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Forward models of repetition suppression depend
critically on assumptions of noise and granularity
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n a recent issue of Nature Communications, Alink et al.! used

computational models to adjudicate between competing

neural mechanisms for repetition suppression. The authors
compared the model’s output with functional magnetic resonance
imaging (fMRI) measurements and concluded that repetition
suppression®~7 is best modeled by local neural scaling. Here, we
point out a coding error in defining the noise distribution. Cor-
recting this error fundamentally changed their results. We show
that models of the class implemented by Alink et al. are sensitive
to a range of assumptions and parameters that affect the signal-
to-noise ratio (SNR) of simulated brain patterns. We argue that
unless such parameters are appropriately constrained, and the
modeled SNR regime matched to empirical data, ensuing infer-
ences regarding neural coding are inconclusive. Our observations
have broad implications for the modeling of neural responses.

In analyzing responses from any neural system, it is common
to parcellate components of the measurement into putative
signal and noise, which are then parameterized by a formal
model. Simulations of neural responses require explicit
assumptions about the nature of signal and noise components.
In generalized linear models of fMRI time series, the error term,
&, is used to denote zero-mean Gaussian noise®. Consistent with
this, the magnitude of the noise added by Alink et al. to
simulated brain activation patterns was controlled by a para-
meter, Onoises Which was set to a value of 0.1. However, the
implementation of their noise model is problematic. First, the
magnitude of the added noise is arbitrary; onoise Was set to 0.1
with no justification. Second, a signal with unit variance (cf.
Peer review file) and a noise variance of 0.1 would imply an
SNR of roughly 100. Empirically measured SNR values are
typically much smaller®. Third, while the authors intended to
add noise from a Gaussian distribution with a mean of 0 and
standard deviation of 0.1, they actually added noise from a
uniform distribution with a mean of 0.05 and a standard
deviation of 0.029. This error created a 12-fold reduction in the
noise variance, leading to model SNRs as high as 963, which are
currently unattainable with fMRI. Fourth, if the mean of the
noise distribution is not zero, this will evidently affect the
direction of simulated pattern vectors formed by the addition of
a signal and a noise component!?.

We reran Alink et al.’s simulations after correcting this error. The
“winning” model reported for the gratings dataset no longer cap-
tured three of the six data-features it was intended to reproduce
(Fig. 1). In fact, none of the 25 local-scaling models identified in
their Supplementary Table 1 matched the totality of the empirically
observed data features. Thus, while Alink et al. state that one model
fits better than the rest, our simulations challenge this conclusion.

We wondered if, after correcting the noise distribution, a
different combination of model parameters might match the
empirical observations, and if so, whether such a combination
would still favor local scaling. We found none of the 648 local-
scaling models defined by the search grid matched the six
empirically observed data-features. Moreover, when we
explored higher SNR regimes, local-sharpening models showed
repetition suppression effects that, like the local-scaling model,
also matched the six empirically observed data features
according to Alink et al’s criteria. Because the local-sharpening
model can also reproduce all data features for the grating
experiment, and because Alink et al’s model is intrinsically
biased in favor of the local-scaling model (see Supplementary
Material), the alternative interpretation that local sharpening
provides a better account of the data may seem supported. We
argue, however, that inferences regarding neural properties
based on forward models are invalid unless constrained by
estimates of the SNR of the data, or, alternatively, a demon-
stration that the results are robust to a range of noise levels
likely representative of the data. We estimated the SNR of the
actual fMRI data made available by Alink et al. We observed
empirical SNR values that were markedly smaller than those of
the models able to reproduce the six data-features (see Supple-
mentary Material). Finally, if two reasonably constrained
models did turn out to fit the data, which we argue is not the
case here, concluding that one model provides a better account
of the data than the other would require formal model
selection! 12, an endeavor not undertaken by Alink et al.

Having shown that assumptions about the noise affect the
output of Alink et al.’s model, we wondered if the models are also
dependent on assumptions regarding the strength of the
signal!®14. We explored the impact of two key parameters of
Alink et al’s model: tuning bandwidth (0runing) and granularity
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Fig. 1 Noise parameters influence feed-forward models of fMRI-pattern correlations. Top row: pattern of results reported by Alink et al. for the winning
parameter combination [a= 0.8, b= 0.4, 6 = 0.4] for the grating dataset (cf. Supplementary Fig. 4 in Alink et al.). The direction (increase or decrease
when comparing initial and repeated responses) of the six empirically observed data-features (cf. Figure 3 in Alink et al.) is only observed when uniformly
distributed noise in the interval [0, 0.1] is added to the simulated brain patterns. Bottom row: the qualitative pattern of results observed for the winning
parameter combination shown in the top row changed substantially when adding zero-mean Gaussian noise with a standard deviation of 0.1 instead of
uniformly distributed noise. Of particular interest, the data-features BC, CP, and AMS are (shown within a red box) no longer qualitatively consistent with
the empirical observations. Compare the corresponding slopes of lines in the top and bottom rows. Init initial presentation, rep repeated presentation,

MAM mean amplitude modulation, WC within-class correlation, BC between-class correlation, CP “classification performance” (CP = WC — BC), AMS
amplitude modulation by selectivity, AMA amplitude modulation by amplitude. Solid bars indicate mean of each condition and error bars 95% confidence
intervals given the (simulated) between-participant variability. Diagonal lines indicate the slope of linear contrasts across conditions, and dashed lines

indicate 95% confidence interval of the slope. See Alink et al. for methodological details and proposed interpretation of error bars and p values above each
subpanel. In our view, given that arbitrary modeling choices determine the across-subject variability produced by the model, the reported error bars and

accompanying p values have therefore little, if any, statistical meaning.

(G) (viz. N, using Alink et al.’s terminology). Figure 2 shows that
signal strength depends on both parameters. In particular, we
note that oryning is a free parameter in Alink et al.’s model. This
implies that voxels belonging to models with narrower tuning
widths will exhibit systematically lower signal levels than voxels
with broader tuning functions. If competing models of repetition
suppression are to be distinguished, candidate models must be
matched with regard to their empirically observed pre-adaptation
SNR regime. However, Alink et al’s model imposes different SNR
regimes across models, effectively favoring some models over
others. To avoid this bias, the implemented models would require
a flat surface (Fig. 2b, left). This is evidently not the case, as
demonstrated by the clearly non-flat surface shown to the right
under “Simulation results.” This dependency of SNR regime on
tuning width is a structural limitation of Alink et al.’s model that
cannot be corrected by parameter adjustments.

A final concern regards the impact of granularity assump-
tions on the outcome of the class of models discussed here.

Alink et al. asserted that changing the number of orientation-
tuned sub-populations (or clusters, or granules) assumed to be
sampled within each fMRI voxel “does not have a qualitative
effect on the simulation results.” This statement is incon-
sistent with previous work!3 that manipulated this parameter
to change the granularity of simulated brain patterns. This
work revealed that pattern correlations are indeed sensitive to
such changes—as well as changes in other properties that
influence SNR, such as tuning bandwidth. We found that
doubling the number of orientation-tuned sub-populations
sampled per voxel inverted the direction of the CP data feature
of the winning parameter combination for the grating dataset
(Supplementary Fig. 1). This result contradicts the claim that
the assumed level of granularity does not affect the qualitative
pattern of results produced by Alink et al.’s model. The level of
the granularity-controlling parameter G critically affects
the nature of the signal component. It determines the extent
to which the data are genuinely multivariate, rather than
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Fig. 2 Noise amplitude and signal strength influence empirically observed fMRI-pattern correlations. a fMRI| patterns formed by concatenating

responses across voxels for each of two experimental conditions—here, visual gratings oriented either 45° or 90° from the horizontal. The strength of the
signal component distinguishing the brain responses associated with these two gratings can be quantified as the Euclidean distance between these two
spatially distributed brain response patterns, treated as vectors, and denoted here as vV and w. b Simulation results: signal strength as a function of tuning
bandwidth and granularity. In the class of models implemented by Alink et al., the tuning bandwidth of feature-tuned neural populations has been
parametrized by Gaussian distributions. The preferred orientation of each neural population is described by pirynings While 67yning describes how tightly
tuned each population is about its preferred orientation. In turn, the level of granularity of simulated fMRI data has been controlled by a positive integer (G)
specifying the number of similarly tuned neural clusters, here referred to as granules, assumed to be sampled by each voxel'3. The 3D surface shown to the
right under the label “Simulation results” clearly demonstrates that granularity (x-axis), as well as tuning width (y-axis), influence the strength of simulated
fMRI patterns. For each admissible parameter combination of G and oryning the z-axis indicates the average strength (across 25 randomly seeded
simulations) of the signal distinguishing the fMRI response patterns denoted by V and w. The full range of simulated granularity levels is [1, 512] (2", with
n=0,1, .., 9 granules per voxel). A dramatic effect of granularity on signal strength can be noted along the x-axis. If granularity were irrelevant, the
observed monotonically decreasing curve would be instead a flat line. Given that pairwise correlations are known to be determined by noise amplitude as
well as signal strength, this simulation demonstrates that the validity of inferences regarding neural coding based on fMRI-pattern correlations depend on
granularity assumptions as well as noise parameters.

reflecting a single underlying dimension, such as signal
strength.

We have identified an error in a recent fMRI modeling paper,
from which we draw general conclusions relevant to a broad class
of models. Signal strength and measurement noise influence both
simulated and empirically observed correlations between brain
activation patterns. These factors profoundly impact the inter-
pretation of forward models in brain imaging. The results
reported by Alink et al. hinge on assumptions neither explored
nor discussed in their manuscript. Their models were not con-
strained by empirical estimates of key parameters determining
signal and noise strength. Nor did they demonstrate robustness of
their conclusions to a plausible range of noise parameters. Hence,
while the instantiated forward models are useful for exploring the
regimes and constraints that relate neural population responses
and BOLD (blood-oxygen-level-dependent imaging) responses,

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
The fMRI response data relevant to this article was made available by Alink et al.! and
can be downloaded from the Open Science Foundation project [https://osf.io./ph26y/].

Code availability

The code necessary to replicate Figs. 1 and 2 in our letter is based on code made available
by Alink et al.! from the Open Science Foundation project [https://osf.io./ph26y/]. Our
modified functions can be downloaded from https://github.com/toporam/code-Ramirez-
Merriam.git.
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they do not demonstrate that repetition suppression is best
modeled by local neural scaling. Similar considerations extend
more generally to the evaluation of neurobiologically minded
interpretations of standard multivoxel pattern analyses!?.
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