for network metrics to act as a
surrogate for the impact of epilepsy on the brain are limited. However,



Fig. 6. Epilepsy duration predicted without network metrics. (A) Random Forest predicted duration on the basis of the control model (IQ and other non-network variables) is a poor
surrogate for true epilepsy duration (r: 0.04; p: 0.45; R2: 0.02). (B) No individual variable in the control model was significantly associated with epilepsy duration. Again, the greatest
magnitude of negative importance defines the limit of noise. Hence, only variables with importance greater in magnitude than the most negative variable are significant.
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our findings are generally in line with previous reports, most of which
have compared epilepsy patients to healthy volunteers at the group
level. In a study of children with cryptogenic frontal lobe epilepsy,
Vaessen et al. demonstrated increased modularity compared to normal
controls (Vaessen et al., 2013). They also observed, among all epilepsy
patients, highermodularity in the groupwith cognitive impairment. Al-
though they did not evaluate the contribution of modularity, Liao et al.
observed functional networks characterized by lower clustering coeffi-
cient and shorter path length in a cohort of adult patients with temporal
lobe epilepsy (Liao et al., 2010). By contrast, Vlooswijk et al. reported
longer path lengths in a cohort of adult patients with cryptogenic local-
ization-related epilepsy (Vlooswijk et al., 2011). These discrepancies re-
garding the impact of epilepsy on path length may relate to age of the
cohort in question. Shorter path lengths were observed in children
(our study) and young adults (Liao et al.), whereas longer path lengths
were observed in older adults (Vlooswijk et al.). Together these findings
point to a potentially important interaction between developmental
physiology, which prioritizes growth and reorganization, and the im-
pact of epilepsy on the brain.

This study has several limitations. First, thiswork is based on a cross-
sectional design. A longitudinal study would be of great value toward
defining the changes in resting-state functional connectivity that occur
over time, particularly as they relate to cognitive decline. Second, we ac-
knowledge that all patients in this study were being evaluated for epi-
lepsy surgery and may not be representative of a more general
epilepsy population. Third, the duration of each patient's epilepsy is
not a perfectmarker of the cumulative impact of their disease and likely
does not encapsulate all the nuances of an individual's clinical course
relevant to their disease burden. Specifically, it does not capture the fre-
quency of seizures or their severity, nor does it account for the age of
onset. It is worth noting, however, that our findings persisted after
adjusting for age of epilepsy onset and, further, there is good reason to
question the importance of seizure frequency with regard to measuring
the impact of epilepsy on cognitive function (Sherman et al., 2012). It is



208 M.J. Paldino et al. / NeuroImage: Clinical 13 (2017) 201–208
worth noting, however, that duration of disease has been shown to be a
valid marker of the cumulative impact of epilepsy on the brain, particu-
larly as it relates to cognitive function (van Iterson et al., 2014). In a re-
lated issue, the question of anti-epileptic medications and their
contribution to the overall neurologic morbidity of epilepsy could not
be addressed by our retrospective design. Future study would be of
great interest toward dissociating the impact of seizures on the brain
versus that of antiepileptic drugs; differential effects of specific medica-
tions could also be addressed in such a study.

In conclusion, we report the following in a cohort of pediatric pa-
tients with focal epilepsy: a machine learning algorithm accurately pre-
dicted epilepsy duration based on global metrics of network
architecture derived from resting state fMRI. These findings suggest
that network metrics have the potential to form the basis for statistical
models that translate quantitative imaging data into patient-level
markers of cognitive deterioration. If these results are confirmed in lon-
gitudinal studies, resting state network analyses could be used to per-
sonalize clinical decision-making, particularly with regard to the
optimal timing for surgical interventions in childrenwith focal epilepsy.
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