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Mammalian prion or PrPSc is a proteinaceous infectious agent that consists of a

misfolded, self-replicating state of a sialoglycoprotein called the prion protein, or PrPC.

Sialylation of the prion protein N-linked glycans was discovered more than 30 years ago,

yet the role of sialylation in prion pathogenesis remains poorly understood. Recent years

have witnessed extraordinary growth in interest in sialylation and established a critical

role for sialic acids in host invasion and host-pathogen interactions. This review article

summarizes current knowledge on the role of sialylation of the prion protein in prion

diseases. First, we discuss the correlation between sialylation of PrPSc glycans and prion

infectivity and describe the factors that control sialylation of PrPSc. Second, we explain

how glycan sialylation contributes to the prion replication barrier, defines strain-specific

glycoform ratios, and imposes constraints for PrPSc structure. Third, several topics,

including a possible role for sialylation in animal-to-human prion transmission, prion

lymphotropism, toxicity, strain interference, and normal function of PrPC, are critically

reviewed. Finally, a metabolic hypothesis on the role of sialylation in the etiology of

sporadic prion diseases is proposed.
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INTRODUCTION

Prions or PrPSc are proteinaceous infectious agents that consist of misfolded, self-replicating states
of a sialoglycoprotein called the prion protein or PrPC (Prusiner, 1982; Legname et al., 2004). Prions
cause prion diseases, a family of transmissible neurodegenerative maladies that have no treatment
and are 100% lethal (Prusiner, 1998). Prions replicate by recruiting and converting PrPC molecules
expressed by a host into misfolded PrPSc states (Cohen and Prusiner, 1998). In the PrPSc state,
the prion protein can acquire conformationally distinct self-replicating states referred to as prion
strains, which elicit different, strain-specific disease phenotypes (Thomzig et al., 2004; Spassov et al.,
2006; Morales et al., 2016). While the fact that PrPSc is sialylated has been known for more than 30
years (Bolton et al., 1985), little is known about the role sialylation plays in prion diseases. This
review article summarizes current knowledge on the role of sialylation of the prion protein in prion
diseases.

MANY AMYLOIDOGENIC PROTEINS EXHIBIT PRION-LIKE
BEHAVIOR, BUT PRIONS ARE UNIQUE

In recent years, convincing evidence was put in place illustrating that prion-like propagation of
misfolded protein states is not limited to the prion protein (Jucker and Walker, 2013; Walker and
Jucker, 2015). A number of amyloidogenic proteins or peptides, including Aβ, α-synuclein, tau,
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huntingtin, which are associated with a range of age-dependent
neurodegenerative diseases, can also spread from cell to cell or
be transmitted from animal to animal or human to animal in a
prion-like fashion (Soto et al., 2006; Walker and Jucker, 2015).
Even more striking, these amyloidogenic proteins can acquire
several alternative disease-associated self-replicating states within
the same amino acid sequence that recapitulates the prion strain
phenomenon (Aguzzi, 2014; Stöhr et al., 2014; Watts et al., 2014).

While non-prion amyloidogenic proteins display certain
characteristics of prion-like replication, several aspects make
PrPSc unique. First, only PrPSc can be transmitted between
organisms or species via natural routes (Brown and Gajdusek,
1991; Miller and Williams, 2004). Second, like microbial or
viral agents, PrPSc shows incredibly high titers of up to 1010.5

infectious units per g of tissues in animal assays or 1013 units
per g using in vitro assays (Makarava et al., 2012b). Such titers
exceed by far those reported for other amyloidogenic proteins.
Because different hosts are used for establishing titers (wild type
vs. transgenic mice), direct comparison of prion titers with those
displayed by non-prion amyloidogenic proteins should be done
with caution. Keeping this in mind, 106 was found to be the
highest dilution of brain material with Aβ deposits formed in
tg2576 mice that was able to seed Aβ misfolding in the same
mouse line (Morales et al., 2015). Because Tg2576 mice is a
transgenic line that overexpresses the Amyloid Precursor Protein
harboring the Swedish mutation and shows spontaneous plaque
formation with age, the titers established in Tg2576 might be
overestimated. Third, PrPSc-infected animals typically show a
very robust course of disease progression characterized by a
well-defined set of clinical symptoms, precise incubation time
to disease, and a strict dependence of incubation time on dose.
Fourth, in addition to the CNS, PrPSc accumulates in peripheral
tissues, including the lymphoreticular system (Hilton et al., 1998;
Sigurdson et al., 1999; Andréoletti et al., 2000; Aguzzi et al., 2013).
In fact, not only does PrPSc colonize secondary lymphoid organs
(SLOs), it replicates in SLOs autonomously from the CNS (Brown
et al., 1999; Montrasio et al., 2000; Kujala et al., 2011; McCulloch
et al., 2011). More surprisingly, despite low expression levels of
PrPC in SLOs, SLOs are more permissive to prions than the
CNS (Béringue et al., 2012; Halliez et al., 2014). As such, SLOs
represent silent reservoirs of infection, where prions could hide
undetected in human populations while imposing a high risk of
transmission through surgery, organ or blood donation (Hilton
et al., 2004; Peden et al., 2004, 2010; Wroe et al., 2006; Bishop
et al., 2013). The events triggered by peripheral prion infection
sets prions aside from all other known types of pathogens as
well. Whereas most bacteria, parasites, and viruses trigger innate
and adaptive immune responses, themammalian immune system
appears to be remarkably tolerant to prions (Aguzzi et al., 2003).

INTRODUCTION TO SIALYLATION

Sialic acids (Sias) are a family of 9-carbon containing acidic
monosaccharides that are found in terminal positions of N-
and O-linked glycans of glycoproteins or glycolipids (Figure 1A)
(Varki, 1999). Glycan sialylation is controlled by two groups of

enzymes: sialyltransferases (STs) and sialidases (NEUs) (Audry
et al., 2011; Miyagi and Yamaguchi, 2012). STs transfer sialic
acids to the terminal positions of glycans. This process takes
place in the trans-Golgi and involves 20 mammalian STs (Audry
et al., 2011). STs are divided into four families according to
the type of linkages synthesized (α2-3, α2-6, α2-8, or α2-9) and
the selectivity toward N- or O-linked glycans (Takashima, 2008;
Audry et al., 2011). NEUs, on the other hand, remove Sias from
glycans. Four NEUs are found in mammals, they are expressed
in a tissue-specific manner and display differences in cellular
localization (Monti et al., 2010; Miyagi and Yamaguchi, 2012;
Pshezhetsky and Ashmarina, 2013).

Humans can synthesize only one type of Sias, which is N-
acetylneuraminic acid (Neu5Ac) (Varki, 2010) (Figures 1A,B).
With the exception of the ferret (Ng et al., 2014), the rest of
mammalian species produce two types of Sias. Neu5Ac is the
predominant type that is synthesized in a brain, whereas Neu5Ac
and N-glycolylneuraminic acid (Neu5Gc) are synthesized by
peripheral organs (Varki, 1999) (Figure 1B). The deficiency
in synthesis of Neu5Gc in humans is due to an irreversible
mutation in the gene encoding cytidine monophosphate N-
acetylneuraminic acid hydroxylase (an enzyme that synthesize
Neu5Gc from Neu5Ac) that occurred during evolution from
primates to humans (Varki, 2010). Like humans, ferrets can
produce only Neu5Ac (Ng et al., 2014). While humans lack the
ability to synthesize Neu5Gc, it can be incorporatedmetabolically
into human cells from diet (Samraj et al., 2015).

Sias on cell surface glycans and glycolipids form diverse
structural epitopes that are involved in a number of cellular
functions. The structural diversity of Sia epitopes is produced
via several mechanisms. First, Sias can be attached to galactose
or N-acetylgalactosamine of glycans via α2-3, α2-6, α2-8, or
α2-9 linkages (Varki, 1999). Second, various natural substitutes
including O-acetyl, N-glycolyl, O-lactyl, O-sulfate, O-phosphate,
tauryl, hydroxyl, or O-methyl can be synthesized on carbons
of Sias at 1-, 4-, 5-, 7-, 8-, or 9-positions, where O-acetyl
being the most common substitute (Figure 1C). (Schauer et al.,
2011). Third, in combination with Sias other groups including
sulfate and fucose are involved in forming functional glycan
epitopes including Sialyl Lewisx, Sialyl Lewisa, 6′Sulfo-Sialyl
Lewisx (Figure 1D) (Fukuda et al., 1999). Fourth, complex
glycans can exhibit several branching patterns that contribute
to variations in density of Sia residues, a factor important for
binding of multivalent ligands.

Sias are abundant on the surfaces of all mammalian cell
types with an estimated local concentration on the cell surface
glycocalyx approaching 100 mM (Collins et al., 2004). Recent
years witnessed an extraordinary rise in interest to sialylation
and established its role in host-pathogen interactions and
communication between cells of immune system (Varki, 2008,
2010). Sias on the surface of mammalian cells act as a part of
“self-associated molecular pattern” helping the immune system
to recognize “self ” from “altered self ” or “non-self ” (Varki, 2008;
Brown and Neher, 2014). A decline in Sia content represents
one of the molecular signatures of “apoptotic-cell-associated
molecular patterns” found in apoptotic or aging cells (Savill et al.,
2002; Brown and Neher, 2014). Removal of Sias from cell surface
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FIGURE 1 | Structural diversity of Sias. Structures of two most common types of Sias, Neu5Ac, and Neu5Gc (A), and a diagram illustrating the differences in Sias

synthesized in humans vs. non-human mammals (B). Structural diversity of Sias epitopes are achieved via naturally occurring modifications of Sias at 1-, 4-, 5-, 7-, 8-,

or 9-carbon positions (C) and/or variations due to sulfation of galactose and N-acetylglucosamine that produce several Lewis glycoepitope families (D). Panel (D)

shows only a small subset of possible sulfated variants.

glycans exposes galactose residues that generate “eat me” signals
for professional and non-professional macrophages. Examples
include clearance of erythrocytes or platelets with reduced sialic
acid residues by Kupffer cells (Aminoff et al., 1977; Jansen et al.,
2012) or neurons by microglia (Linnartz et al., 2012; Linnartz-
Gerlach et al., 2016). Lack of Sias on the cell surface is also a
part of the “pathogen-associated molecular pattern” or PAMPs
used by mammalian immune systems to recognize pathogens or
asialoglycoproteins that need to be removed (Varki, 2008).

N-LINKED GLYCANS ON PrPC AND PrPSc

ARE SIALYLATED

PrPC is posttranslationally modified with up to two N-linked
glycans and a GPI anchor (Stahl et al., 1987; Endo et al., 1989).
In PrPC, Sias are linked to the terminal positions of the two N-
linked glycans via α2-3 or α2-6 linkages with the majority being
linked via α2-6 (Turk et al., 1988; Endo et al., 1989; Stimson
et al., 1999). Each of the two glycans has up to five terminal
Sias (Endo et al., 1989; Rudd et al., 1999). Variation in structure
and composition of N-linked glycans give rise to more than 400
different PrPC glycoforms (Endo et al., 1989; Stimson et al., 1999).
Upon conversion of PrPC into PrPSc, the sialylated glycans and
GPI are carried over, giving rise to sialylated PrPSc (Bolton et al.,
1985; Stahl et al., 1993; Rudd et al., 1999).

In the absence of posttranslational modifications, the
theoretical pI of the full-length mouse prion protein is expected
to be 9.6 and the estimated charge at pH 7.5 is +9.5 (Katorcha
et al., 2014). However, due to glycan sialylation, the actual pI of
PrP molecules was found to be highly heterogeneous and spread
from pH 9.6 to acidic pH (DeArmond et al., 1999; Katorcha et al.,
2014). In intact PrPSc particles, the glycans are believed to be
directed outwards, with the terminal sialic acid residues located at
the interface with the extracellular environment or solvent (Wille
et al., 2002; Govaerts et al., 2004; Requena and Wille, 2014).

SIALYLATION OF GPI ANCHOR

In addition to sialylation of N-linked glycans, a single Sia could
be also present on the GPI anchor of PrPC (Stahl et al., 1992).
The question regarding sialylation status of GPIs within PrPSc has
been controversial. As judged frommass-spectroscopy analysis of
hamster-adapted prion strains Sc237 and 139H, approximately
30% of GPIs of brain-derived PrPSc were found to be sialylated
(Stahl et al., 1992). Moreover, the composition of GPIs within
PrPSc was found to be similar to that of PrPC (Stahl et al., 1992).
In contrast, recent studies by Bate and coauthors claimed that
PrPC with asialo-GPIs were not convertible into PrPSc and, even
more, inhibited conversion of PrPC with sialo-GPIs into PrPSc

(Bate et al., 2016b). To arrive at this conclusion, a cell painting
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technique was used for administering PrPC with sialo- or asialo-
GPIs to cultured N2a neuroblastoma cells or primary neurons.
Our recent studies that examined tissues from mice or hamsters
infected with five prion strains or prion infected N2a cells or
C2C12 myotube cells revealed that PrPC molecules with both
sialo- and asialo-GPIs were recruited into PrPSc (Katorcha et al.,
2016). Notably, the proportion of sialo- vs. asialo-GPIs within
PrPSc was found to be controlled by host, tissue, and cell type,
but not prion strain (Katorcha et al., 2016).

In a series of other studies that also employed cell painting
techniques, Bate and coauthors suggested that toxicity triggered
by PrPSc is dependent on the sialylation status of GPI anchor
within PrPC, as clustering of PrPC molecules with sialo-GPIs
led to activation of cytoplasmic phospholipase A2 and synapse
damage (Bate and Williams, 2012b). Moreover, sialylation
status of GPIs was found to modify the local environment of
PrPC where the greater amounts of sialylated gangliosides and
cholesterol were found in rafts surrounding PrPC with asialo-
GPIs relative to PrPC with sialo-GPIs (Bate et al., 2016b). In
addition, sialo-GPIs were found to target exogenous PrPC to
synapses of neurons derived from the prion protein knockout
mice (Bate et al., 2016a). Because cell painting technique was
used in aforementioned studies, the questions whether the
conclusions reached by using PrPC exogenously added to cells
are valid for PrPC expressed by a cell or in animals have to be
addressed.

THE EFFECT OF SIALYLATION OF PrPSc

GLYCANS ON PRION INFECTIVITY AND
DISEASE OUTCOME

Recent studies from our laboratory revealed that PrPSc with
reduced sialylation levels does not induce prion disease in wild
type animals (Katorcha et al., 2014). To produce PrPSc with
reduced sialylation, ProteinMisfolding Cyclic Amplification with
beads (PMCAb) was conducted using PrPC as a substrate that was
partially desialylated by treatment with sialidases (dsPMCAb).
As a reference, PrPSc was also produced in PMCAb reactions
conducted with non-treated PrPC. Both types of reactions were
seeded with hamster scrapie strain 263K. All animals inoculated
with brain-derived 263K developed clinical signs and showed
substantial amounts of PrPSc in their brains (Figure 2). Animals
inoculated with PMCAb-derived 263K developed disease at
slightly longer incubation times relative to the control group
that received brain-derived PrPSc. Such delay is attributed to
a moderate shift in the sialylation pattern of PMCAb-derived
263K relative to that of brain-derived 263K (Figure 2). In the
course of PMCAb, PrPC molecules with low sialylation status
were preferentially recruited into PrPSc, producing a shift in
sialylation status of PMCAb-derived material (Katorcha et al.,
2014). Remarkably, no animals inoculated with dsPMCAb-
derived material developed the disease (Katorcha et al., 2014)
(Figure 2). Moreover, no PrPSc was detected in brains or spleens
of animals from these groups by Western blot or serial PMCAb,
arguing that the animals injected with dsPMCAb material were
not subclinical carriers of scrapie. Because exposed galactose

FIGURE 2 | Analysis of sialylation status of brain-, PMCAb-, and

dsPMCAb-derived PrPSc for 263K strain using 2D western blots.

Incubation time to disease and number of animals that developed clinical

disease out of total number of animals is shown on the right. The data

represented here is a modification of the figure from previously published

manuscript (Katorcha et al., 2014).

residues are believed to generate “eat me” signals, we propose
that dsPMCAb-derived material is degraded rapidly due to an
increase in amounts of terminal galactose as a result of partial
removal of sialic acid residues. This hypothesis has to be tested in
future studies.

FACTORS THAT CONTROL SIALYLATION
OF PrPSc

The sialylation status of PrPSc appears to be of paramount
importance to prion infectivity; therefore, dissecting the
mechanisms that control sialylation status of PrPSc is of great
interest. Because PrPSc arises from PrPC via changes in its
conformation, it is important to understand the mechanisms that
control sialylation of PrPC.

Sialyltransferases and Sialidases
The steady-state level of sialylation in a cell is controlled by
two groups of enzymes: STs and NEUs. Of the four NEUs
expressed in mammals, NEU1 localizes to the lysosomes and
cell surface, NEU2 is found in the cytoplasm and is expressed
in muscles, NEU3 is at the plasma membrane, and NEU4 is
associated with mitochondria, lysosomes, and ER, but can also
be recruited to the cell surface (Monti et al., 2010; Miyagi and
Yamaguchi, 2012; Pshezhetsky and Ashmarina, 2013). Because
PrPC is localized at the cell surface and in endocytic/lysosomal
compartments, three out of four NEUs (NEU1, NEU3, or NEU4)
could be involved in regulating sialylation of PrPC. Surprisingly,
brain materials from Neu1, Neu3, Neu4 knockout, or Neu3/Neu4
double knockout mice showed no differences in sialylation
status of PrPC or its proteolytic fragment C1 in comparison
to the corresponding wild type controls (Katorcha et al.,
2015a). Moreover, suppressing NEU activity using the general
inhibitor DANA did not change the sialylation of PrPC/C1 in
neurobalstoma N2a cells, but did alter the global sialylation
status (Katorcha et al., 2015a). These results suggested that upon
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removal of Sias from PrPC by cellular NEUs, PrPC molecules are
degraded very fast and do not contribute to the steady-state pool
of PrPC (Figure 3). If desialylation results in fast degradation,
sialidase deficiency is expected to cause accumulation of PrPC

and/or C1. Indeed, higher amounts of total PrP signal (PrPC plus
C1) was observed in brains of Neu1, Neu3, and Neu4 knockout
mice as expected (Katorcha et al., 2015a). An alternative
hypothesis proposes that PrPC/C1 are not targeted by NEUs as a
substrate.

Modulating the activity of STs instead of NEUs may offer a
more effective strategy for controlling the sialylation status of
PrPC. A general inhibitor of STs 3Fax-Neu5Ac was found to
reduce the sialylation level of PrPC in N2a cells (Katorcha et al.,
2015a). Out of 20 mammalian STs, five STs exhibit substrate
specificity for sialylation of N-linked glycans via α2-3 or α2-6
linkages, the type of linkages found in PrPC and PrPSc. Three
out of the aforementioned five STs that supposedly have PrP-
directed sialylation activity belong to the ST3 family (ST3Gal3,
ST3Gal4, and ST3Gal6) and sialylate N-linked glycans via α2-3
linkages. The remaining two STs belong to the ST6 family
(ST6Gal1 and ST6Gal2) and sialylate N-linked glycans via α2-6
linkages (Takashima, 2008; Audry et al., 2011). ST6Gal2 is found
predominantly in fetal brain, whereas ST6Gal1 is expressed
throughout the organism including the CNS (Takashima et al.,
2002, 2003). Knocking out ST6Gal1 was found to reduce
dramatically the amounts of α2-6 linked sialic acids in peripheral
organs and the CNS (Martin et al., 2002), suggesting that ST6Gal1
is the main enzyme responsible for α2-6-linked sialylation
and that its function is not redundant. In mice infected with

prions expression of 165 glycosylation-related genes was analyzed
(Guillerme-Bosselut et al., 2009). Among them, the expression
levels of ST6Gal1 mRNAwas found to be upregulated by∼3-fold
in brain and spleen at the terminal stages of the disease that might
reflect the pro-inflammatory response to the disease (Guillerme-
Bosselut et al., 2009). It is not known whether the sialylation
status of PrPC and/or PrPSc changes due to upregulation of
ST6Gal1 in the course of prion infection.

Strain-Specific Selection of PrPC

Sialoglycoforms
PrPC molecules are heterogeneous with respect to the sialylation
levels of their N-linked glycans ranging from hyposialylated
to hypersialylated (DeArmond et al., 1999; Katorcha et al.,
2014; Schmitz et al., 2014). Using hamster strain 263K, Rudd
and coauthors showed that in brain, the relative populations
of sialyloglycoforms of PrPSc were very similar to those of
PrPC (Rudd et al., 1999). This result led to the conclusion
that PrPC sialoforms are recruited into PrPSc proportionally to
their relative presentation in a cell (Rudd et al., 1999). Recent
studies examined a panel of mouse and hamster strains and
discovered a remarkable pattern: hypersialylated PrPC molecules
were partially excluded from PrPSc (Katorcha et al., 2015b)
(Figure 3). The degree to which hypersialylated PrPC were
excluded was strain-specific and found to be minimal for 263K,
explaining the findings by Rudd et al. Strain-specific exclusion
suggests that some strains can accommodate heavily sialylated
PrPC molecules better than others (Figure 4).

FIGURE 3 | A diagram illustrating mechanisms that control sialylation of PrPSc. (A) The sialylation status of PrPC is controlled by STs in the trans-Golgi. (B)

NEUs do not appear to affect the steady-state sialylation level of PrPC, presumably because desialylated PrPC is degraded rapidly. (C) Sialoglycoforms of PrPC are

recruitment into PrPSc selectively according to their sialylation status and in a strain-specific manner. (D) In SLOs, PrPSc is a subject of post-conversion sialylation by

STs. Sias are shown as red diamonds.
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FIGURE 4 | Schematic diagram illustrating that PrPSc strains recruit PrPC isoforms selectively according to PrPC sialylation status. While strain #1

recruits sialoglycoforms of PrPC without noticeable preferences, hypersialylated PrPC are preferentially excluded from the strain the #2 and even more so from strain

#3. As a result of strain-specific exclusion of highly sialylated PrPC (illustrated by the 2D Western blots), the ratios of di- vs. mono-glycoforms within PrPSc changes in

a strain-specific manner, as shown by 1D Western blots (right hand side). PrPC molecules are shown as blue circles and sialic acid residues—as red diamonds.

Tissue-Specific Post-conversion
Sialylation of PrPSc

Upon prion transmission via peripheral routes, PrPSc is first
sequestered by SLOs, including spleen and lymph nodes, prior
to invasion of the CNS (Huang et al., 2002; Takakura et al.,
2011; Castro-Seoane et al., 2012; Michel et al., 2012). Moreover,
PrPSc replicates in SLOs independently of replication in the
CNS (Brown et al., 1999; Montrasio et al., 2000; Kujala et al.,
2011; McCulloch et al., 2011). Recent studies revealed that
spleen-derived PrPSc is considerably more sialylated than brain-
derived PrPSc (Srivastava et al., 2015). Enhanced sialylation of
PrPSc in SLOs was observed regardless of prion strain, host
species, or inoculation route (Srivastava et al., 2015). Remarkably,
enhanced sialylation of PrPSc was not due to enhanced sialylation
of PrPC expressed in SLOs, but appears to be due to post-
conversion sialylation of PrPSc in SLOs by extracellular STs
(Figure 3). While STs are traditionally believed to localize within
the trans-Golgi (Harduin-Lepers et al., 2001), a number of
studies reported ST activity in circulation or on surfaces of
the cells of the immune system including polymorphonuclear
leukocytes, monocyte-derived dendritic cells, lymphocytes, and T
cells (Gross et al., 1996; Kaufmann et al., 1999; Schwartz-Albiez
et al., 2004; Rifat et al., 2008; Cabral et al., 2010; Nasirikenari
et al., 2014). Consistent with the hypothesis that extracellular
STs are involved in enhancing sialylation of PrPSc, the sialylation
status of foreign PrPSc acquired via peripheral exposure changed
with colonization of SLOs (Srivastava et al., 2015). Moreover,
enhanced sialylation of PrPSc was recapitulated in vitro by
incubating brain-derived PrPSc with primary splenocytes or
cultured macrophage RAW 264.7 cells (Srivastava et al., 2015).

General inhibitors of STs suppressed enhanced sialylation of
PrPSc (Srivastava et al., 2015). Thus, post-conversion sialylation
is likely to camouflage PrPSc in SLOs. It would be interesting to
test whether enhanced sialylation of PrPSc accounts for the high
permissiveness of SLOs to prion infection.

SIALYLATION CONTRIBUTES TO PRION
REPLICATION BARRIER

The conformational transition from PrPC into PrPSc is regulated
by a large energy barrier that controls the prion conversion
rate (Baskakov et al., 2001). Due to the large energy barrier,
the spontaneous conversion of PrPC into PrPSc is very rare,
explaining the low occurrence rates of sporadic prion diseases
(Cohen and Prusiner, 1998). The magnitude of the energy barrier
is attributed to the energy needed to unfold PrPC (Baskakov
et al., 2001). Recent studies that employed PMCAb proposed that
electrostatic repulsions between sialic acid residues also create
structural constraints for PrPSc replication and contribute to the
replication barrier (Katorcha et al., 2015b). In PrPSc particles,
glycans are directed outward where the terminal sialic acid
residues create a dense negative charge on the PrPSc surface
(Wille et al., 2002; Govaerts et al., 2004; Requena and Wille,
2014). Because of strain-specific differences in PrPSc structures,
the contribution of sialic residues to the barrier is expected to
be strain-specific. Indeed, several lines of evidence support this
hypothesis. First, heavily sialylated PrPC molecules were found
to be partially excluded from conversion into PrPSc, and the
degree of exclusion was found to be strain-specific (Katorcha
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et al., 2015b). Second, desialylation of PrPC by enzymatic
treatment with sialidases removed the structural constraints and
increased the rates of replication of PrPSc in PMCAb. The
increase in replication rates was strain-specific, too, ranging
from 20- to 106-fold (Katorcha et al., 2014, 2015b). Third,
desialylation of PrPC was also found to considerably reduce
the barrier in cross-seeded replication of PrPSc in PMCAb
reactions (Katorcha et al., 2014). Together, these data suggest
that the replication barrier attributable to glycan sialylation is
universal, i.e., not only does it control the rate of prion replication
within the same host but also the barrier associated with
prion transmission between different species. The electrostatic
repulsion between sialylated glycans of nascent PrPSc and the
size of glycans are expected to impose a negative impact on
the thermodynamic stability of PrPSc particles. This negative
impact has to be counteracted by other forces that stabilize the
packing of polypeptide chains within PrPSc particles. Notably,
while thermodynamic stability of PrPSc varies depending on the
strain-specific structure (Peretz et al., 2001; Colby et al., 2009;
Ayers et al., 2011; Gonzalez-Montalban et al., 2011), the range
of strain-specific thermodynamic stabilities of PrPSc is typically
lower than those of amyloid fibrils generated in vitro from
recombinant PrP (Sun et al., 2007, 2008). In part, such differences
are likely due to electrostatic repulsion between sialylated glycans
that recombinant PrP lacks.

Additional parameters have to be considered in discussing the
effect of sialylation on the replication barrier in vivo. Because
PrPC glycans could be bi-, tri- or tetra-antennary, PrPC molecules
with the same number of sialic acid residues per molecule
might have different number of terminal galactose that serves
as “eat me” signal. PrPC molecules with substantial levels of
terminal galactose are expected to be degraded quickly. While
heavily sialylated PrPC molecules are excluded from conversion
for conformational reasons, weakly sialylated PrPC with bulky
glycans might not be involved in replication either due to their
fast degradation. Therefore, in vivo the size of glycans, sialylation
levels, and the number of exposed galactose are likely to define
the availability and eligibility of PrPC as a substrate.

SIALYLATION AND STRAIN-SPECIFIC
GLYCOFORM RATIO

The glycoform ratio within PrPSc is considered to be one
of the primary intrinsic characteristics of prion strains or
PrPSc subtypes (reviewed in Lawson et al., 2005). While the
mechanisms behind strain-specific selectivity in recruitment of
glycoforms remain unknown, the glycoform ratios have been
used in the prion field for strain typing and classification of CJD
type (Collinge et al., 1996; Somerville, 1999). Recent studies that
analyzed strain-specific sialylation patterns of PrPSc revealed that
the strain-specific glycoform ratio is due to exclusion of heavily
sialylated PrPC molecules (Katorcha et al., 2015b) (Figure 4).
Because diglycosylated PrPC carry more sialic acid residues per
molecule on average than mono- or unglycosylated PrPC, the
preferential exclusion of heavily sialylated PrPC is achieved via
(i) selective recruitment of mono- and unglycosylated PrPC at

the expense of diglycosylated PrPC, and (ii) preferential exclusion
of hypersialylated diglycosylated PrPC (Katorcha et al., 2015b).
In fact, a correlation between PrPSc sialylation status and the
glycoform ratio exists (Katorcha et al., 2015b). Remarkably,
when exposed to desialylated PrPC as a substrate, prion strains
lose strain-specific selectivity toward PrPC glycoforms, and the
glycoform ratio within PrPSc mirrors that of PrPC (Katorcha
et al., 2015b).

N-LINKED GLYCANS AND PrPSc

STRUCTURE

The density of sialylation and size of N-linked glycans
impose considerable structural constraints, limiting the range
of plausible structures for PrPSc. Similar to amyloids formed
by other amyloidogenic proteins or peptides, PrPSc exhibits a
cross-β folding pattern (Wille et al., 2009; Ostapchenko et al.,
2010), a key structural feature of amyloid states. However, the
precise folding pattern of PrP molecules within PrPSc has been
debated (reviewed in Requena and Wille, 2014). The recent
PIRIBS model proposed that PrPSc consists of an in-register
parallel β-sheet structure, in which each PrP molecule occupies
a single layer within cross-β fibers (Groveman et al., 2014). This
model is similar to those proposed earlier for amyloid fibrils
formed by non-glycosylated recombinant PrP (Cobb et al., 2007;
Tycko et al., 2010). Alternative models postulate that within
PrPSc fibers each PrP molecule forms a multi-rung β-solenoid
(Govaerts et al., 2004; Amenitsch et al., 2013). To discriminate
between alternative models, we decided to determine the extent
to which N-linked glycans can be accommodated within PrPSc

folding patterns proposed by different models. According to the
PIRIBS model, the glycans linked to the same amino acid residue
on neighboring PrPmolecules are separated by a distance of 4.7 Å
(Figure 5A). For solenoid models, depending on the number of
rungs formed by PrP molecules within the solenoid, the distance
between glycans on neighboring PrP molecules could be 2 × 4.7
Å, 3× 4.7 Å, or 4× 4.7 Å for the solenoids consisted of 2, 3, or 4
rungs, respectively (Figures 5B–D). To model N-linked glycans
of average size, we choose a tri-antennary glycan structure, since
PrPC and PrPSc are known to carry bi-, tri-, and tetra-antennary
glycans (Endo et al., 1989; Rudd et al., 1999; Stimson et al.,
1999). Substantial spatial overlap was found between glycans of
neighboring PrP molecules, if the glycan linkages were separated
by distances 4.7 Å or 2 × 4.7 Å (Figures 5A,B). Such spatial
constraints argue strongly against PIRIBS or 2-rung solenoids as
plausible models of PrPSc. Minor spatial overlap was observed
between neighboring glycans attached at the distance of 3 × 4.7
Å, and no overlap when the tri-antennary glycans were separated
by 4 × 4.7 Å (Figures 5C,D). The minor overlap observed for
3-rung solenoid structures could be avoided if N-linked glycans
are of smaller-sizes (bi-antennary) and/or oriented at various
angles. The 2-rung solenoid structure would be still possible
if glycosylated molecules alternated with non-glycosylated ones
along PrPSc fibers. However, the percentage of non-glysoylated
PrP molecules within PrPSc is known to be very small (Nishina
et al., 2006; Katorcha et al., 2015b).
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FIGURE 5 | N-linked glycans impose spatial constraints on folding patterns of PrPSc. Cross beta-sheet structures carrying tri-antennary N-glycans (shown in

inset) on each neighboring beta-strand (A), or every second (B), third (C), or fourth (D) beta-strand. Polypeptide chains are represented in the tube form, whereas

N-glycans are represented in the ball-and-stick form. Each PrP molecule with corresponding N-glycan is of a different color. Sialic acid residues are colored in red;

N-glycan electrostatic surfaces are semi-transparent. To model the dimension of cross-beta structures, the parallel beta-sheet model was adapted from PDB database

entry 2RNM, an NMR structure for HET-s(218–289) prion in its amyloid form (Wasmer et al., 2008). Stretches of seven amino acid residues are shows for each beta

strand without any change to the atomic coordinates. The structure of a tri-antennary N-linked glycan was taken from PDB entry 3QUM, a crystal structure of human

prostate specific antigen (PSA) (Stura et al., 2011). Both calculations of electrostatic surfaces and generation of images were performed with CCP4MG software.

METABOLIC ORIGIN OF SPORADIC PRION
DISEASES

According to the Braak staging hypothesis, in Alzheimer’s and
Parkinson diseases amyloid deposits and pathology originate in
certain areas of the CNS and spread in a prion-like manner
through the brain in disease-specific patterns (Braak and Braak,
1991). It is not known from which brain area sporadic CJD
originates and whether it spreads in a specific pattern. Bearing in
mind that sialylation controls the height of the conformational
transition barrier (Katorcha et al., 2015b), it is reasonable to
propose that the first spontaneous PrPC-to-PrPSc conversion
events have a higher chance of occurring in brain areas that
express PrPC with glycans of small sizes and reduced sialylation
levels and/or in individuals with deficient sialylation substrate.

Consistent with the metabolic hypothesis, there is a decline
in total sialic acid content as well as cell surface sialylation
with age (Svennerholm et al., 1997). Notably, a polymorphism
in β-secretase (BACE1), an enzyme that cleaves ST6Gal1, was
recently shown to be a risk factor for sCJD suggesting that a link
between sialylation and sCJD might exist (Calero et al., 2012). It
would be interesting to test whether variations in BACE1 activity
due to polymorphism contribute to stability and/or activity of
ST6Gal1 in Golgi and affect sialylation status of PrPC.

ANIMAL-TO-HUMAN PRION
TRANSMISSION

Humans can only synthesize Neu5Ac, whereas Neu5Gc is the
predominant type of Sias expressed in the periphery of mammals
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(Varki, 2010) (Figure 1B). The difference in the type of Sias
expressed in the periphery of human and non-human mammals
raises several important topics for discussion. First, it would
be interesting to find out whether this difference contributes
to the animal-to-human species barrier for prion transmission.
Notably, in humans with high consumption of red meat,
Neu5Gc incorporates metabolically into human cells and induces
antibody responses against Neu5Gc (Samraj et al., 2015). While
incorporation of Neu5Gc increases the likelihood of systemic
inflammation (Samraj et al., 2015), antibodies against Neu5Gc
might be beneficial for neutralizing prion infection of zoonic
origin in humans. A second important aspect to consider is
the functional consequences of enhanced sialylation of foreign
PrPSc in SLOs (Srivastava et al., 2015). Enhanced sialylation
in human SLOs could “humanize” prions of animal origin
transmitted to humans by decorating them with Neu5Ac and
helping to deceive the human immune system (Srivastava et al.,
2015). A third interesting aspect is related to human-specific
differences in the binding sites of human Siglecs for selective
recognition of Neu5Ac over of Neu5Gc (Varki, 2010). Siglecs
are a family of sialic acid-binding proteins with a number of
important functions (reviewed in Rabinovich and Croci, 2012).
While interactions between prions and Siglecs have not yet
been documented (Bradford et al., 2014), such a possibility
should not be excluded considering the large number of Siglecs
expressed in humans and mice. Human-specific differences in
Siglecs for selective recognition of Neu5Ac over of Neu5Gc are
also important for the critical assessment of results obtained
in humanized mice (mice expressing the human PrP gene).
Humanized mice have often been used to assess susceptibility of
humans to prion strains of animal origin or to model human-
to-human transmission (Collinge et al., 1995; Asante et al.,
2002; Wadsworth et al., 2004; Bishop et al., 2006; Cassard
et al., 2014). Because humanized mice express mouse but
not human Siglecs, interaction between Siglecs and PrPSc are
expected to lead to different outcomes in humanized mice and in
humans.

SIALYLATION OF PrPSc AND
LYMPHOTROPISM

Prion strains show variable degrees of lymphotropism (Aguzzi
et al., 2013). The molecular mechanism behind strain-specific
lymphotropism is not known. It is also not known whether
limited lymphotropism is due to deficient trafficking of
certain strains to SLOs, impaired replication in SLOs, fast
clearance in SLOs, or a combination of these factors. Recent
studies revealed that sialylation of N-linked glycans at α2-6
linkages is responsible for directed trafficking and selective
adhesion of hepatocarcinoma cells to SLOs (Zhang et al.,
2013; Wang et al., 2015). Another work that employed
synthetic glycoclusters demonstrated that in circulation the
glycoclusters with α2-6 linked sialic residues were more
stable and showed slower clearance rates in comparison to
the glycoclusters with α2-3 linkages (Tanaka et al., 2010).
It would be interesting to test whether sialylation and, in

particular, α2-6 linkages also account for the lymphotropism of
PrPSc.

Notably, the two types of human CJDs, sporadic and variant,
show significant differences with respect to their lymphotropism,
with variant CJD known to be much more lymphotropic than
sCJD (Hill et al., 1999; Wadsworth et al., 2001; Halliez et al.,
2014). PrPSc in variant CJD is predominantly diglycosylated
and, as such, more sialylated than PrPSc in sCJD, which is
predominantly monoglycosylated (Zanusso et al., 2004; Pan
et al., 2005). The relative ranking of the two types of CJD
with respect to sialylation is consistent with the hypothesis
that sialylation is important for effective trafficking of PrPSc to
SLOs.

SIALYLATION OF PrPSc AND TOXICITY

Interaction of PrPSc particles with PrPC molecules anchored via
GPI on the cell surface is believed to be important for triggering
toxic signals (Solforosi et al., 2004; Sonati et al., 2012). Previous
studies proposed that PrPSc-induced toxicity is mediated via
PrPC molecules with sialylated GPI anchors (Bate and Williams,
2012a,b). Clustering of PrPC with sialo-GPIs was shown to trigger
synapse damage via activating cytoplasmic phospholipase A2 in
neurons cultured in vitro (Bate and Williams, 2012a,b).

It is not known whether the toxic potential of PrPSc depends
on sialylation status of its N-linked glycans. Considering that
two positively charged regions in PrP are involved in mediating
toxic signals (Solomon et al., 2011; Westergard et al., 2011), it
is plausible that the binding between PrPSc and PrPC involves
electrostatic interactions between negatively charged sialic acid
residues of PrPSc N-linked glycans and two solvent-exposed,
positively charged regions of PrPC (Turnbaugh et al., 2012). In
agreement with this hypothesis is the observation that colominic
acid, which is a polymer of sialic acid, blocks neurotoxicity
of PrPSc toward cortical neurons cultured in vitro (Ushijima
et al., 1999). Other support of this hypothesis comes from
studies where abnormal, self-replicating PrP states referred to
as atypical PrPres were found to exhibit very low sialylation
levels of N-glycans and lack of toxicity in animal studies
(Kovacs et al., 2013; Makarava et al., 2015). Atypical PrPres was
fully transmissible in animal bioassays and accumulated in the
form of small synaptic deposits and large plaques. However,
atypical PrPres alone, in the absence of PrPSc, did not cause
neuronal death, pathological lesions or any clinical signs of prion
diseases (Makarava et al., 2011, 2012a, 2015, 2016; Kovacs et al.,
2013).

SIALYLATION AND STRAIN
INTERFERENCE

Prion strain interference occurs when a host is infected with
two or more prion strains (Dickinson et al., 1972; Kimberlin
and Walker, 1985; Bartz et al., 2007; Schutt and Bartz, 2008;
Shikiya et al., 2010). Strain interference refers to an extension
of the incubation time to disease produced by a strain mixture
relative to the incubation period produced alone by the strain
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with the shortest incubation time. Among factors that were
previously discussed as main contributors to strain interference
were competition between strains for substrate, cellular co-
factors, or cellular replication sites (Bartz et al., 2007; Shikiya
et al., 2010).

Strain-specific selection of PrPC sialoglycoforms adds an
important dimension to the strain interference phenomenon
(Katorcha et al., 2015b). Strains with substantial structural
constraints rely on a narrow range of PrPC sialoglycoforms
as substrates and are unlikely to be strong competitors
(Figure 4). In contrast, strains capable of recruiting a broad
range of PrPC sialoglycoforms have a greater chance of
succeeding in competition for substrate. Evolution of prion
diseases of synthetic origin and competition between two
self-propagating states, atypical PrPres and PrPSc provides
remarkable illustrations of how differences in selectivity toward
PrPC sialoglycoforms determined the outcome of competition
(Makarava et al., 2011, 2012a, 2013, 2016). Only a small
fraction of PrPC sialoglycoforms that were acceptable as a
substrate for PrPSc was found to be also a suitable substrate
to atypical PrPres (Makarava et al., 2015). As a result, atypical
PrPres replicated slower than PrPSc, and PrPSc outcompeted
atypical PrPres (Makarava et al., 2011, 2012a, 2015, 2016). In
conclusion, strain-specific selection of PrPC sialoglycoforms is
an important factor that contributes to strain competition and
interference.

ROLE OF SIALYLATION IN NORMAL
FUNCTION OF PrPC

The role of sialylation in the normal function of PrPC has yet to be
explored. PrPC contains Lewis X [trisaccharide Galβ1-4(Fucα1-
3)GlcNAc, abbreviated as Lex] and sialyl-Lewis X [tetrasaccharide
NeuNAcα2-3Galβ1-4(Fucα1-3)GlcNAc, abbreviated as sLex]
epitopes (Stimson et al., 1999) that are known to serve as
ligands for selectins. PrPC containing Lex epitopes were found
to bind E-, L-, and P-selectins with nanomolar affinities and
in a Ca2+ dependent manner (Li et al., 2007). A variety
of biological activities involving PrPC, including neurotrophic
activities (Chen et al., 2003; Santuccione et al., 2005; Lima
et al., 2007), involvement in cell adhesion (Schmitt-Ulms et al.,
2001; Santuccione et al., 2005; Viegas et al., 2006; Málaga-
Trillo et al., 2009), and cell proliferation and differentiation
(Mouillet-Richard et al., 1999; Steele et al., 2006; Zhang
et al., 2006; Lima et al., 2007; Lee and Baskakov, 2010,
2013; Panigaj et al., 2011; Santos et al., 2011), has been
observed over the years. In particular, a growing number
of studies have highlighted the role of PrPC in controlling
self-renewal, proliferation and differentiation of stem cells,
including human stem cells (Mouillet-Richard et al., 1999;
Steele et al., 2006; Zhang et al., 2006; Lima et al., 2007;
Lee and Baskakov, 2010, 2013, 2014; Panigaj et al., 2011;
Santos et al., 2011). Considering that the proportion of di-
vs. mono-, and unglycosylated PrPC glycoforms increases in
the course of neuronal differentiation and with the density

of cells cultured in vitro (Monnet et al., 2003; Novitskaya
et al., 2007), it is plausible that PrPC glycosylation and
sialylation is important for its function. Notably, recent studies
revealed that deficiency in PrPC in a cell resulted in a
loss of polysialylation of Neural Cell Adhesion Molecule 1
(NCAM1) (Mehrabian et al., 2015). The defect in polysialylation
was found to be due to impairment in expression of
sialyltransferase ST8Sia2, which is responsible for polysialylating
glycoproteins.

CONCLUSIONS

Recent studies suggest that sialylation of PrPSc controls its
fate in an organism and the outcomes of prion disease. PrPSc

with reduced sialylation status did not cause prion disease
presumably due to an increase in the amounts of terminal
galactose that is believed to serve as “eat me” signal. The
following mechanisms that define the sialylation of PrPSc have
been identified: (i) sialylation of PrPC by STs, (ii) strain-
specific selective recruitment of PrPC sialoglycoforms, and
(ii) post-conversion enhanced sialylation of PrPSc in SLOs
(Figure 3). In addition, sialylation of N-linked glycans was
shown to contribute to the replication barrier that defines the
rates of prion replication within the same host and prion
transmission between different species. PrPC with glycans of
small sizes and fewer sialic acid residues per PrPC molecule
are expected to have a lower energy barrier for conversion
relative to the heavily sialylated PrPC with bulky glycans.
For explaining strain-specific differences in glycoform ratios,
selective exclusion of heavily sialylated PrPC molecules from
conversion due to strain-specific structural constraints was
proposed. Nevertheless, because sialylation protects PrPSc against
clearance and might be also important for prion transmission,
lymphotropism and toxicity, to be highly infectious prion strains
have to accommodate certain levels of sialylation. The precise
role of sialylation in animal-to-human prion transmission,
prion lymphotropism, toxicity, strain interference, and normal
function of PrPC, have yet to be addressed and require future
studies.
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