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ABSTRACT
◥

Molecular profiling is central in cancer precision medicine but
remains costly and is based on tumor average profiles. Morphologic
patterns observable in histopathology sections from tumors are
determined by the underlying molecular phenotype and therefore
have the potential to be exploited for prediction of molecular phe-
notypes. We report here the first transcriptome-wide expression–
morphology (EMO) analysis in breast cancer, where individual deep
convolutional neural networks were optimized and validated for
prediction of mRNA expression in 17,695 genes from hematoxylin
and eosin–stained whole slide images. Predicted expressions in
9,334 (52.75%) genes were significantly associated with RNA
sequencing estimates. We also demonstrated successful prediction

of an mRNA-based proliferation score with established clinical
value. The results were validated in independent internal and
external test datasets. Predicted spatial intratumor variabilities in
expression were validated through spatial transcriptomics profiling.
These results suggest that EMO provides a cost-efficient and
scalable approach to predict both tumor average and intratumor
spatial expression from histopathology images.

Significance: Transcriptome-wide expression morphology
deep learning analysis enables prediction of mRNA expression
and proliferation markers from routine histopathology whole
slide images in breast cancer.

Introduction
Microscopicmorphologic patterns observable in stained tumor tissue

are routinely characterized by pathologists to classify and diagnose
cancers. General morphology is assessed using hematoxylin and eosin
(H&E) staining, while IHC enables semiquantitative assessment of
specific markers. However, cancer is a genetic disease where somatic
alterations and their interactions with other phenotypic factors and the
tumormicroenvironment give rise to a complex and dynamicmolecular
phenotype. Profiling of, for example, somatic DNA alterations, RNA

expression, or protein abundances provide a comprehensive character-
ization of tumors. In breast cancer, the molecular phenotype defined by
themRNAexpressionprofile containsprognostic information (1–4) and
defines the intrinsic molecular subtypes (5, 6). Furthermore, mRNA
expression profiling also reveals information about cell proliferation,
which has clinical value as a prognostic marker and potentially as a
predictor of response to systemic therapy (7, 8). Compared with routine
pathology, molecular profiling represents a more comprehensive char-
acterization of the individual tumor (9), providing information relevant
for precision medicine (10), and information that can contribute to the
discovery of novel therapeutic targets and diagnostic markers.

Intratumor heterogeneity is a key contributing factor to emerging
treatment resistance, or reduced efficacy of treatment, which is caused
by either subclonality or as a consequence of plasticity in the dynamic
molecular phenotype of a tumor (11, 12). Tumor evolution and
subclonality can be inferred from genetic data. However, the more
comprehensive phenotype defined by the mRNA expression profile,
and other dynamicmolecular phenotypes, is generally acquired from a
bulk average mRNA pool where intratumor variability is lost. Single-
cell RNA sequencing (RNA-seq; refs. 13, 14) enables profiling of
thousands of individual cells, providing unique information to char-
acterize intratumor heterogeneity (15). Although techniques for
single-cell sequencing now are mainstream, it remains challenging
on primary human samples as fresh samples typically are required.
Spatial transcriptomic (ST) profiling (16, 17) is another emerging
technology enabling characterization of intratumor heterogeneity, but
it is still technically demanding, expensive, and offers low resolution
both spatially and in terms of the number of genes that can be detected.

Computational pathology, driven by deep learning–based artificial
intelligence applied on digital whole slide images (WSI), has recently
emerged and demonstrated human pathologist level performance in
cancer detection and classification (18, 19). Deep convolutional neural
networks (CNN) have also been applied for prediction of molecular
phenotypes from routine formalin-fixed paraffin-embedded (FFPE)
H&E-stained sections (19–23). More importantly, this approach also
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enables inference of spatial heterogeneity. For example, He and
colleagues trained models on WSIs using spatially measured gene
expression value of 250 genes and identified 102 genes that can be
successfully predicted (21); In two other studies, features extracted
in a pan-cancer setting were applied for prediction of molecular
phenotypes (22, 23).

To date, no studies have performed genome-wide and disease-
specific analyses. Previously reported studies have not optimized
gene-specific models, and comprehensive validation in fully inde-
pendent data, which is required to establish generalizability, has not
been reported.

Here we report the first transcriptome-wide expression–
morphology (EMO) analysis in breast cancer using large-scale deep
learning and routine H&E WSIs for prediction of mRNA expres-
sions. The study is comprehensive in that individual models were
optimized for each gene across the mRNA transcriptome. The
results were validated in a fully independent external patient cohort
at the gene level. Furthermore, we demonstrate that our CNN
models enable prediction of spatial expression patterns, which were
validated in independent tumors using ST profiling. Finally, we applied
and validated EMO for prediction of an established multivariate
proliferation score, demonstrating a clinically relevant application.

Materials and Methods
Data collection

The study consists of female patients with breast cancer from
three data sources: Clinseq-BC (N ¼ 270), The Cancer Genome
Atlas (TCGA-BC; N ¼ 721), and ABiM (N ¼ 350) as an external
validation cohort (Supplementary Table S1). For Clinseq-BC
and ABiM, H&E-stained FFPE histopathology slides were scanned
in-house with a Hamamatsu Nanozoomer XR (Hamamatsu
Photonics) at �40 magnification (0.226 mm/pixel). WSIs from
TCGA-BC were downloaded from https://portal.gdc.cancer.gov/.
WSIs in TCGA-BC that were scanned at 20� were excluded to
ensure image quality. One WSI image was included from each
individual. For patients in Clinseq-BC where the same slide
had been rescanned, the most recently scanned was used. For the
ABiM cohort, when a patient had multiple WSIs, we first chose
the one that was selected to perform IHC biomarker analysis in
the routine clinical workflow (i.e., the piece that the clinical
pathologist indicated as most relevant); if no WSIs had such
indication, we chose the one with the largest predicted tumorous
area. All included patients have corresponding RNA-seq data
available for analysis.

Images from Clinseq-BC and TCGA-BC were randomly split into
training (N ¼ 558, 56.30%; 4.08 million H&E tiles), tuning
(N ¼ 139, 14.03%; 0.97 million H&E tiles), validation (N ¼ 122,
12.31%; 0.90 million H&E tiles), and test sets (N¼ 172, 17.36%; 1.33
million H&E tiles). The internal and external test sets remained
untouched during the model development and training phase and
were used only once for final evaluation of model performance at
the end of the project.

Data preparation
Image data preprocessing

Each WSIs were tiled into image tiles of 598 � 598 pixels (271 �
271 mm). Sharpness was evaluated for all tiles as a quality assurance
step. Next, color normalization (24) was performed to adjust for
staining differences across institutions and scanners. Tumor detec-
tion and segmentation was then applied to segment invasive cancer

regions for subsequent analyses (see Supplementary Materials and
Methods).

RNA-seq data preparation
We collected transcriptome-wide RNA-seq data representing

mRNA expression for a total of 20,477 genes in the reference
genome. For Clinseq-BC and ABiM, RNA-seq, preprocessing, and
normalization were performed as described previously (25, 26).
For TCGA-BC, RNA-seq data were downloaded from http://can
cergenome.nih.gov/ and were preprocessed in the same way as
Clinseq-BC (25). Only patients with both RNA-seq and WSIs
available were included in the study. In total, 19,112 genes had
non-zero gene expression variance. In addition, we hypothesized
that genes with close to zero variance are less informative for EMO
and the potential for extracting relevant morphologic features
gradually decreases with diminishing gene expression variance.
The benefit of getting meaningful results is further limited after
considering the computational cost of training each model. Hence,
we chose to only include genes with a variance larger than 0.01 in
further analysis, which resulted in 17, 695 genes as the final
training targets.

As Clinseq-BC and TCGA-BC were merged together, to reduce
batch effects associated with the RNA-seq, the RNA-seq data from
Clinseq-BCwere normalized to havemedian value equal to TCGA-BC.
In brief, we first calculate the median expression level of each gene for
both TCGA-BC and Clinseq-BC data sources. Only data from the
training and validation sets were included in this step. Next, the
differences between median values of these two data sources were
calculated. Finally, the Clinseq-BC expression values were normalized
by genewise addition of the offsets computed in the previous step.
TCGA-BC data remained unchanged.

During the testing phase, RNA-seq data in the test sets from
Clinseq-BC, TCGA-BC, and ABiM cohorts were all median normal-
ized using the sameprocedurewithTCGA-BC (training and validation
data) as a reference.

EMO analysis
Model optimization

For each gene, we optimized one CNN model with image tiles as
predictors and the sample-level gene expression level obtained
from RNA-seq as a response variable. Inception V3 (27) architec-
ture, modified by replacing the last layer with one neuron and
a linear activation, was employed to build a regression model.
Tiles from the training and tuning set were used to optimize the
model. We employed the Adam (28) optimizer with the mean
squared error loss function and default parameters as follows:
learning rate ¼ 1 � 10–6, b1 ¼ 0.9, b2 ¼ 0.999, e ¼ None and
decay ¼ 0. Random 90� rotations and flips of the tiles were applied
as data augmentation.

We used a minibatch of 32 image tiles per step and ran the
optimization for 150 steps per epoch. We sampled 313 mini-batches
from the tuning set to assess the validation loss on each epoch, and
used early stopping with a minimum change in loss of 0.003 and a
patience of 80 epochs, continuing optimization until the early
stopping criterion was met or a maximum number of 500 epochs
(75,000 steps) had been completed. From each optimization run,
we stored the models from the 10 epochs resulting in the best
performance on the tuning tiles and 10 models from randomly
selected epochs. Depending on when the early stopping criterion
was met, the optimization runs took approximately 12 to 70 hours
on a single GPU.
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Model validation
For each gene, themodel with the lowest loss recorded on the tuning

set was applied on the combinedClinseq-BC andTCGA-BC validation
set. The mean of all tile-level predictions across one slide was used to
obtain a patient-level prediction. To evaluate model performance, we
calculated the Spearman correlation between the predicted patient-
level gene expression values and thosemeasured using RNA-seq across
the validation set. The associated P values were adjusted for multiple
testing using the Benjamini–Hochberg approach (29). In an attempt to
measure the proportion of variance that could be predicted using the
CNN models, R2 score was also calculated.

Model selection for testing
To further validate the generalizability of the CNNs, we selected the

subset of genes (i.e., models) with predicted R2
pred higher than 0.2 and

adjusted P value from Spearman correlation lower than 0.001 accord-
ing to the performance on the validation set. In total, 1,011 genes were
brought forward formodel testing on the internal test set. Out of these,
995 genes could be matched in the ABiM study (accession no.
GSE81538), and were included in the evaluation on the external test
data. As the scale is dataset dependent and the values of RNA-seq data
can vary due to differences in protocols and profiling platforms, the
R2

pred score was not calculated in the external ABiM test set.
The tile-level predictions were postprocessed as described in

“Model validation.” Bonferroni correction was applied to account
for multiple testing.

Gene set enrichment analysis
With the aim of understanding if genes associated with particular

molecular mechanisms were enriched among the genes that were
predicted well, we conducted a pathway analysis to identify enriched
pathways based on the results on the validation set. To do this, instead
of arbitrarily selecting a cutoff threshold for assigning significance
among all available genes, and performing analysis based on the subset
of genes, we considered a rank-based algorithm (30) to avoid potential
bias in such selection.

In brief, the 17,695 genes ranked by Padjusted value from the
Spearman correlation analysis were used as input. We followed the
procedures described in ref. 30 and conducted the analysis with the
“SetRank” R package and the Reactome (31) as well as the Hall-
mark (32) pathway databases for pathway annotations.

For the pathway analysis of transcripts with nonsignificant predic-
tions, sincemodel performance cannot be applied as a ranking criteria,
we adopted a set-based approach using the FUMA platform (33) with
Reactome and Hallmark gene sets.

ST analysis
From an additional independent collection of 168 tumors with both

FFPE blocks and WSIs available, 24 tumors were selected for ST
profiling using the oncology and immune-oriented gene panel for the
GeoMx DSP platform (GeoMx Immune Pathways Panel, NanoString
Technologies). The 24 slides were selected to have predicted (by the
CNN models) spatially varying expression levels, assessed by visual
inspection, across a number of genes (BCL2, CD4, GZMB, HIF1A,
HLA-DQA1, ITGB2, and VEGFA). These genes represent a diverse set
from the panel in that they belong to different pathways and were also
among the best performing genes (R2 >0.15, Padjusted < 0.0001) in the
validation set (EMO-average). Selecting slides exhibiting spatial var-
iability ensured that intratumor variability existed. Regions of interest
(ROI; 600 mm � 600 mm) were manually selected from the H&E-
stained WSIs based on EMO-spatial predictions, to cover a range of

predicted gene expression values across a variety of genes. For each
tumor, two consecutive sections were produced. The first section was
stained with H&E and used to generate a routine WSI (used for
prediction of expression level in the EMO-spatial workflow). The
second section was used for ST profiling in a standard workflow for the
GeoMX DSP platform. This slide was stained with four fluorescent
stains targeting PanCK, SMA, CD45, and DNA to outline general
morphologic structures (H&E stains were not an option on the
platform). Manual registration of the selected ROIs from the first
section (H&E-stained slide and associated EMO-spatial predictions)
and the second section was performed, to mark corresponding loca-
tions on the second consecutive section for ST profiling. Two slides
were damaged during fluorescent staining and discarded, resulting in
22 slides remaining for ST analysis. Finally, gene expression values
within each ROI were quantified by the GeoMx DSP platform by
counting the unique indexing oligos assigned to each target with the
NanoString nCounter instrument. Gene expression values were nor-
malized by dividing each value with the average expression levels
across six negative controls, to account for any nonspecific binding,
and subsequently log2 transformed before further analysis.

To estimate the EMO-spatial predictions, we calculated themean of
tile-level predictionswithin eachROI per gene. The gene panel consists
of 84 RNA probes (see Supplementary Table S2 for full list of genes), of
which, six served as negative controls, and two (CCL5 and PECAM1)
had a variance of gene expression lower than 0.001 and were therefore
excluded prior to any further analyses. Furthermore, the probe named
“multi-krt” include probes against a group of genes: KRT18, KRT6B,
KRT6C, KRT6A, KRT19, KRT17, KRT7, KRT10, and KRT14; and the
probe named “pan-Melanocyte” contains probes against SOX10,
PMEL, and S100B. The predicted gene expression values for these
two targets were calculated by summing the predictions for the
respective sets of genes.

We then measured the performance of the CNN models by first
comparing the predictions with ST-measured gene expression using a
linear mixed effect (LME) model with results displayed with a bar plot
and a line plot. The model was fitted (maximum likelihood) with the
log-transformed ST estimated expression as response, the EMO-
spatial prediction as a fixed effect and slide ID as a random effect
(accounting for variability between slides). A likelihood ratio test was
applied to test the significance of the fixed effect parameter. P values
were adjusted for multiple testing using the Benjamini–Hochberg
method, and FDR < 0.05 was considered significant. Furthermore,
for each slide and gene, Spearman r was also calculated, between
EMO-spatial predictions and ST expression estimates, across 12 ROIs
per tumor. The empirical distribution of Spearman r estimates across
the 22 individuals, and for each gene, was summarized as boxplots.

Proliferation score analysis
To compute the proliferation score, we adopted a proliferation

signature that consists of 11 genes from the PAM50 gene panel (34).
The proliferation score was defined as the mean expression of these
11 genes.

The association between tile-level EMO-spatial proliferation scores
and IHC-stained Ki67 scores was examined using a LME model, with
the log-transformed Ki67 score as response, the EMO-spatial predic-
tion as a fixed effect and slide ID as a random effect. Moreover, the
slide-level EMO-average predictions were compared with the slide-
level estimated proliferation score (P.Score) fromRNA-seq data aswell
as to the log-transformed Ki67 scores in terms of Spearman correla-
tion. The details relating to scoring of IHC slides (Supplementary
Table S3), HE-IHC image registration, and analyses of intratumor
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spatial proliferation patterns are documented in the Supplementary
Materials and Methods.

Software and hardware
All image preprocessing steps were conducted with Python (v. 3.6)

packages, including scikit-image (v. 1.14.2), OpenCV (v. 3.4.1), Open-
Slide (v.3.4.1 and API v. 1.1.1). Training of CNN models was carried
out usingKeras (v. 2.2.4) with Tensorflow (35) backend (v. 1.12). Color
normalization was performed using Python, adapted from StainTools
(https://github.com/Peter554/StainTools) and “Staining Unmixing
andNormalization inPython” (https://github.com/schaugf/HEnorm_
python). Spearman correlation was calculated using the SciPy package
(v. 1.2.0) in Python,R2 was calculatedwith Python package scikit-learn
(v. 0.20.2). Statistical testing, multiple testing correction fitting were
performed with the statsmodels Python package (v. 0.9.0). LME
models were fitted using R (3.6.3) with R package “lme4” and
“lmerTest.” Model training and predictions were run on the GPU
partition of the Puhti compute cluster (CSC IT Center for Science),
consisting of 80 compute nodes. Each node is equipped with two 20-
coreXeonGold 6230CPUs (Intel), 384GBofmemory, 4 TV100 32GB
GPU accelerators (Nvidia) and 3.6 TB of local NVME storage. The
GPUs were running Nvidia driver version 440.33.01.

Because models for different genes are fully independent of each
other, transcriptome-wide training and prediction represent “an
embarrassingly parallel problem.”We therefore ran each model as a
separate computation job on a single V100 GPU, and automated job
submission through the SLURM scheduler system, resulting in 50 to
300 models being trained in parallel at any given time over a period
of several months. At the beginning of each computation run, the
input image tiles were copied from the central file system to the local
NVME disk to avoid I/O bottlenecks due to the large number of
parallel runs relying on the same data. In parallel with the GPU
computation, mini-batches were prepared using multi-threading on
two CPU cores to maintain an in-memory data buffer equal in size
to two mini-batches.

Results
Study overview

We performed a transcriptome-wide EMO analysis, where indi-
vidual deep CNN models were optimized separately for each mRNA
transcript. RNA-seq was used to quantify the expression of 20,477
individual genes (see Materials and Methods for details). In total, 991
patients (7.28 million H&E tiles) from two studies [TCGA breast
cancer (9) and Clinseq-breast (25)], each with oneWSI, were included
and split into training (N¼ 697, 70.33%), validation (N¼ 122, 12.31%)
and internal test sets (N ¼ 172, 17.36%) prior to model optimization
and validation. The preprocessing of WSIs included segmentation of
tissue and invasive cancer, tiling of WSIs into tiles of 598� 598 pixels
(271 mm � 271 mm), quality control for image sharpness, and color
normalization to adjust for variations in stains and scanners (see
Materials and Methods). In the training set, 17,695 genes remained
after excluding transcripts with low variance (see Materials and
Methods). For each of the transcripts, a deep CNN model (Inception
V3; Supplementary Table S4; ref. 27) was optimized to predict
normalized gene expression using images. Models were trained in
parallel on a high-performance compute cluster (CSC), with the
transcriptome-wide analysis requiring approximately 300,000 GPU
hours. The tile-level predictions of each slide were averaged to obtain
slide-level predicted expression (EMO-average), which was compared
with gene expression measured by RNA-seq. The optimized models

were subsequently applied and evaluated in validation and test sets
(Fig. 1A).

Breast cancer RNA expression can be predicted by deep CNN
models from routine histopathology images

In the validation set, of 17,695 genes, the predicted expression of
9,334 (52.75%) genes was significantly correlated with expression
levels measured by RNA-seq (Spearman correlation, FDR-adjusted
P < 0.05; Fig. 1B and C). Next, we assessed the proportion of variance
predicted: 1,026 (5.80%) genes showed a coefficient of determination
(R2

pred) higher than 0.2, and 222 (1.25%) and 26 (0.15%) genes had
R2

pred higher than 0.3 and 0.4, respectively (Fig. 1D). Furthermore, we
observed that genes with higher variance had a slightly better predic-
tion performance compared with those with lower expression variance
(Supplementary Fig. S1A and S1B).

To establish whether the predicted expression levels were asso-
ciated with corresponding routine clinical (protein) biomarkers, we
visualized the RNA-seq estimated expression, and the EMO-
predicted expression by IHC status for each clinical routine marker
(ER, PR, HER2, and Ki67). These markers are assessed in the clinic
by IHC and are widely adopted to classify breast cancer cases. As
shown in the violin plots, patients with a positive status of ER, PR,
and HER2 tend to have higher RNA-seq expression levels of the
corresponding transcripts. Similarly, a higher level of MKI67 gene
expression is associated with a high histologic grade (Fig. 1E–H).
The same trends hold for all the model predicted markers except
for ERBB2, which encodes the HER2 protein, and could not be
predicted by the CNN model (Fig. 1I–L).

Taken together, these results indicate that morphologic patterns in
histopathology images can be learned by deep CNN models and used
to predict gene expression for a substantial proportion of genes across
the transcriptome.

Validation of gene-specific predictions of expression in
independent datasets

To assess the generalizability of the approach, 1,011 genes
with R2pred > 0.2 and FDR-adjusted P <0.001 in the validation set
(Supplementary Table S5) were brought forward for validation in the
internal (N ¼ 172) and external test sets [ABiM study (26), N ¼ 350].
A total of 876 (86.65%) genes had a significant association between
predicted (EMO-average) and observed (RNA-seq) expression
(Bonferroni-adjusted P < 0.05, Spearman correlation; Fig. 2A). A
total of 479 of these genes had an R2

pred > 0.2 (Fig. 2B) in the
internal test set. A total of 908 (91.26%) genes were successfully
validated in the external test set [Bonferroni-adjusted P value
(Spearman correlation) <0.05; Fig. 2C]. The estimated correlation
coefficients (Spearman r) between EMO-average prediction and
RNA-seq across the 1,011 genes had a high concordance between
the validation, internal, and external test sets (Supplementary
Fig. S1C–S1E), indicating similar levels of prediction performance
across datasets. Concordance between EMO-average predicted and
RNA-seq estimated gene expression for the 25 genes with the best
prediction performances in the internal test set, ranked by P value
(Spearman correlation), are visualized in Fig. 2D, with the corre-
sponding results in the external test set in Fig. 2E.

EMO prediction performance of transcripts in established gene
panels

Next, we assessed the prediction performance for genes belonging
to established breast cancer biomarker panels based on gene expres-
sion, including Oncotype DX, Prosigna/PAM50, and Endopredict
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Figure 1.

Study design and summary statistics for transcriptome-wide predictions. A, Overview of the EMO process. In the training phase, training WSIs (N ¼ 697)
were split into image tiles. The tiles (predictors) together with expression levels (response) across the protein coding transcriptome were used to
optimize individual deep CNN models (Inception V3) for each gene. All optimized models were then applied to predict expression in WSIs in the validation
set (N ¼ 122), association analysis between RNA-seq estimated gene expression values and predicted values was performed, and candidate
models were selected for further validation. The validation was performed in the internal (N ¼ 172) and external (N ¼ 350) test sets. B, Histogram
describing the empirical distribution of predicted R2 in the validation set (458 genes with a predicted R2 < �0.1 were excluded from the figure for clarity).
C, Histogram of the empirical distribution of Spearman r between EMO predictions and RNA-seq in the validation set. D, Histogram of the P values
related to C. E–H, Distribution of RNA-seq expression values for routine biomarkers (ESR1, PGR, ERBB2, and MKI67), with respect to clinical status (IHC)
of protein expression for the corresponding proteins encoded by each gene. I–L, Corresponding distribution of model-predicted gene expression values
for each one of the clinical routine markers.
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(Supplementary Table S6). For the EndoPredict panel, only three
(BIRC5, IL6ST, and UBE2C) of 12 genes were brought forward for
external validation (see Materials and Methods), and could be vali-
dated in internal and external test sets. For Oncoptype DX, 10 of
21 genes were brought forward for validation and were successfully
validated in the test sets. For Prosigna/PAM50, all genes were eval-
uated in the test sets and 29 of 50 were successfully validated.

To explore whether the predicted expression of genes in the PAM50
panel shared trends in coexpression patterns with the RNA-seq
estimated expression, we performed a cluster analysis. Transcripts
and patients were first clustered by the RNA-seq data and visualized as
a heatmap of expression values (Supplementary Fig. S2A). Next, the
corresponding visualization was generated based on the EMO-
predicted gene expression values, using the same order of transcripts

and patients (Supplementary Fig. S2B) to allow direct comparisonwith
the RNA-seq data in panel A. Interestingly, there is indeed substantial
concordance between the two heatmaps, suggesting a reasonable
similarity in the expression patterns for a large number of genes. The
same procedure and results were replicated in the external test set
(Supplementary Fig. S2C and S2D).

Next, we applied consensus clustering (four clusters; ref. 36) in the
RNA-seq and EMO-average prediction (PAM50) datasets separately
and estimated the similarity between the two clusterings of patients
using adjusted Rand index (37). The adjusted Rand index was 0.25
[95% confidence interval (CI) ¼ (0.23–0.27), permutation-based P <
0.001] and 0.20 [95%CI ¼ (0.19–0.22), permutation-based P < 0.001]
for internal and external test sets, respectively, indicating significant
similarity between the two clusterings of patients. We also assessed the

Figure 2.

Summary of model performance on test sets. A, Distribution of Spearman r in the internal test set. B, Distribution of R2
pred in the internal test set (Ngenes¼ 1,011; one

genewith a predicted R2 <�0.1 was excluded from the figure for clarity).C,Distribution of Spearman r in the external test set (Ngenes¼ 995).D, Scatter plot of EMO-
predicted and RNA-seq estimated gene expression values for the 25 top performing genes in the internal test set. E, Scatter plot of EMO-predicted and RNA-seq
estimated gene expression values for the same 25 genes in the external test set.
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similarity between clusterings and intrinsic subtype labels. The adjust-
ed Rand index was 0.1 for EMO-average prediction [95%CI ¼ (0.08–
0.13), permutation-based P < 0.001], and 0.27 for RNA-seq [95% CI¼
(0.25–0.29), permutation-based P < 0.001]. We also investigated the
similarity between clusterings of genes (PAM50) between RNA-seq
and EMO-average prediction (see Supplementary Materials and
Methods; Supplementary Fig. S3A–S3H), with the adjusted Rand
index estimated to 0.73 (permutation-based P < 0.001) and 0.71
(permutation-based P < 0.001) for internal test set and external test
set, respectively. Finally, we assessed differential gene expression
between ERþ and ER� patients in RNA-seq and EMO-average pre-
diction data. We fitted linear fixed effects models for each gene in the
set of 1,011 genes that were significantly predicted by the EMO
approach in the validation set, with the expression as the response
variable and ER status, age, HER2 status, tumor size, and lymph node
status as covariates. In the internal test set, 584 geneswere differentially
expressed (FDR-adjusted P < 0.05) with respect to ER status in
RNA-seq, 514 in EMO-average prediction, and 431 of these were
common [FDR-adjusted P < 0.05 and same sign of the ER status–
related coefficient (bhat, ER)] between RNA-seq and EMO-average
prediction (Supplementary Table S7). In the external test set, 760 of
995 genes were differentially expressed (FDR-adjusted P < 0.05)
between ERþ and ER� patients in RNA-seq, 801 in EMO-average
prediction, and 701 of these were common (FDR-adjusted P< 0.05 and
same sign of bhat, ER) between RNA-seq and EMO-average prediction
(Supplementary Table S8).

Gene set enrichment analysis identified cancer-associated
molecular pathways

To determine whether genes involved in particular molecular
mechanisms or processes were enriched in the set of transcripts that

could be predicted from histopathology images, we conducted a gene
set enrichment analysis (GSEA; ref. 38) across all 17,695 genes (30)
using the Reactome database. A total of 16 pathways (Fig. 3A) were
significantly enriched (FDR-adjusted P < 0.05); a majority of these
have previously been found to be associated with breast cancer. The
functional classes of the significant gene sets included angiogenesis,
cell proliferation, cell cycle, apoptosis, signal transduction, metabo-
lism, and immune system. Among the enriched pathways, the
“Sema4D induced cell migration and growth-cone collapse” had the
strongest association. Sema4D has previously been reported to be
overexpressed in breast cancer (39). Sema4D, together with the small
GTPase Rho gene family (i.e., RhoA, RhoB, RhoC), which are encoded
by genes that belong to the same pathway and were well predicted by
the CNNmodel, are associated with tumor angiogenesis (40). Ranking
second was “Signaling by Retinoic Acid.” Retinoic acid has been
reported as being associated with downregulating genes that relate to
breast cancer cell proliferation and upregulating proapoptotic genes,
which induces cell death (41). These events are also associated with
morphologic changes. In addition, four pathways relating to cell cycle
were also identified, including, “cyclin A/B1-associated events during
G2–M transition.” Genes that were predicted well and belong to this
pathway (CCNA2, CCNB1) encode cyclin A2 and B1, respectively.
These proteins have been reported to be associated with breast cancer
histologic grade (42) and prognosis (43, 44). Another well-predicted
gene, CDK1, is a member of the enriched pathway “G2–M DNA
replication checkpoint,” and the protein it encodes is associated with
prognosis in patientswith breast cancer (45).Moreover, in the pathway
relating to “Loss of Nlp from mitotic centrosomes,” Nlp (ninein-like
protein) has been recently recognized as an oncogenic protein,
whose centrosomal localization and stability could be disturbed in
case of BRCA1 mutations, and eventually lead to abnormal mitotic

Figure 3.

GSEAonwhole transcripts.A,Pathway analysis of EMOpredictions byGSEA in the Reactomedatabase, revealing 16 significant pathways. The bar plot shows the log-
transformed adjusted P values for each pathway, and the boxplot shows the model performance in terms of Spearman r between EMO-predicted and RNA-seq
expression (validation set) for each gene in each individual pathway. B, GSEA results using the Hallmark gene set, with seven identified pathways.
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progression as well as tumorigenesis (46, 47). The remaining signif-
icant pathways are involved in biological processes such as “signal
transduction,” “metabolism of proteins,” “cell cycle,” and “immune
system.”

The GSEA was also performed in the HALLMARK gene sets
(Fig. 3B), which represents a smaller and more curated catalog of
gene sets relating to biological functions and processes. This analysis
identified seven significant pathways, including those associated with
tumor growth and invasion (“TGFb signaling,” “Notch signaling,” and
“KRAS signaling UP”) and metabolism (Bile acid metabolism).

Furthermore, to explore whether there were particular biological
mechanisms that were not possible to predict from histopathology
images, we performed pathway analysis using only transcripts with
nonsignificant EMO predictions (Padjusted > 0.05) and with a variance
larger than the median variance across all genes (4,184 transcripts).
The results of the analysis are included in Supplementary Tables S9 and
S10.

Spatial gene expression variability can be predicted by CNN
models

Next, we validated EMO predictions of intratumor expression
variability (EMO-spatial) by performing ST analysis. Expressions of

76 genes across 12 ROIs in 22 tumors (FFPE sections from indepen-
dent sets of tumors, 264 ROIs in total) were measured using the
Nanostring GeoMX DSP platform (Fig. 4A) and compared with
EMO-spatial predictions. To ascertain whether intratumor heteroge-
neity in expression could be predicted, we assessed the association
between EMO-spatial predictions and ST measurements, using LME
models fitted for each gene across all ROIs and slides, with the ST
expression as response, EMO-spatial prediction as a fixed effect, and
the slide ID included as random effect to account for slide-level
systematic variability. Spatial predictions of 59 genes (77.63%) were
significantly associated with ST estimated expression levels (FDR-
adjusted P < 0.05, likelihood ratio test; Fig. 4B and C; see also
Supplementary Fig. S4 for gene-level within-slide estimates of Spear-
man correlations between EMO-spatial and ST expression; Supple-
mentary Fig. S5 for examples of prediction results across the 22WSIs).
Among the ten genes with the most significant association between ST
estimates and EMO-spatial predictions, three genes could be found in
the T-cell receptor pathway (CD3E, CD8A, andCD27) and three genes
in the cytokine and chemokine signaling pathway (CXCL9, CXCL10,
and CMKLR1), other genes were found in the total immune (PTPRC),
B cells (MS4A1), proliferation (MKI67), and cytotoxicity (NKG7)
pathways. Taken together, these results indicate that EMO-spatial

H&E stained slide EMO-spatial predictions

Fluorescent stained slide ST estimated gene expression

B CA

−Log10 (Padj)

Figure 4.

ST validation of spatial expression predictions. A,Overview of the ST profiling process. For eachWSI (top left), optimized CNNmodels for the genes in the ST gene
panel were used to predict spatial (tile-level) expression, visualized as heatmaps. Twelve ROIs (yellow squares) were subsequently manually selected to obtain a
representative set of regions including low, medium, and high predicted expression across a range of genes (top right). The ROIs from each slide were thenmanually
registered against fluorescently labeled slides from consecutive FFPE sections (bottom left). ST profiling of the ROIs was performed and subsequently used to
validate spatial EMO prediction results (bottom right). B, Bar plot for the ranked�log10(FDR-adjusted P value) for genes from each LMEmodel. Light blue indicates
FDR-adjusted P <0.05 (NWSIs¼ 22). C, Corresponding fixed-effect coefficients and 95% CI related to the EMO prediction for each gene (linear mixed effects model;
NWSIs ¼ 22).
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prediction offers a methodology that can enable exploration of intra-
tumor gene expression heterogeneity based on routine H&E-stained
sections.

Prediction of a gene expression–based proliferation score from
WSIs

To examine whether the EMO model can predict a mRNA
expression-based proliferation score directly from WSIs of H&E-
stained tissue, we compared the estimated proliferation score (P.Score)
from EMO-average predictions with RNA-seq data as well as with
IHC-based Ki67 score (Fig. 5A). We used a subset of 11 genes in the
PAM50 gene panel whose expression is associated with cell prolifer-
ation (34). The 11 genes were successfully predicted by EMO-average
models (R2

pred > 0.2, FDR-adjusted P < 0.001; Supplementary
Table S11). The proliferation score was calculated as the average of
the 11 gene expression levels (see Materials and Methods for further
details).

We then compared the distribution of measured proliferation score
[P.Score(RNA-seq)] and EMO prediction [P.Score(EMO)], with
respect to each intrinsic molecular subtype, because it is well-known
that there is a difference in proliferation across the subtypes (48, 49). As
is shown in Fig. 5B and C, the distribution of predicted proliferation
scores was concordant with RNA-seq estimates in the validation set.
Luminal A had the lowest score indicating a low rate of cell prolif-

eration, whereas luminal B, HER2-enriched, and basal-like tumors
showed an increasing trend in proliferation rate, which is associated
with the higher number of mitoses and inferior outcome for patients
with these subtypes. The slide-level proliferation scores derived from
the EMO-average predictions in the validation set were highly corre-
lated with those of RNA-seq (Spearman r of 0.67, P ¼ 2.82e-
17; Fig. 5D). The results were confirmed in the internal test set
(Fig. 5E–G; Spearman r of 0.66, P ¼ 4.32e-23) and the external test
set (Fig. 5H; Spearman r of 0.55, P ¼ 1.40e-29).

Next, we assessed to what extent P.Score(EMO), based on tile-level
predictions (EMO-spatial), enables prediction of intratumor spatial
variability of proliferation in comparison with an orthogonal assay
(IHC-basedKi67 score, seeMaterials andMethods). On a general level,
as expected, tumors belonging to the luminal A subgroup generally
have lower levels of both IHC Ki67 score and P.Score(EMO). In
comparison, other subtypes are more proliferative, and here the
majority of these tumors and tumor regions had high Ki67 scores as
well as high P.Score(EMO). When comparing slide-level IHC Ki67
score with P.Score (EMO), we observed a positive correlation (Spear-
man r ¼ 0.61, P ¼ 5.12e-5; Supplementary Fig. S6). In terms of
intratumor heterogeneity, the P.Score(EMO) shared a high similarity
with the spatial estimates of the IHCKi67 score. The spatial association
between IHC estimated Ki67 and P.Score(EMO) was also confirmed
by statistical analysis (LME model, P < 2e-16).
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Figure 5.

Proliferation score prediction andvalidation.A,Comparison between IHC score andEMO-predictedproliferation score [P.Score(EMO)]) for 37 IHC-HEpairs of tumors
in the test set. The IHC-based Ki67 score per tile is indicated in blue (<10%), yellow (≥10% and <30%), and red (≥30%). The color scheme for EMO predictions was
chosen based on quantile mapping to the IHC score distribution, with blue, yellow, and red indicating low, medium, and high predicted proliferation levels,
respectively. B, Distribution of proliferation scores by subtype in the validation set, measured with RNA-seq [P.Score(RNA-seq)]. C, Distribution of proliferation
scores by subtype in the validation set, predicted by EMO. Thedistribution of predicted proliferation scores shares similar patternswith RNA-seqmeasurements, with
the basal type exhibiting the highest proliferation level, followed by HER2-enriched (Her2) and luminal B (LumB) subtypes, whereas luminal A (LumA) has the lowest
proliferation score.D, Scatter plot of RNA-seq–estimated andEMO-predicted proliferation scores in the validation set (N¼ 122). A high correlation between the RNA-
seqmeasurements and EMOpredictionswas observedwith a Spearman r of 0.67. E–G,Corresponds toB–D for the internal test set (N¼ 172).H, Scatter plot of RNA-
seq–estimated and EMO-predicted proliferation scores in the external test set (N ¼ 350).
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Discussion
We have performed the first reported transcriptome-wide

expression–morphology study in breast cancer based on individually
optimized gene-level models. Tumor-level prediction results were
validated in a completely independent external cohort, and spatial
expression predictions were validated in independent tumors by ST
profiling. A total of 17,695 gene-specific CNNmodels were optimized
for prediction of gene expression; out of these, 9,334 had a significant
association between EMO-average prediction and RNA-seq estimates.
Of 1,011 genes brought forward for final validation, prediction per-
formance could be confirmed for 86.65% and 91.26% in the internal
and external test data, respectively. We further assessed similarity
between clustering of patients and genes based on RNA-seq estimates
and EMOpredictions and found that there were significant similarities
between the clusterings; however, the clusterings were not identical.
We also demonstrated that the predicted spatial variabilities in gene
expression generated by our approach were significantly associated
with ST profiling in 59 of 76 genes. The validation by ST technique
suggested that deep CNN models enable characterization of intratu-
mor heterogeneity in RNA expression.

Through GSEA, we found several pathways enriched for genes that
could be successfully predicted, which are also associated with breast
cancer–related molecular mechanisms. This further supports the
hypothesis that morphology is associated with gene expression pat-
terns, and that morphology can be used to predict cancer-related gene
expression patterns across numerous genes and pathways.

It has previously been demonstrated that gene expression–based
proliferation scores are prognostic and provide treatment predictive
information (49, 50). However, only a small fraction of patients with
breast cancer have access to expensive molecular profiling, while IHC
of Ki67 remains the de facto standard clinical proliferation marker in
many countries, despite many problems with reliability (51, 52). Here
we wanted to explore whether it is possible to predict an expression-
based proliferation score directly from WSIs of H&E-stained tissue.
We observed high concordance with the RNA-seq–based proliferation
scores, not onlywith respect to correlations, but also in the trend across
intrinsic subtypes of breast cancer.We also demonstrated that spatially
resolved predictions of the proliferation score were associated with
Ki67 score by IHC staining.

A higher level of Ki67 index has been used to distinguish luminal B
subtype from luminal A breast cancers (53), to identify higher risk of
disease recurrence (54) and is associated with response to adjuvant
chemotherapy (55). However, the clinical utility of Ki67 has been
largely impeded by the unsatisfactory interobserver or intraobserver
variations (56). Proliferation scores, on the other hand, are computed
as a function of expression levels of a set of genes and provide a more
reliable measurement of tumor growth rate while avoiding the limita-
tions associated with IHC-based Ki67 analysis. Previous results also
showed that an expression-based proliferation score outperformed the
Ki67 index in predicting relapse-free survival and disease-specific
survival (34). In computational pathology, attempts have been made
to predict proliferation scores directly fromWSIs (57), where the best
performing method achieved a Spearman r of 0.62, while no spatially
resolved predictions were attempted. In this study, we observed a
slightly improved performance with a Spearman r of 0.66 and 0.67 on
validation and test sets, respectively. In addition, we demonstrated a
strong and significant association (Spearman r¼ 0.61) between slide-
level IHC Ki67 score and the predicted proliferation score [P.Score
(EMO)].We note that a strong association betweenmRNA expression
and protein expression is not expected in general due to different
temporal scales in half-life of these two types of molecules and

differences in regulation. Nevertheless, we observed a relatively high
level of intratumor spatial coexpression between IHC Ki67 and the
predicted proliferation score [P.Score (EMO)]. Our results, together
with previous evidence, indicate that CNNs enable objective and
reproducible estimation of proliferation scores, and provide informa-
tion of direct clinical value (7, 58).

To date, three studies with the objective of predicting gene
expression phenotypes from histopathology images have been
reported previously (21–23). However, these studies have substan-
tial limitations in one or more aspects: (i) the number of genes
analyzed (250 genes) and sample size (23 patients; ref. 21); (ii)
extensive use of transfer learning, that is, a single-global CNN
model for prediction of all phenotypes rather than optimization
of gene-specific models (22, 23); (iii) the use of a pan-cancer
approach (22, 23), where a single model is used across a range of
cancer diseases, which by design will lead to models optimized to
capture morphologies shared across the majority of diseases includ-
ed; (iv) lack of independent external validation cohorts (22, 23), or
validation in very small datasets (two tumors; ref. 21); or (v) lack of
validation by orthogonal experimental techniques and spatial
expression predictions (22, 23).

By developing models for a single cancer disease (breast cancer)
and by optimizing individual deep CNN models for each gene, we
avoid several strong assumptions made in previously reported
studies (21–23) that are unlikely to hold. Pan-cancer models assume
shared morphologies across cancer diseases, which provides a
fundamental limitation given the broad range of morphologic
characteristics observable in different cancer types. Strong reliance
on transfer learning across genes represents another fundamental
limitation that is likely to constrain the ability to develop models
that are effective for modelling more specific relationships between
morphology and gene expression.

This study is limited with respect to the size of the training dataset,
and it is expected that with more training data, the prediction
performance could improve further. Spatially resolved data for model
optimization also has the potential to improve model performance in
the future. One previously reported study has applied that approach,
however, their training dataset was limited to only 23 tumors and
250 genes (21). In our study, the ST validation was limited to a panel of
76 genes, which was dictated by the availability of FFPE compatible ST
profiling gene panel at the time of the study. Furthermore, models in
this study were trained with tiles at a fixed resolution level and tile size
for all transcripts. The prediction performances could potentially be
further improved with individually optimized image scale for each
transcript, or by implementing a multiscale modeling approach. In
the context of tile-basedmodels, it is also implicitly assumed that there
is a large enough perceptive field and resolution to capture both
microscopic and macroscopic details.

Prediction of gene expression from routine H&E WSIs has the
potential to impact both clinical diagnostics as well as cancer research.
Prediction ofmolecular phenotypes can enable cost-effective precision
medicine, either by direct predictions of key markers, or as a way to
prioritize which patients are likely to benefit from comprehensive but
costly molecular profiling. In the research domain, cost-effective
predictions of expression will enable large-scale epidemiologic studies
that include gene expression phenotypes as exposures. Spatial predic-
tion of gene expression provides a complement to single-cell sequenc-
ing and ST profiling for studies of intratumor heterogeneity and tumor
microenvironment, and enables studies at a substantially larger scale
compared with what is possible by direct molecular profiling. The
results from this study are promising and we expect that our approach

Wang et al.

Cancer Res; 81(19) October 1, 2021 CANCER RESEARCH5124



will also work well for application in other cancer diseases, and for
prediction of other types of molecular phenotypes, such as somatic
mutations, copy-number alterations, epigenetic factors, metabolite
or protein abundances. In the current study, we also evaluated to
what extent transcripts included in commercial gene expression
assays could be predicted, and found that around half of these genes
can be predicted, defined by a significant association between the
predicted and experimental expression estimates. Some of these genes
have a relatively high correlation with the RNA-seq estimates, but
for other transcripts the association is not as strong, which may
limit their use. Furthermore, it is important to realize that at this
point in time, and based on this study alone, it would be premature
to suggest gene expression assays for clinical use could be replaced
by image analysis. However, it would be of interest in future studies
to compare prognostic performance between established gene
expression assays and expression predicted by CNN models from
histopathology images. Our findings suggest that deep learning–
based image analysis for prediction of the tumor average expression
of a substantial number of transcripts is possible and feasible. We
also applied the CNN-based analysis to successfully predict a
clinically relevant expression-based proliferation score. However,
more importantly, we demonstrated and experimentally validated
that spatial gene expression predictions can be used to characterize
intratumor expression heterogeneity.
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