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Normal tissue complication probability (NTCP) models that were formulated in the
Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC) are one of the
pillars in support of everyday’s clinical radiation oncology. Because of steady therapeutic
refinements and the availability of cutting-edge technical solutions, the ceiling of organs-
at-risk-sparing has been reached for photon-based intensity modulated radiotherapy
(IMRT). The possibility to capture heterogeneity of patients and tissues in the prediction
of toxicity is still an unmet need in modern radiation therapy. Potentially, a major step
towards a wider therapeutic index could be obtained from refined assessment of
radiation-induced morbidity at an individual level. The rising integration of quantitative
imaging and machine learning applications into radiation oncology workflow offers an
unprecedented opportunity to further explore the biologic interplay underlying the normal
tissue response to radiation. Based on these premises, in this review we focused on the
current-state-of-the-art on the use of radiomics for the prediction of toxicity in the field
of head and neck, lung, breast and prostate radiotherapy.

Keywords: Radiomics, Intensity modulated radiotherapy, xerostomia, radiation induced lung injury, cardiac
toxicity, lower gastro-intestinal toxicity

INTRODUCTION

The seminal QUANTEC collection (1) provided a comprehensive set of recommendations for the
estimation of normal tissue complication probability (NTCP) that were largely based on empirical
data, whereas the earlier influential paper by Emami (2) was mainly based on a consensus of experts.
Leveraging the available published evidence into definitions of dose-volume relationships for most
organs at risk epitomized the paradigm shift of QUANTEC.

However, its analyses relied on data from a time when predominantly 3D-conformal
radiotherapy (3DCRT) was used with relatively uniform dose distributions. The advent of intensity
modulated radiotherapy (IMRT) led to an unprecedented improvement in radiation ballistics (3),
allowing for exquisite precision in dose distribution. Over the years, through constant optimization
of IMRT techniques (4), the ceiling of organ-at-risk sparing has been reached: in the frame of
photon therapy delivery, incremental advances in the reduction of radiation-induced toxicity are
unlikely to occur, mainly due to limits dictated by physics. Ideally, further improvement must
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come from better shaping the dose distribution, which can
only be personally optimized if precise knowledge (5) of dose-
effect relationships is used. The current state-of-the-art of
relying exclusively on NTCP models from QUANTEC has
its own caveats (6): above all, the lack of integration of
biologic heterogeneity and patients’ individual factors such as
age, comorbidities, pre-existing organ dysfunction, and use of
systemic agents represent the most limiting factors. In addition,
an overarching issue is represented by the paucity of external
validation studies (7, 8) for most NTCP models.

Overall, the absence of predictive biomarkers for radiation-
related morbidity is a major unmet need in modern radiation
therapy. Within the last 10 years (9, 10), the advent of radiomics
has reshaped the approach to medical images, based on the
hypothesis that they are inherently able to convey information
on the underlying physiopathology. Standardization in image
acquisition, high-throughput generation of objective descriptors
and extensive data-mining characterized the transition from
purely qualitative to quantitative imaging (11). As outlined in the
pivotal CRUK-EORTC consensus review (12), distinct features
can be envisaged in the re-thinking of imaging as a biomarker:
non-invasiveness, serial assessment, comprehensive tumor
mapping, repeatability, and cost-effectiveness. In the perspective
of personalized oncology (13) as currently implemented in the
clinic, the use of quantitative imaging may allow us to overcome
the known limits associated with molecular profiling. Several
applications of radiomics in the field of precision radiation
oncology have been identified, providing insights in terms of
stage discrimination (14, 15), molecular stratification (16–18),
prognostic impact (19, 20), and prediction of response to
treatment (21–23). With imaging, the possibility to capture
intrinsic tumor and organ-specific heterogeneity could be
leveraged to evaluate the individual predisposition to radiation-
induced toxicity (24). Thus, radiomics-based analyses have the
potential to enrich standard NTCP models for the definition of
individualized risk profiling, ultimately aiming for a personalized
patient management and optimized therapeutic ratio. At present,
such efforts must still be considered investigational and not
ready for prime time (25). The aim of our mini-review was
to provide an overview on the evidence pertaining to the role
of radiomics in the prediction of radiation-induced toxicity
for parotid glands, lungs, heart, and rectum. Based on the
aforementioned premises, in each of the following sections an
introduction on the traditional QUANTEC-based NTCP models
is followed by the description of the most relevant data thus far
available on radiomics-analyses and their potential in improving
the predictive ability of side effects.

HEAD AND NECK RADIOTHERAPY:
PAROTID GLANDS

Xerostomia represents a well known side-effect in head and
neck cancer (HNC) radiotherapy (RT), accounting for significant
impairment in patients’ quality of life due to its impact on
taste, swallowing, and speech (26). The major determinant of
xerostomia is radiation-induced damage of the parotid and

submandibular glands, which globally release over 80% of
saliva (27). The QUANTEC consortium (6, 28) identified a
mean parotid gland dose of 26 Gy as a critical threshold
for the preservation of salivary function. However, in IMRT
clinical practice, it is often challenging to comply with this
recommendation, since a detrimental impact on target coverage
can’t be completely minimized (29). Furthermore, it has been
demonstrated that a late recovery of salivary function is feasible,
even in cases of overt xerostomia shortly after RT (30). These
considerations led to the assumption that the dose-response
relationship of parotid glands is more complex than initially
hypothesized in QUANTEC, and that within this context, the
use of quantitative imaging could lead to a better understanding
of this issue. In an effort to better elucidate radiation-induced
xerostomia pathogenesis, van Lujk et al. (31) postulated the
existence of stem cell regions in the context of parotid glands
involved in the regeneration of salivary function. As the
distribution of stem cells within the parotid gland was shown
to be inhomogeneous, with the highest concentration located
near the dorsal edge of the mandible (where the first branching
of the Stensen duct is located), it has been theorized that
intentionally sparing these sub-regions would yield better results
rather than attempting to spare the whole gland. The validity
of this approach was further confirmed by a post hoc analysis
of the PARSPORT trial performed by Buettner et al. (32). In
fact, by taking into account the spatial information of dose
distribution within parotid glands, the authors demonstrated that
a significantly better prediction of patient-reported xerostomia
could be obtained in respect to a model solely based on standard
mean dose. Further efforts in unraveling the complex relationship
between dose distribution within the parotid and NTCP led
to the concept that different thresholds for xerostomia injury
and recovery exist. Recently, Guo et al. (33) assessed the spatial
radiation dose-based importance pattern in the major salivary
glands in relation to late and acute xerostomia in a retrospective
population of 146 HNC patients. The authors identified the
superior portion of the two parotid glands (low dose region) as
the most influential on xerostomia recovery, and demonstrated
a different voxel hierarchy pattern for injury and recovery. In
a retrospective analysis on 258 patients, Han and colleagues
(34) showed an inverse correlation between the pattern of
dose-volume histograms and clinical outcomes: a relatively high
dose to small portions of a glandular sub-volume (between 10
and 40%) may be more harmful than a low-dose bath effect.
Hence, in terms of function preservation, limiting the dose
to specific sub-volumes such as the superior-posterior region
of the ipsilateral parotid gland may be more useful (nested
cross-validation area under the curve (AUC) – values of 0.78
and 0.70 for prediction of injury and recovery, respectively).
In this perspective, the identification of quantitative imaging
parameters correlated with both acute and late xerostomia is
of paramount importance. Changes over time of radiomics
features (delta-radiomics) have been extensively evaluated both
in terms of acute and late xerostomia prediction (35–38). In
an effort to better elucidate the relationship between parotid
gland shrinkage after RT and late xerostomia, van Dijk et al.
(37) recently demonstrated a correlation between delta radiomics
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surface changes in contralateral parotid gland and late xerostomia
in 68 patients (AUC 0.93 in test cohort). This association was
significant during the whole course of RT, but performed best
for mid-treatment (week 3). This finding may have profound
clinical implications, allowing an early identification of patients
at risk for developing late side effects and prompting adaptive
re-planning or even switching to other forms of radiation (e.g.,
proton therapy). A similar approach was performed by Rosen
and colleagues (38), who retrospectively analyzed serial cone-
beam CTs (CBCT) of 119 HNC cancer patients undergoing RT.
The authors concluded that the rate of CBCT-measured parotid
gland image feature changes improved NTCP modeling over dose
alone for late xerostomia prediction (AUC 0.77). In the context
of late xerostomia prediction, baseline evaluation of changes in
magnetic resonance (MR) and 18F-fluorodeoxyglucose (FDG)
positron emission tomography/computed tomography (PET-
CT)-based parotid gland features was also shown to be a
promising field of application (39–43). In particular, parotid
glands with low metabolic activity and a low fat-to-functional
parenchymal ratio were matched by more heterogeneous
intensity and texture imaging features: overall, these hypothesis-
generating studies showed that pre-treatment radiomics-based
prediction outperformed conventional NTCP models. Finally,
a machine-learning approach integrating dosiomics, radiomics,
and morphological data in predicting both acute and late injury
to salivary glands has recently shown promising results (44,
45). Interestingly, by applying a novel artificial intelligence
methodology (“likelihood-fuzzy analysis”), Pota et al. (46)
identified quantitative predictors of 12-month toxicity through
a longitudinal assessment of parotid glands in a dual institution
experience. Taking all data together, radiomics-based analyses
proved to be reliable tools to assess the risk for xerostomia
in HNC patients, warranting further validation in larger
prospective cohorts.

THORACIC RADIOTHERAPY: LUNG

Radiation-induced lung injury (RILI) is at the same time
a complex radiobiological entity with a multi-faceted
physiopathology and a serious challenge for the clinician,
representing an important source of morbidity in 15–40%
(47, 48) of patients receiving radiation or chemoradiation as
definitive treatment for non-small cell lung cancer (NSCLC).
In the IMRT era, a stringent trade-off between dose delivery to
locoregional disease and adequate sparing of healthy lung tissue
is advocated. This assumption was corroborated by a secondary
analysis of the controversial RTOG 0617 trial, suggesting that
the lack of benefit of dose escalation may have resulted from
an increase in cardio-pulmonary mortality in patients receiving
more aggressive dose regimens (49, 50). It is well known that
RILI is a dose-limiting toxicity in the management of esophageal
cancer (51, 52) and lymphoma (53, 54) patients, as well. In view
of the usually lower total dose delivered for these malignancies
in current practice, the most compelling evidence on radiation-
induced lung toxicity can be extrapolated from NSCLC. Hence,
it is of primary importance to unravel the intricate network of

technical, clinical, and treatment-related factors implicated in
the onset of RILI in order to develop models that allow us to
accurately predict the risk of serious adverse events. The use
of dose estimates to the lung as a predictor of RILI risk is well
established (55), while the role of other factors, in particular dose
to the heart, is controversial (56–58). Currently, dose-volume
parameters, namely the mean lung dose (MLD) and the volume
of lungs receiving at least 20 Gy (V20Gy), have been integrated
in the QUANTEC (59) as partially reliable surrogates for the
risk of radiation pneumonitis. Taking into account the known
low dose bath-effect of IMRT, lower dose-volume thresholds
have also been suggested, such as V13Gy (60, 61) and V5Gy (54,
62) In comparison with the historical standard Lyman model,
the development of the “generalized Lyman-model” (GLM)
(63) led to the introduction of a new radiobiological parameter
(the effective dose, or Deff, corresponding to the equivalent
uniform dose, EUD), allowing for exposed volumes of the
organ at risk to be weighted differently. However, dose-volume
parameters do not ultimately allow us to take into account
the functional heterogeneity within different lung regions and
among individuals. On the other hand, data extraction from
pre-treatment imaging may provide information for a tailored
strategy. Thus far, a few reports are available on the potential
added value of radiomics in the context of RILI prediction. In
a single-center, retrospective experience on 96 patients who
received curative RT for esophageal cancer, Anthony et al.
(64) evaluated the correlation between the development of
symptomatic radiation pneumonitis and pre-treatment analysis
of FDG PET/CT and diagnostic CT scans. In a logistic regression
model, the addition of the standard uptake value (SUV) standard
deviation to 18 lung CT texture feature changes in the low-dose
area (0–10 Gy) improved by 0.08 the mean AUC value in
discriminating the diagnosis of RILI. In a larger experience on
192 patients treated for NSCLC in the same institution, Krafft
et al. (65) extracted 6851 features from planning CT scans, as
candidate predictors for RILI. Compared with standard clinical
and dosimetric factors, at least absolute shrinkage and selection
operator (LASSO) logistic regression, a final 449-feature set of
the total lung volume yielded a higher average cross-validated
AUC, demonstrating improved discrimination (0.51 and 0.68,
respectively). The existence of a strict relationship between the
dose distribution, a change of CT texture features before and after
RT, and the risk of RILI development was firstly demonstrated
by Cunliffe et al. (66). Recently, this dosiomic approach was
replicated through a convolutional deep-neural network analysis
(67, 68) in a cohort of 70 NSCLC patients treated with volumetric
modulated arc therapy (VMAT), providing a high discriminative
power (AUC of 0.84) over standard logistic regression models for
the prediction of radiation pneumonitis. Taking into account the
much less clinically relevant impact of radiation pneumonitis in
the context of stereotactic body RT, limited data are available (69,
70) in this context in comparison to conventionally-fractionated
regimens. Overall, in parallel to robust prognostic value in the
context of stereotactic body RT (71) and chemoradiation (72),
the reported data promisingly support the relevance of radiomics
in the prediction of lung toxicity. However, to take into account
the complexity of RILI, optimal models should integrate, in
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addition to dosimetric variables, other individual risk factors
such as age (73), genetic polymorphysms (74), pre-existing
functional impairment of the lung (48), chemotherapy regimens
(75), and, curiously, a paradoxical protective effect of smoking
as a possible result of functional exhaustion of the inflammatory
microenvironment in current smokers (73). In summary, RILI is
a multi-faceted phenomenon resulting from complex processes
that depend on biologic, dosimetric, and treatment-related
variables that need to be integrated in a comprehensive model
(76, 77), beyond a mechanicistic dose-response relationship.

BREAST RADIOTHERAPY: HEART

Radiotherapy plays a crucial role in the curative management
of non-metastatic breast cancer, with well-established benefits
in terms of loco-regional control and survival for node-positive
patients (78, 79). In 2005, the Early Breast Cancer Trialists’
Collaborative Group (EBCTCG) meta-analysis on individual
patient data epitomized the known potential correlation of
radiation and cardiac damage, showing a significant excess of
non-breast cancer mortality from heart disease (rate ratio 1.27,
SE 0.07, 2p = 0.0001) (80). Notably, the high cure rate of
radiation for Hodgkin lymphoma (HL) has been historically
offset by late heart dysfunction in long survivors (81). In the
QUANTEC publication (82) it was recommended that the heart
volume receiving up to 25 Gy (V25) should be below 10%. In
current practice, the “ALARA” (“as low as reasonably achievable”)
principle is usually applied to left-sided breast cancer patients,
aiming for a mean heart dose (MHD) below 2 Gy whenever
possible. However, the NTCP model does not take into account
other dosimetric factors, such as the possible interaction between
cardiac and lung dose-volume parameters (83), as suggested by
Cella et al. in an institutional analysis on 90 HL patients (84).
Abnormalities in myocardial perfusion and echocardiography
have been reported (85) when larger than average heart volumes
were inadvertently irradiated. In particular, a mean dose to the
left ventricle of 9 + 4 Gy was significantly correlated with a
reduced anterior wall strain (-16.8% at 14 months after RT), an
early surrogate marker of myocardial function detectable with
doppler echocardiographic imaging. Conversely, in patients with
relatively low MHD (< 4 Gy), Bian et al. found no association
between cardiac dosimetry and left ventricular ejection fraction
(LVEF) (86). Multiple heart dose parameters have been associated
with clinically relevant cardiotoxicity in breast cancer (87). At a
median follow-up of 12 years, Correa et al. found an increased
incidence of coronary artery disease and chronic heart failure
(CHF) rates for increasing heart dose (85). Likewise, Saiki et al.
found a significant association between MHD and the risk of
heart failure with preserved ejection fraction (OR: 16.9, 95%
CI: 3.9–73.7) (88). In a pivotal study, Darby et al. were able
to demonstrate the existence of a linear relationship between
the occurrence of major coronary events and MHD, with a
7.4% increase in the risk per Gy (95% CI: 2.9–14.5; p < 0.001).
Nonetheless, a distinct dose threshold could not be identified
(89). In a large cohort of 910 patients, Van den Bogaard et al.
confirmed these findings, reporting a 16.5% increase per Gy in

the cumulative incidence of acute coronary events (90), although
they were not able to detect a correlation between RT dose
and LVEF (91). Overall, the inter-individual heterogeneity in
cardiac exposure to radiation has been an unresolved issue
in cardiotoxicity studies. The inter-observer reproducibility in
delineation of heart substructures and their dosimetric evaluation
(82) are critical factors for a prospective, personalized risk
assessment. Indeed, contouring standardization may have a
significant role in minimizing differences in dose reporting (92–
95). Patients enrolled in the prospective BACCARAT study
(96) underwent a coronary computed tomography angiography
(CCTA) before irradiation. By analyzing the dose distribution
to the whole heart and its substructures in 89 left-sided
subjects, the authors highlighted that MHD is a poor dosimetric
surrogate parameter for the left ventricle and coronary arteries
(in particular the left anterior descending artery). A machine
learning approach based on CCTA-derived radiomics may have
potential for a better prediction of atherosclerotic plaques
over visual assessment (AUC of 0.73 vs 0.65, p = 0.04) (97).
Taking all clinical observations together, no NTCP modeling
provides conclusive evidence on late heart toxicity based on
MHD analysis. To the best of our knowledge, no radiomics
applications have been reported for the prediction of radiation-
induced heart damage. Interestingly, Currie et al. (98) performed
an explorative study based on automated feature extraction
from single-photon emission computed tomography (SPECT)
imaging in 22 non-cancer patients with cardiomyopathy to
evaluate the most potent prognostic index for future cardiac
events. With an artificial neural network approach, the authors
showed that a 23iodine meta-iodobenzylguanidine (123I-mIBG)
planar global washout higher than 30% was the best indicator
for risk of cardiac events when accompanied by a decline in
LVEF of more than 10%. In summary, in spite of technical
capability of modern IMRT techniques to tightly refine the dose
distribution within the thorax, the definition of dose-volume
relationships and specific NTCP modeling for myocardial sub-
volumes lags behind. Taking into account that the risk of future
cardiac events after RT is strongly related to persistent smoking,
age, prior cardiac events, and pre-existing cardiovascular risk
factors, big data applications (99) may lend support to clinical
decision making.

PROSTATE RADIOTHERAPY: RECTUM

Definitive RT represents one of the main treatment options
for localized prostate cancer (100). Thanks to the availability
of long-term data on clinical outcome and adverse events,
radiation-induced lower gastro-intestinal toxicity remains one of
the most relevant factors known to have a detrimental impact
on patients’ quality of life (101). The relationship between
increased late rectal toxicity and high radiation dose is well
known for 3DCRT (102) and conventional fractionation up to
78 Gy, with increasing rates of bleeding with rectal volumes
receiving 50, 60, 65, 70, and 75 Gy greater than 50, 35, 25,
20, and 15%, respectively (V50Gy > 50%, V60Gy > 35%,
V65Gy > 25%, V70Gy > 20%, and V75Gy > 15%) (103,
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104). When externally validated in patients treated with 3DCRT,
the QUANTEC-based EUD model had relatively low predictive
power (AUC 0.61) for late rectal bleeding (105). Further, the
NTCP cross-applicability to IMRT for chronic gastrointestinal
toxicity was assessed in a large single-institution cohort study
(106). Indeed, debilitating symptoms such as fecal incontinence
or rectal urgency were mostly reported when large volumes of
the rectum were exposed to intermediate doses, as confirmed
by the Medical Research Council RT01 randomized phase 3
trial (107) and the long-term follow-up of the AIROPROS 0102
study (108). In recent years, the implementation of moderate
hypo-fractionated regimens in clinical practice prompted the
development of dose-volume constraints adapted to different
treatment schedules (109). Unlike what happens for moderate
hypo-fractionated IMRT, high rather than low-dose regions in
the rectum predict toxicity after an ultra hypo-fractionated
regimen. Of note, V35Gy was shown to be a strong predictor
of rectal bleeding (110) and a recent pooled analysis of
patients treated within four different trials demonstrated that
late toxicity and quality of life were significantly related to
V38Gy after the delivery of 35-40 Gy in five fractions (111).
Overall, prospectively defined dosimetric predictors of lower
gastro-intestinal toxicity can be adapted according to different
techniques and fractionations used in the context of definitive
treatment for localized prostate cancer.

In view of the available spectrum of NTCP models and
of the clinical variability of late rectal side effects, extracting
mineable data from imaging would facilitate a personalized
treatment prescription. Few radiomics analyses allow us to refine
the toxicity prediction in the current scenario. In a single-
center prospective study on 33 patients treated with moderately
accelerated IMRT (70.2 Gy in 26 fractions), Abdollahi et al.
(112) performed a machine learning approach on pre- and post-
treatment T2-weighted MR scans of the rectal wall. Out of a
total of 1096 features, a 37-set of descriptors extracted from
baseline T2-weighted images was more accurate (mean AUC
of 0.68) than post-treatment T2-weighted apparent diffusion
coefficient (ADC) and delta values. Of note, a broad clinical
endpoint was chosen by the authors (G1 rectal toxicity, occurring
in 54% of the cohort). Similar pilot analyses from the same
group focused on the bladder wall (113) and femoral head
changes (114). In a secondary analysis of the multi-institutional
randomized HYPRO trial, Rossi et al. (115) evaluated the
correlation of late gastrointestinal and genitourinary toxicity with
non-treatment related characteristics (age, baseline PSA, Gleason
score, comorbidities), DVH parameters, and radiomics features.
Of the 820 patients with intermediate and high risk prostate
cancer enrolled in the trial, 351 had dose distributions to rectum
and bladder available for 3D texture analysis. For both rectal
bleeding and fecal incontinence, logistic NTCP models showed
that the addition of texture features led to a statistically significant
improvement in the predictive ability (AUC of 0.73 for both;
p < 0.04), higher than what was obtained with clinical and
DVH parameters. In a smaller prospective study on 64 patients,
Mostafaei et al. came to similar results by analyzing baseline CT
markers with a stacking regression algorithm (116). Interestingly,
an explorative approach focused on four patients irradiated

on a 1.5 Tesla MR-Linear Accelerator within a prospective
observational trial. Delta-radiomics assessed with a longitudinal
T2-weighted intensity histogram of prostate and surrounding
organs at risk showed early significant variations of the rectal
wall, with change in mean, median, and standard deviation
metrics values at the second week of treatment. A longitudinal
radiomic data acquisition process was deemed feasible on the
hybrid machine (117). To summarize, in the modern context of
prostate RT, the prediction of gastrointestinal toxicity based only
on NTCP models may be misleading, given the current trend for
dose-escalated IMRT and the establishment of hypo-fractionated
and ultra hypo-fractionated regimens as standards of care. Early
prospective data on the integration of radiomics analyses are
available. Potentially, these features may represent a valuable
tool for clinical decision in the future. Further refinement
could be provided by applying machine learning methods and
bioinformatics tools to genome-wide data to identify patients
with a greater congenital risk of toxicity before treatment (118).

ASSESSING THE QUALITY OF
RADIOMICS INVESTIGATIONS: A WORD
OF CAUTION

In the previous sections, the potential of radiomics for the
prediction of radiation-induced toxicity for parotid glands, lung,
heart, and rectum was highlighted. Promisingly, quantitative
imaging represents an area of active research under the light
of precision oncology (25). Nonetheless, when evaluating the
investigations thus far published on radiomics, some caveats
need to be taken into account. In view of the complexity of
the radiomic workflow, Lambin and colleagues (11) introduced
a radiomics quality score (RQS) tool. Based on a set of
16 well-defined criteria addressing several aspects such as
image protocol quality, segmentation method, feature reduction,
presence of biologic correlates, and extent of validation, the
authors proposed to define an objective ranking of quality for
radiomics studies. In particular, a score of 36 corresponds to
the highest value achievable, whereby the prospective validation
of a radiomics signature in a registered trial confers the largest
contribution (7 points). Through a systematic review of the
literature focusing on the link between radiomic biomarkers
and tumor biology, Sanduleanu et al. (119) applied the RQS
in 41 studies. Unsurprisingly, most studies (30/41) were of
poor quality, with an average score of 30% or less, mainly
because of a lack of robust segmentation, external validation,
and discrimination based on cut-off values. In addition,
interobserver variability among authors in terms of scoring
was significant, suggesting that the proposed scale requires
further refinement. When applying the RQS to evaluate the
methodological quality of the most relevant radiomics analyses
thus far published for the prediction of xerostomia, RILI,
and late rectal toxicity, the overall outlook (Tables 1, 2) is
unsatisfactory. Although all studies performed well in terms
of describing feature reduction methods (all used measures to
decrease the risk of overfitting), multivariable analyses with non-
radiomic factors, and reporting cut-off analyses, the weaknesses
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TABLE 1 | Most consolidated data in radiomics-based approaches in predicting radiotherapy-induced xerostomia.

Reference Patient
population

Study design Imaging
biomarker

Main outcome Main finding Prediction
measure

RQS

Van Dijk (37) 68 Retrospective
(training and
test cohort)

CT Late Xerostomia Contralateral
PG surface
change @ 3
wks

AUCtrain = 0.92;
AUCtest = 0.93

50%

Rosen (38) 119 Retrospective
(single cohort)

CBCT Late Xerostomia Contralateral
PG shrinkage

AUC = 0.77 38.8%

Guo (33) 146 Retrospective
(Single cohort)

CT Late xerostomia Low dose
region to
superior portion
of the 2 PGs

AUC = 0.68 36.1%

Han (34) 589 (258
assessable for
late xerostomia)

Prospective
(multicentric)

CT Late Xerostomia Low dose bath
to whole gland

AUC = 0.70 50%

Van Dijk (41) 68 (25 patients
for external
cohort)

Retrospective
(+ validation
cohort)

MR Late Xerostomia High intensity
MR P90 values

AUC = 0.83 50%

Wilkie (42) 47 Prospective
(single cohort)

PET Late Xerostomia Pre-treatment
PET P90 values

AUC = 0.78 44.4%

CT, computed tomography; PG, parotid gland, AUC: area under the curve; CBCT, cone-beam CT; MR, magnetic resonance; P90, 90th percentile; PET, positron-emission
tomography; RQS, radiomics quality score.

TABLE 2 | Most promising data in radiomics-based approaches in predicting radiotherapy-induced toxicity in the treatment of solid tumors.

Reference Patient population Study design Imaging biomarker Main outcome Main finding Prediction
measure

RQS

Krafft (65) 192 (NSCLC) Retrospective
(single cohort)

CT RILI 449-feature set of
the total lung
volume

AUC = 0.68 44.4%

Liang (67) 70 (NSCLC) Retrospective
(single cohort)

CT RILI GLCM of
ipsilateral lung

AUC = 0.78 41.6%

Rossi (115) 351 (PCA) Prospective CT Late Rectal toxicity 42 Texture
features (LRHGE
most selected

AUC = 0.73 80.5%

Abdollahi (112) 33 (PCA) Prospective MR Late Rectal toxicity Pre-treatment T2
MRI features

AUC = 0.68 25%

NSCLC, non-small cell lung cancer; CT, computed tomography; RILI, radiation-induced lung injury; AUC, area under the curve; GLCM, gray level co-occurrence matrix;
PCA, prostate cancer; LRHGE, long run high Gaey level emphasis; MR, magnetic resonance; RQS, radiomics quality score.

are represented by the limited validation (typically, on a dataset
from the same institution), the retrospective study design, the
infrequent discussion of biological correlates, and the lack of
cost-effectiveness. A notable exception is represented by the
work of Rossi et al. (112) with a RQS of 80.5% (29/36):
the high score can be justified due to the fact that the
radiomics signature in this study was prospectively validated
in a large, multi-institutional randomized trial with a resulting
potential direct clinical utility. In view of the suboptimal
methodological quality frequently observed in the radiomics
studies we evaluated, caution is advised in the interpretation of
the reported findings. Another relevant limit to bear in mind
is the lack of standardization in regards to imaging features
definition and interpretation. In this perspective, the recently
published Image Biomarker Standardization Initiative (IBSI)
position paper (120) should be viewed as a relevant step ahead,
fostering homogeneity in radiomics analyses across different
research platforms.

CONCLUSION

In comparison to efficacy outcomes, the current state-of-the-
art on radiomics prediction of radiation-induced toxicity is
still relatively limited, with the notable exception of xerostomia
prognostication (Tables 1, 2). Taking all data together, the vast
majority of reviewed studies suggested that indeed radiomics
applications may increase the predictive ability of organ-specific
side effects over standard clinical and dosimetric factors. For
further progress, four major areas of improvement can be
envisaged. Firstly, the need for standardization is a critical,
well-recognized major step for further development (120, 121).
Secondly, in view of the frequent single-center retrospective
design and the generally low number of enrolled patients and
of clinical endpoints (i.e., side effects), the robustness of data is
questionable for most studies (122). In this perspective, the lack
of or very limited external validation in independent datasets
is a point of weakness for both conventional NTCP models
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(123) and radiomics applications (119). Thirdly, progress in the
field of radio-genomics is eagerly awaited (124), in order to
improve the understanding of underlying biological processes,
such as intrinsic radio-sensitivity. Lastly, controlled randomized
clinical trials testing radiomics-based interventions in adequately
powered studies are still yet to be published. At present, no single
radiomics finding is readily applicable to patient management in
clinical practice. Nonetheless, the available body of evidence is
encouraging and warrants further investigation, given the size
of benefit demonstrated in terms of high predictive ability of

common toxicities. In conclusion, building on established NTCP
models, the so far available hypothesis-generating data underline
the potential of radiomics for improved clinical decision making
in precision radiation oncology.
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