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Abstract

COPD induced following biomass smoke exposure has been reported to be associated with a more fibrotic phenotype than
cigarette smoke induced COPD. This study aimed to investigate if biomass smoke induced extracellular matrix (ECM) protein
production from primary human lung fibroblasts in vitro. Primary human lung fibroblasts (n = 5–10) were stimulated in vitro
for up to 72 hours with increasing concentrations of biomass smoke extract (BME) or cigarette smoke extract (CSE) prior to
being assessed for deposition of ECM proteins, cytokine release, and activation of intracellular signalling molecules.
Deposition of the ECM proteins perlecan and fibronectin was upregulated by both CSE (p,0.05) and BME (p,0.05). The
release of the neutrophilic chemokine IL-8 was also enhanced by BME. ERK1/2 phosphorylation was significantly
upregulated by BME (p,0.05). Chemical inhibition of ERK signalling molecules partially attenuated these effects (p,0.05).
Stimulation with endotoxin had no effect. This study demonstrated that BME had similar effects to CSE in vitro and had the
capacity to directly induce fibrosis by upregulating production of ECM proteins. The mechanisms by which both biomass
and cigarette smoke exposure cause lung damage may be similar.
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Introduction

Chronic obstructive pulmonary disease (COPD) is a leading

cause of death worldwide, most commonly caused in developed

countries by cigarette smoking. Although the link between

cigarette smoking and COPD is well founded, epidemiological

studies have demonstrated that a substantial proportion of patients

with COPD worldwide are never smokers. [1] A growing body of

evidence has demonstrated that exposure to smoke from the

burning of biomass fuels may be a critical risk factor for the

development of COPD in non smokers. [2]

Biomass fuels such as firewood, animal manure and coal are

commonly used for heating and cooking around the world. It is

estimated that 3 billion people are exposed to indoor smoke from

the burning of biomass fuels. [3] Women who cook with biomass

fuels are more likely to report respiratory symptoms of cough and

wheeze, and have poorer lung function compared to women who

do not use biomass fuels for cooking. [4]

Biomass smoke exposure has a similar association with the

development of COPD as cigarette smoking, [5] with biomass

exposure estimated to increase the risk of developing COPD by

2.4 times. [6] Pathological features of biomass smoke induced

COPD include bronchial anthracofibrosis, [7] small airway disease

[8] and chronic bronchitis. [5] Biomass exposure can lead to both

restrictive and obstructive effects on breathing, with the most

commonly reported change in lung function in those exposed to

biomass exposure being a decline in forced expiratory volume in 1-

second (FEV1). [1,5,8]

Extensive imaging [9,10] and histological [11] studies have

demonstrated that thickening of the small airway walls is the major

contributing factor in COPD to the decline in FEV1. In COPD,

thickening of the airway wall is characterised by increased fibrotic

deposition of extracellular matrix (ECM) proteins, [12] vascular-

isation [13] and thickening of the epithelial layer. [11] Thickened

airways have been observed during autopsies of subjects with

significant biomass smoke exposure, where significant airway

fibrosis was observed in both the large and the small airways and

the extent of fibrosis exceeded that of those of cigarette smokers.

[14] Therefore, the decline in FEV1 associated with biomass

smoke exposure [1,5,8] may be due to biomass smoke exposure

causing airway thickening.

Biomass smoke is composed of over 200 different compounds,

many of which can be inhaled into the small airways. [3] It

contains particulate matter, carbon monoxide, polyaromatic

hydrocarbons, free radicals, high levels of endotoxin, [15] and

many other volatile organic compounds. [16] Although biomass

smoke exposure is a considerable risk factor for the development of

COPD in non smokers, very little research has been undertaken to

determine the mechanisms by which biomass smoke exposure

leads to detrimental changes in lung function.

This study aimed to investigate the effect of biomass smoke

exposure on human lung cells in vitro, specifically examining

biomass smoke on markers of airway remodelling, such as

deposition of ECM proteins and cytokine release, to demonstrate

that biomass smoke exposure can directly cause changes that may

relate to airway remodelling, and thus the decline in FEV1 in vivo.
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Methods

Ethics statement
Human airway tissue was obtained from explanted and resected

lungs and post mortem organ donors with ethical approval from

The University of Sydney and participating hospitals (Concord

Repatriation General Hospital, Sydney South West Area Health

Service and Royal Price Alfred Hospital) for sample collection. All

volunteers, or their next of kin, provided written informed consent.

Chemicals
The following chemicals were obtained from the companies

indicated:

DMEM, dimethyl sulfoxide (DMSO), BSA, ammonium hy-

droxide, Direct red 80, Picric Acid (Sigma, St Louis, MI), PBS,

penicillin, streptomycin, amphotericin B (Invitrogen, Carslbad,

CA), FBS (Bovogen, East Keilor, Australia), UO126, PD98059

(Calbiochem, San Diego, CA).

Fibroblast isolation
Approval for all experiments with human lung was provided by

the Human Ethics Committees of The University of Sydney and

the Sydney South West Area Health Service. Human lung

fibroblasts were isolated from lung tissue obtained from donors

undergoing resection for thoracic malignancies or lung transplan-

tation and they gave written, informed consent. Donor character-

istics, where available, were obtained with permission, from the

patient’s medical records post-surgery. Disease diagnosis was made

by a physician according to current guidelines. We were unable to

obtain data on donor’s exposure to environmental pollution or

biomass smoke prior to sample collection. Characteristics of the

donors, including age, smoking status, pack years and lung

function, are provided in table 1. Human lung fibroblasts were

isolated from distal small airways as previously published [17]. To

obtain human lung fibroblasts, cells were obtained from proximal

lung tissue containing small airways (,1 mm) which were deemed

to be free of tumour following pathological examination. This

tissue was minced in 1–2 mm pieces into sterile Hanks Buffered

Saline Solution (Hanks) and centrifuged for 5 minutes at

1000 rpm. Supernatant was aspirated and the tissue pellet was

resuspended and plated onto tissue culture grade plastic flasks in

10% (vol/vol) FBS/2% antibiotics/DMEM.

The lung fibroblasts proceeded to grow out of the tissue

fragments to form a monolayer covering of the tissue culture flasks.

Once the monolayer of cells was confluent, the cells were

passaged. All experiments were carried out using cells between

passage 3 and 6.

In preparation for in vitro experimentation, cells were seeded in

96 &/or 12 well plates for 72 hours in 5% (vol/vol) FBS/

antibiotics/DMEM at a density of 16104 cells/cm2. Cells were

equilibrated before experimental stimulation for 24 hours in 0.1%

(vol/vol) FBS/antibiotics/DMEM.

Cell culture
Human lung fibroblasts were seeded at a density of

3.26104 cells/cm2 in 5% FBS/antibiotics/DMEM for 72 hours.

Cells were then equilibrated by incubation in 0.1% FBS/

antibiotics/DMEM for 24 hours prior to stimulation.

Biomass smoke extract preparation
Biomass smoke extract (BME) was prepared fresh by combust-

ing 500 mg of biomass (Quercus robur (English Oak)) and bubbling

through 25 ml DMEM. This solution, 100% BME, was then

diluted in 0.1% (vol/vol) FBS/antibiotic/DMEM and applied to

cells within 30 minutes of preparation.

Fibroblasts were incubated with 1%, 5%, 10% and 20% BME in

0.1% FBS/antibiotics/DMEM for 72 hours before supernatants

were collected and cell deposited ECM was exposed. The ECM was

exposed by first washing the cells in PBS, before cells were lysed by

exposure to 0.1 M NH4OH (Worsley Alumina, WA, Australia) for

15 minutes. Plates were then washed three additional times in PBS

to remove cell debris, as previously described. [17] Smoke exposed

and smoke naı̈ve cells were cultured in separate, isolated incubators

to prevent smoke extract ‘leaching’ across into naı̈ve cells.

Cigarette smoke extract preparation
Cigarette smoke extract (CSE) was prepared as previously

described. [17] Briefly, the smoke from one commercial, high-tar

cigarette was bubbled through 25 ml DMEM to make a 100%

CSE solution.

Particle concentration analysis
Analysis of the relative quantities of particulate matter in the

smoke generated by burning biomass and cigarettes were assessed

using a Lasair II laser particle counter (Particle Measurement

Systems, Boulder, CO) which samples particle sizes in the ranges

of 0.3–0.5, 0.5–1, 1.0–5, 5–10, 10–25 and .25 mm. One litre of

freshly generated smoke was diluted into 39 litres of medical grade

N2 gas, of which 28.31 litres was sampled to give a total particle

count from which values of particles per m3 were calculated.

Experiments were performed in triplicate.

Assessment of endotoxin levels and pH
Relative levels of endotoxin in BME and CSE were assessed

using a commercially available limulus amebocyte lysate (LAL)

assay according to the manufacturer’s instructions (Cape Cod,

East Falmouth, MA). Briefly, the quantity of lipopolysaccharide

(LPS) contained in BME and CSE was measured in duplicate

using 1:10, 1:100 and 1:1000 dilutions of each sample made with

pyrogen-free water using a chromogenic LAL assay with b-glucan

inhibiting buffer and a standard curve with a sensitivity range of

0.008 - 2 EU/ml. To evaluate possible sample interference with

LPS measurements, additional duplicates of each sample were

spiked with LPS added directly to the assay well. Total LPS

bioactivity was measured by kinetic assay using a VersaMax

microplate reader with SoftMax Pro 5 software.

The pH of samples was measured electronically using a

calibrated Cyberscan 500 pH probe (ThermoFisher Scientific).

Growth factor stimulation
In addition to BME and CSE exposure, in some experiments

cells were stimulated with 1 ng/ml recombinant human TGF-b1

(R&D Systems, Minneapolis, MN) or 0.05, 0.5 and 5 mg/mL

purified LPS, a major component in endotoxin, as control stimuli.

Cytotoxicity assay
Cytotoxicity was assessed by trypan blue exclusion, a commer-

cially available lactate dehydrogenase (LDH) assay and a

commercially available 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyl-

tetrazolium Bromide (MTT) assay according to the manufacturer’s

instructions (Sigma).

Extracellular matrix ELISA
Relative levels of fibronectin and perlecan deposited into the

ECM were assessed by an ECM ELISA. Briefly, cells were washed

in PBS, and then lysed using 0.1 M NH4OH (Worsley Alumina,

Biomass Smoke
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WA, Australia) for 15 minutes. Plates were then washed three

additional times to remove cell debris. Deposition of proteins into

the ECM was measured using 4 mg/ml mouse-anti fibronectin C-

terminal (Chemicon, Billerica, MA) antibodies and 2 mg/ml

mouse anti-perlecan antibodies in 1% BSA/PBS as previously

published.[17]

Signalling pathways - Analysis of ERK activation by
western blotting

To assess the activation of intracellular signalling molecules in

fibroblasts following stimulation with BME or CSE, relative levels

of extracellular regulated kinase (ERK)/1 and ERK/2 phosphor-

ylation from cell lysates collected after 10, 20, and 30 minutes

stimulation with BME or CSE was assessed by western blotting.

Briefly,lysates were diluted in a 5x SDS-PAGE sample buffer,

denatured, separated by polyacrylamide (10%) gel electrophoresis

and then transferred onto a polyvinylidene difluoride (PVDF)

membrane (Millipore). Following protein transfer, non specific

binding was blocked via incubation of the membrane for 1 hour

with 5% BSA (w/v). Mouse anti-phospho-ERK/1 and phospho-

ERK/2 antibodies (Cell signalling) were used to identify phospho-

ERK/1 and phospho-ERK/2 respectively, which were detected

using luminescence via secondary HRP conjugated anti-mouse

antibodies (Dako, Glostrup, Denmark) and SuperSignal lumines-

cence buffer (Gibco), using a Kodak Image Station Camera and

software. The membranes were then stripped using stripping

buffer (0.063 mM Tris, pH 6.8, 2% SDS, 0.7% b-mercaptoeth-

anol) and reincubated with 0.002 ng/ml mouse anti-glyceralde-

hyde-3-phosphate dehydrogenase (GAPDH) monoclonal antibody

(Chemicon, Millipore, Temecula, CA) after blocking.

ECM ELISA
Fibroblasts were treated with or without the ERK MAPK

inhibitors UO126 or PD98059 in appropriate concentrations of

DMSO in 0.1% FBS/antibiotics/DMEM. After one hour, media

was aspirated before the addition of 1%, 5%, 10% and 20% BME

or 5% CSE in the presence of inhibitors for 72 hours. Following

stimulation, relative levels of fibronectin and perlecan deposited

into the ECM were assessed by an ECM ELISA and levels of IL-8

released into the supernatant were assessed by ELISA.

IL-8 ELISA
Levels of IL-8 released into the supernatant following stimula-

tion with 1%, 5%, 10% and 20% BME for 72 hours were assessed

Table 1. Characteristics of fibroblasts donors.

Donor # Age Gender Disease Surgery Smoker
FEV1 (%
predicted)

FVC (%
predicted) FEV1:FVC

1 59 F Carcinoma R No 93 79 0.94

2 73 M NSCLC R ex 59 51 0.93

3 45 F COPD T ex N/A N/A N/A

4 60 M Bronchiectasis T N/A 22 64 0.51

5 54 F Ca + COPD R ex 73 93 0.63

6 59 M COPD T ex 11 52 0.17

7 69 M NSCCa + COPD R ex 56 59 0.75

8 67 M NSCLC R ex 103 101 0.79

9 71 M NSCLC R No 93 89 0.79

10 72 M NSCLC R ex 83 89 0.73

11 60 F NSCLC R ex 99 107 0.79

12 60 M IPF T N/A N/A N/A N/A

13 74 F NSCLC R N/A N/A N/A N/A

14 53 M Mass + Pneumonia R N/A N/A N/A N/A

15 75 M NSCLC R N/A N/A N/A N/A

16 64 M Carcinoma R ex 93 95 0.97

17 57 M Sarcoidosis R N/A 56 60 0.72

18 73 M NSCLC + COPD R ex 67 73 0.73

19 69 F NSCLC R N/A N/A N/A N/A

20 74 F COPD T ex 64 55 0.93

21 63 M COPD T ex N/A N/A N/A

22 72 F NSCLC R N/A N/A N/A N/A

23 61 M COPD T ex 13 47 0.23

24 43 F COPD T ex N/A N/A N/A

25 60 F Carcinoma R ex 101 92 0.86

26 56 M COPD T ex 14 35 0.31

Lung function data presented as % of predicted values for donor’s gender, age and height. F: Female, M: Male, NSCLC: non small cell lung carcinoma, COPD: chronic
obstructive pulmonary disease, Ca: carcinoma, IPF: idiopathic pulmonary fibrosis, R: resection, T: Transplant. FEV1 forced expiratory volume in 1 second. FVC: forced vital
capacity. N/A: data not available.
doi:10.1371/journal.pone.0083938.t001
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using commercial antibody kits according to the manufacturer’s

instructions (R&D Systems).

Data analysis
ECM protein deposition was corrected by subtracting the

absorbance reading of ‘‘no-cell’’ negative control wells from the

fibroblast containing wells to remove background absorbance. All

data were collated using Microsoft Excel Software and analysed

using GraphPad Prism 5.0 (GraphPad, La Jolla, CA). Differences

were considered to be significant when p,0.05.

Results

Analysis of BME and CSE
The mean endotoxin level in CSE was 4.2362.08 EU/ml,

whilst BME contained 2.6060.59 EU/ml, and these values where

not significantly different. The pH of 100% BME (7.8460.01) was

slightly higher than 100% CSE (7.5760.01) and 0.1% FBS/

antibiotics/DMEM (7.5760.03), indicating a slightly more alka-

line solution. However, when the BME was diluted in 0.1% FBS/

antibiotics/DMEM to the concentrations used in the experiments,

the pH of 20% BME was 7.59 (60.04) and 10% BME was 7.56

(60.02).

Both biomass smoke and cigarette smoke contained very high

levels of small particles,with biomass smoke containing an average

of 3.056109 particles/m3 in the 0.3–10 mm size range and

cigarette smoke containing an average of 2.936109 particles/m3

of the same size range (Figure 1 A, B). Biomass and mainstream

cigarette smoke contained similar proportions of small particles,

respectively yielding 92.0% and 95.6% of total particles in the 0.3–

10 mm size range (Figure 1C, D).

High concentrations of biomass extract are cytotoxic
We initially assessed cytotoxicity of 1, 5, 10 and 20% BME via

the LDH assay (Figure 2A). The data suggested that BME was not

cytotoxic to fibroblasts (n = 3) following 72 hours stimulation. As

we had previously observed that high concentrations of CSE were

cytotoxic [17], this was an unexpected result. We then assessed the

effect of BME on cell viability using a MTT assay (Figure 2B). The

data also suggested that BME did not have a significant effect on

cell viability (n = 3). We then performed manual cell counts after

72 hours stimulation and these data demonstrated that the

stimulation with 1, 5 and 10% BME did not significantly alter

the total cell number (Figure 2C), however the number of viable

cells present after 72 hours stimulation with 20% BME was

significantly decreased compared to controls (p,0.05, n = 6).

Biomass extract enhances deposition of fibronectin
As fibronectin is a significant component of the ECM [18] and

is upregulated in COPD, [12] we assessed the deposition of

fibronectin from human lung fibroblasts using an ECM ELISA.

We found that fibronectin deposition was significantly increased

following 72 hours stimulation with 5% CSE, 10% and 20% BME

(p,0.05, n = 16) (Figure 3A).

Figure 1. Biomass smoke and cigarette smoke have similar particle consistency. Quantity and distribution of particles from the smoke of
one cigarette (A) or one unit of biomass (B) as measured by laser particle counter. Data expressed as particles per cubic metre or as % of total particle
counts (C–D) for particles in the size ranges of 0.3–0.5, 0.5–1, 1–5, 5–10, 10–25 or ,25 uM diameter. Bars represent mean 6 SEM. Each experiment
was performed in triplicate.
doi:10.1371/journal.pone.0083938.g001

Biomass Smoke
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Deposition of the glycosaminoglycan, perlecan, was not altered

by stimulation with BME (n = 6)(Figure 3B).

Chemical inhibitors of ERK MAPK attenuate biomass-
induced fibronectin deposition

The deposition of fibronectin induced by 20% BME was

significantly attenuated following 72 hours stimulation in the

presence of both ERK inhibitors PD98059 and UO126 (p,0.05

vs vehicle control, n = 5) (Figure 4B and 4D).

Biomass extract enhances release of IL-8
As neutrophilic inflammation is a characteristic feature of

COPD, we sought to assess the effect of BME on release of the

chemotactic cytokine IL-8 by human lung fibroblasts.

Our data demonstrated that after 72 hours stimulation, 10%

and 20% BME significantly upregulated the release of IL-8 into

the supernatant compared to control (p,0.05, n = 10) (Figure 5).

In cells stimulated in the presence of the ERK inhibitors PD98059

(10 mM, 1 mM) and UO126 (5 mM, 0.5 mM), the release of IL-8

induced by 10% BME, but not 20% BME, was significantly

attenuated by the higher concentrations of PD98059 and UO126

(p,0.05, n = 5) (Figure 6).

Biomass extract enhances phosphorylation of ERK
As the ERK MAPK signalling pathway has been previously

demonstrated to be activated by particulate matter [19] we

assessed the phosphorylation of ERK1/2 by BME in human lung

fibroblasts via western blotting. Compared to time 0, BME began

to increase pERK1/2 after 30 minutes in a dose-related fashion.

Following two hours stimulation, pERK1/2 was significantly

increased, compared to control, by 5% and 20% BME (p,0.05,

n = 6) (Figure 7). Whilst pERK1 levels decreased by 24 hours,

pERK2 remained significantly increased by 10% and 20% BME

(p,0.05, n = 6) (data not shown).

LPS does not increase fibronectin deposition or IL-8
release from human lung fibroblasts

As LPS is a major component of endotoxin, which we found to

be present in BME, we tested the direct effects of LPS on

fibronectin deposition or the release of IL-8 from human lung

fibroblasts. The profibrotic cytokine TGF-b1 (1 ng/ml), used as a

positive control, increased fibronectin deposition as measured by

Figure 2. High concentrations of biomass smoke are cytotoxic.
Assessment of cytotoxicity of biomass smoke extract (BME) to human
lung fibroblasts (n = 3) as measured by LDH assay (A), MTT assay (B) or
manual cell counts (C) following stimulation with 5% cigarette smoke
extract (CSE) or 1, 5, or 20% BME in 0.1% FBS/DMEM. Data expressed as
% of unstimulated. Bars represent mean 6 SEM. Data analysed by one-
way ANOVA with Dunnet’s post test.*p,0.05 vs unstimulated, n = 6.
doi:10.1371/journal.pone.0083938.g002

Figure 3. Biomass smoke extract enhances deposition of
fibronectin from fibroblasts. Deposition of fibronectin (n = 16) (A)
or perlecan (n = 6) (B) from human lung fibroblasts as measured by ECM
ELISA following 72 hours stimulation with 5% cigarette smoke extract
(CSE) or 1, 5, 10 or 20% biomass smoke extract (BME) in 0.1% FBS/
DMEM. Data expressed as absorbance at 405 nm with media alone
baseline removed (A,B). Bars represent mean 6 SEM. Data analysed by
one-way ANOVA with Dunnet’s post-test.*p,0.05 vs unstimulated,
n = 6–16.
doi:10.1371/journal.pone.0083938.g003

Biomass Smoke
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ECM ELISA (p,0.05, n = 5) (Figure 8A). In comparison,

stimulation for 72 hours with 0.05, 0.5 and 5 mg/ml LPS did

not alter the deposition of fibronectin from human lung fibroblasts.

The release of IL-8 from human lung fibroblasts was also not

enhanced following stimulation with LPS (Figure 8B) and whilst

not statistically significant, LPS appeared to attenuate constitutive

IL-8 release after 72 hours.

Discussion

This study has demonstrated that biomass smoke extract can

directly upregulate the deposition of the ECM protein fibronectin

and release of the neutrophil attractant chemokine IL-8 from

human lung fibroblasts, through a process which may involve

activation of the ERK signalling pathway.

As increased matrix deposition is a characteristic of airway

remodelling, the pathological changes observed in biomass smoke

Figure 4. Chemical inhibition of the ERK signalling pathway attenuates biomass smoke induced fibronectin deposition. Fibroblasts
were pretreated for 1 hour with the ERK inhibitors PD98059 (10 mM) (A,B) or UO126 (5 mM) (C,D) in DMSO (vehicle control) before stimulation with
10% (A,C) and 20% BME (B,D) in the presence of inhibitors for 72 hours, prior to analysis of fibronectin deposition by ECM ELISA. Data expressed as %
of unstimulated. Bars represent mean 6 SEM. Data analysed by T-Test. *p,0.05 vs vehicle control, n = 5.
doi:10.1371/journal.pone.0083938.g004

Biomass Smoke
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induced COPD in vivo may be, in part, due to direct upregulation

of matrix proteins. Thus the decline in FEV1 observed in those

exposed to biomass smoke may be due to airway remodelling and

inflammation which has occurred as a result of biomass smoke

exposure.

We found that BME activates the ERK signalling pathway and

that the release of IL-8 and deposition of fibronectin were partially

attenuated by chemical inhibition of this pathway. ERK has been

shown to be activated by CSE in human lung fibroblasts, [20]

airway epithelial cells [21] and immune cells. [22] In studies of

COPD, ERK can be activated by the nicotine contained in

cigarette smoke [23] and ERK is linked to inflammation, [24,25]

enhanced airway smooth muscle proliferation [26] and mucin

production. [27]

Whilst chemically inhibiting the ERK pathway did not

completely attenuate the effects of BME, we and others have

demonstrated the involvement of nuclear factor kappa-B (NF-kB),

janus regulated kinase (JNK) and Smad signalling pathways in

fibronectin deposition and IL-8 release. [17,28–32] Thus it is

reasonable to conclude that whilst ERK activation plays a

significant role in BME induced fibronectin deposition and IL-8

release, other signalling molecules are likely to be involved.

Fibronectin is an important component of the ECM that has

been demonstrated to play an active role in the pathogenesis of

lung disease. Enhanced expression of fibronectin has been

observed in COPD [12] and in the bronchial alveolar lavage

fluid from smokers. [33] In addition fibroblasts from patients with

idiopathic pulmonary fibrosis [34] and COPD [17] produce more

fibronectin than controls, suggesting a role of this molecule in

fibrosis. We have previously demonstrated that CSE can directly

upregulate fibronectin deposition from fibroblasts, [17] whilst

others have shown that fibronectin is enhanced by nicotine,

[28,35] ethanol, [36] TGF-b1, [37] oxidative stress [38] and

mechanical strain. [39] Fibronectin is critically involved in wound

repair processes in the lung, and enhanced levels of fibronectin

may promote fibrosis. Reduced fibronectin levels can directly

diminish the rate of wound closure of airway epithelial cells [40]

and fibronectin knock-out mice fail to develop fibrosis in response

to bleomycin. [41] Fibronectin directly mediates and enhances

migration of small airway and alveolar epithelial cells, [42,43] and

also enhances proliferation of lung carcinoma cells [44] and

airway smooth muscle cells. [45–47] Whilst there have not been

detailed immunohistochemical analyses of airways of persons who

develop biomass smoke induced COPD, we demonstrate in vitro

that BME has the capacity to enhance the deposition of

fibronectin. Future studies are warranted to determine if this

observation correlates to the pathology of airway remodelling in

vivo.

Neutrophilic inflammation is a hallmark characteristic of

COPD. [48] Interleukin 8 is the main chemotactic mediator for

neutrophils, having been established as the key mediator driving

neutrophilic inflammation in vitro and in vivo. [49,50] IL-8 is of

interest in COPD as patients with COPD have more IL-8 in both

sputum and serum than asthmatics or healthy controls. [51]

Concurrently, they also have greater numbers of neutrophils in

sputum. [52] In patients with COPD, a significant inverse

Figure 5. Biomass smoke exposure upregulates release of IL-8
from fibroblasts. Release of interleukin (IL)-8 from human lung
fibroblasts (n = 10) in response to 72 hours stimulation with 1, 5, 10 or
20% biomass smoke extract (BME) in 0.1% FBS/DMEM as measured by
IL-8 ELISA. Data expressed as pg/ml. Bars represent mean 6 SEM. Data
analysed by one-way ANOVA with Dunnet’s post-test. *p,0.05 vs
unstimulated, n = 10.
doi:10.1371/journal.pone.0083938.g005

Figure 6. Chemical inhibition of the ERK signalling pathway
attenuates BME induced IL-8 release. Fibroblasts were pretreated
for 1 hour with the ERK inhibitors PD98059 (1, 10 mM) or UO126 (0.5,
5 mM) in DMSO (vehicle control) before stimulation with 10% (A) and
20% (B) BME in the presence of inhibitors for 72 hours, prior to analysis
of IL-8 release by ELISA. Data expressed as pg/ml. Bars represent mean
6 SEM. Data analysed by one-way ANOVA with Bonferroni’s post-
test.*p,0.05 vs vehicle control, n = 5.
doi:10.1371/journal.pone.0083938.g006

Biomass Smoke
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correlation has been observed between levels of IL-8 in the

epithelial layer and FEV1. [53] Thus by enhancing the release of

IL-8, biomass smoke may mediate the recruitment of neutrophils

which in turn can release inflammatory mediators and proteolytic

enzymes, thus having an active role in the progression of

obstructive lung disease.

The deposition of perlecan was not upregulated by BME in this

study. We previously demonstrated that the deposition of

fibronectin and perlecan following CSE exposure involved

different signalling pathways. [17] Specifically CSE induced

fibronectin involved the NF-kB pathway, whilst CSE induced

perlecan involved the activation of the Janus Kinase (JAK)/Stat

pathway. A possible mechanism for the upregulation of fibronec-

tin, but not perlecan, observed in this study may be that BME does

not activate the JAK/Stat signalling pathway. A limitation of our

study is that we did not examine the activation of this pathway, so

further research on the mechanisms by which fibronectin is

upregulated is warranted.

Whilst endotoxin is a substantial component of BME, the direct

stimulation of human lung fibroblasts with LPS failed to induce

similar changes to those observed when cells were directly

stimulated with BME. This finding demonstrates that the increase

in fibronectin deposition and IL-8 observed are not solely due to

the presence of endotoxin.

We were not able to ascertain the molecules present in BME

responsible for the observed changes in this study as biomass

smoke contains over 200 different compounds. Likely candidates

may be polyaromatic hydrocarbons [54] or particulate matter such

as PM2.5 itself. [55] Particulates ,10 uM in diameter may drive

the harmful effects of inhaled substances on the respiratory system.

[56] This study demonstrated similar particulate profiles between

biomass and cigarette smoke, with the majority of particles being

Figure 7. BME activates ERK1/2 signalling molecules. Fibroblasts
were stimulated for 2 hours with 5% CSE or 1, 5, 10 or 20% BME in 0.1%
FBS/DMEM, before whole cell lysates were collected and ERK1 (A) or
ERK/2 (B) phosphorylation was assessed by western blotting. Data
expressed as the ratio of pERK over GAPDH (housekeeping protein).
Bars represent mean 6 SEM. Data analysed by one-way ANOVA with
Dunnet’s post-test *p,0.05 vs unstimulated, n = 5. Image at top of
graph is a representative composite western blot.
doi:10.1371/journal.pone.0083938.g007

Figure 8. LPS does not induce fibronectin deposition (A) or IL-8
release (B). Human lung fibroblasts were stimulated for 72 hours with
0.05, 0.5 or 5 mg/ml lipopolysaccharide (LPS) prior to analysis of
fibronectin deposition by ECM ELISA (A) or IL-8 release by ELISA (B). The
profibrotic cytokine TGF-b1 (1 ng/ml) was used as a positive control for
fibronectin deposition. Data expressed as % of unstimulated (A) or pg/
ml (B). Bars represent mean 6 SEM. Data analysed by one-way ANOVA
with Dunnet’s post-test.*p,0.05 vs unstimulated, n = 5.
doi:10.1371/journal.pone.0083938.g008
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in the 0.5–10 uM range for both substances. Therefore, as both

biomass and cigarette smoke have similar particulate profiles, it is

reasonable to conclude that exposure to biomass smoke may

induce similar pathological effects as cigarette smoke, and this may

reflect the similarity in particle size of both stimuli.

A recent study demonstrated LPS directly induced IL-8 from

human lung fibroblasts after 24 hours, [57] a finding which

contrasts our study, whereby LPS did not induce IL-8 release at

72 hours. Whilst the differences may be due to the time points

examined and the cell culture conditions, further research on the

influence of endotoxin on cellular physiology is warranted.

Biomass smoke exposure has an enormous impact on health in

developing areas, contributing greatly to morbidity and mortality.

[2] Whilst priority needs to be given to interventions to reduce

biomass smoke exposure, further research is also needed to better

characterise both the mechanisms and pathology of biomass

smoke induced lung disease, so as to enable better therapeutic

options for those who have already had substantial exposure.

In conclusion, we have demonstrated that exposure to biomass

smoke in vitro can enhance the deposition of a key ECM protein

and the release of a major neutrophilic chemotactic mediator from

human lung fibroblasts, via the activation of the ERK signalling

pathway. These findings provide a novel mechanism for lung

injury following biomass smoke exposure.
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