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Emerging artemisinin resistance in Southeast Asia poses a significant risk to malaria
control and eradication goals, including China’s plan to eliminate malaria nationwide by
2020. Plasmodium falciparum was endemic in China, especially in Southern China.
Parasites from this region have shown decreased susceptibility to artemisinin and
delayed parasite clearance after artemisinin treatment. Understanding the genetic basis
of artemisinin resistance and identifying specific genetic loci associated with this
phenotype is crucial for surveillance and containment of resistance. In this study,
parasites were collected from clinical patients from Yunnan province and Hainan island.
The parasites were genotyped using a P. falciparum-specific single nucleotide
polymorphism (SNP) microarray. The SNP profiles examined included a total of 27
validated and candidate molecular markers of drug resistance. The structure of the
parasite population was evaluated by principal component analysis by using the
EIGENSOFT program, and ADMIXTURE was used to calculate maximum likelihood
estimates for the substructure analysis. Parasites showed a high prevalence of
resistance haplotypes of pfdhfr and pfdhps and moderate prevalence of pfcrt. There
was no mutation identified on pfmdr1. Candidate SNPs on chromosomes 10, 13, and 14
that were associated with delayed parasite clearance showed a low prevalence of
mutants. Parasites from Southern China were clustered and separated from those from
Southeast Asia. Parasites from Yunnan province were substructured from parasites from
Hainan island. This study provides evidence for a genomic population with drug resistance
in Southern China and also illustrates the utility of SNP microarrays for large-scale parasite
molecular epidemiology.
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INTRODUCTION

Malaria remains one of the most serious infectious diseases in the
world. According to the world malaria report, an estimated 228
million cases of malaria worldwide were reported in 2018
compared with 251 million in 2010 and an estimated 405,000
deaths globally in 2018 compared with 585,000 in 2010 (WHO,
2019). Plasmodium falciparum has developed resistance to
almost all the antimalarial drugs that have been used. More
recently, multidrug resistance, including to artemisinin
derivatives and partner drugs of P. falciparum, has emerged
and spread in Southeast Asia (Ashley et al., 2014; Takala-
Harrison et al., 2015; Srimuang et al., 2016). The countries of
the Greater Mekong Subregion (GMS) are pursuing malaria
elimination with an aim to achieve regional malaria
elimination by 2030 driven by this emerging multidrug-
resistant P. falciparum (WHO, 2015). China has launched the
National Malaria Elimination Action Plan 2010–2020 with an
ultimate goal to interrupt local malaria transmission by 2020.
Southern China was historically the main P. falciparum endemic
region in China, especially Yunnan and Hainan Provinces.
Yunnan Province, which shares borders with Myanmar,
Vietnam, and Laos, is the key focus of the national malaria
elimination program. China was the first country to use
artemisinin, and its wide-scale use began in the early 1990s
(Tu, 2011). The national malaria treatment policy of China was
updated in 2016, and artemisinin-based combinations are first-
line drugs used to treat P. falciparum malaria, including
dihydroartemisinin-piperaquine, artesunate-amodiaquine, and
artemisinin-piperaquine (NHC, 2016). However, parasites in
Southern China have shown decreased in vitro susceptibility to
artemisinin by the ring stage assay and delayed parasite clearance
after artemisinin treatment (Huang et al., 2012b; Huang et al.,
2015; Wang et al., 2015).

Several molecular markers of P. falciparum resistance have
been identified. Mutations in pfcrt, which encodes a protein
located on the digestive vacuole membrane, are responsible for
chloroquine (CQ) resistance or treatment failure (Picot et al.,
2009; Lakshmanan et al., 2014), and the K76T allele in pfcrt has
been used for the surveillance of clinical CQ resistance (Djimde
et al., 2001; Picot et al., 2009). The pfmdr1 gene encodes the
plasmodial homologue of mammalian multidrug resistance
transporters linked with antimalarial drug resistance
(Holmgren et al., 2007; Dahlstrom et al., 2009; Vinayak et al.,
2010; Ferreira et al., 2011). The single nucleotide polymorphisms
(SNPs) at codons N86Y, Y184F, S1034C, N1042D, and D1246Y of
multidrug resistance gene 1 (pfmdr1) are shown to be associated
with resistance to mefloquine, lumefantrine, amodiaquine, CQ,
and artemisinin (Babiker et al., 2001; Humphreys et al., 2007;
Somé et al., 2010). Point mutations of the dihydrofolate
reductase (dhfr) and dihydropteroate synthase (dhps) genes,
two key enzymes in the folate biosynthesis pathway, mediate
resistance to the antifolate drugs sulfadoxine and pyrimethamine
(SP), respectively, and have been well described (Gregson and
Plowe, 2005). The SNPs have been identified in codons 436, 437,
540, 581, and 613 in the pfdhps gene and codons 108, 51, 59, 140,
16, and 164 in the pfdhfr gene (Kublin et al., 2002). Mutations in
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the propeller region of a kelch protein (K13) on P. falciparum
chromosome 13 (PF3D7_1343700) were identified to be
associated with artemisinin resistance (Ariey et al., 2014).
Understanding the genetic basis of antimalarial drug resistance
and identifying specific genetic loci associated with this
phenotype are crucial for effective surveillance and containment
of resistance.

Microarray-based comparative genomic hybridization, a
powerful tool for whole genome analyses and the rapid
detection of genomic variation that underlies virulence and
disease, provides a robust tool for genome-wide analysis of
malaria parasites in diverse settings (Carret et al., 2005). One
of the key challenges for microarray analysis is the small amount
of genomic DNA obtained from clinical malaria isolates, which is
insufficient to be tested in the array. A custom, high-density,
NimbleGen microarray covering 33,716 SNPs with high-quality
SNPs calls from a wide range of parasite DNA samples, was
developed for genome-wide analysis of malaria parasites in
different settings (Jacob et al., 2014).

This study addresses the genomic epidemiology of
antimalarial drug resistance in P. falciparum from the Yunnan
and Hainan Provinces in Southern China by using this custom
NimbleGen microarray.
MATERIALS AND METHODS

Sample Collection and DNA Extraction
Dried blood spots (DBS) on filter paper (Whatman™ 903, GE
Healthcare) were collected from the participants in a therapeutic
efficacy study before they received antimalarial drug treatment as
well as from the individuals with P. falciparum confirmed by
microscopy or rapid diagnostic test (RDT) through routine
surveillance. Genomic DNA was extracted from the DBS
following the manufacturer’s instructions (QIAamp 96 DNA
Blood Kit, Valencia, CA). Nested polymerase chain reaction
(PCR), amplifying the small-subunit rRNA gene of
Plasmodium spp. (Snounou et al., 1993) was used to confirm
the species prior to being tested on the array.

Ethical Considerations
The studies with human subjects were reviewed and approved by
the institutional review board of the National Institute of Parasitic
Diseases, Chinese Center for Disease Control. In addition, the
samples collected from the therapeutic efficacy study were also
approved by the WHO Western Pacific Regional Office, and the
studies were registered as clinical trials at https://www.anzctr.org.au
under the numbers ACTRN12610001008011 and ACTRN12610
001028099. Written informed consent was obtained from patients
or guardians.

Quantitative PCR and Whole
Gene Amplification (WGA)
Quantitative PCR was used to amplify the P. falciparum gene
encoding the 18s ribosomal subunit for each sample (Kamau
et al., 2011). The total reaction volume was 25 ml, including 2 ml
January 2021 | Volume 10 | Article 610985
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of sample DNA along with 10 mM probe, 10 mM of each primer,
H2O, and TaqMan universal PCR master mix (containing
AmpliTaq Gold DNA Polymerase, dNTPs, and dUTP).
The sequences for the primers and probe were Forward -
5 ′ -GTAATTGGAATGATAGGAATTTACAAGGT-3 ′ ,
Reverse - 5′-TCAACTACGAACGTTTTAACTGCAAC-3′,
Probe - 5′-FAM GAACGGGAG GTTAACAA MGB-3′. The
PCR conditions were 15 min at 95°C, 15 s at 95°C, and 45
cycles for 1 min at 60°C. The standard curve for DNA
quantification was generated and run on each plate as well as a
no-DNA control. The standard curve was derived from purified
parasite DNA (NF54 strain) and quantified using SYBR Green.
This DNA was diluted to 3, 1.5, 0.75, 0.375, 0.188, 0.094, and
0.047 ng/ml, and each standard and sample was tested in
duplicate with the final quantity expressed as the mean of both
values. The samples with original parasite DNA quantities less
than 2 ng were amplified using WGA with the Qiagen REPLI-g
mini kit, following the manufacturer’s instructions.

SNP Microarray
Parasites were genotyped using a P. falciparum SNP microarray.
This is a custom NimbleGen 4.2 million probe designed in
multiplex format, which comprises 12 identical arrays on each
slide (Jacob et al., 2014). One slide is capable of genotyping
33,716 loci within the P. falciparum genome. Dual-color labeling
was used, and two samples could be hybridized to a single array,
yielding 33,716 SNPs for 24 samples in a single experiment. In
addition, several slides could be run simultaneously, which made
this approach relatively high throughput and low cost. The SNP
profiles were examined for the prevalence of validated and
candidate molecular markers of drug resistance.

DNA Labeling
Parasite DNA was concentrated using vacuum centrifugation to
a volume of 30–50 ml and heat denatured with 1 OD of 65%
random nonamers labeled with cy3 or cy5 for 10 min at 98°C.
Denatured DNA was chilled on ice for 2 min and then incubated
for 2 h at 37°C with 50 units of Klenow fragment and a 50×
dNTP mixture. The reaction was terminated with 0.5 M
ethylenediamine tetraacetic acid (EDTA), and DNA samples
were precipitated with 5 M NaCl and iso-propanol. Labeled
DNA was washed 2–3 times with 80% ice-cold ethanol to remove
unincorporated dye. After removal of ethanol, the samples were
rehydrated in water, and cy3 and cy5 labeled samples were
combined for multiplexing. Samples were dried in a SpeedVac
on medium heat for 30 min.

Hybridization
Hybridization master mix was prepared with 45.67 µl 2×
hybridization buffer, 39.6 µl Denhardt’s solution, 18.27 µl
hybridization comp and 1.88 µl alignment oligo. It must be
mixed very well before use, and 8 µl of hybridization master mix
was added to each labeled DNA sample, vortexed well, and
quickly spun. The mixture was heat denatured at 95°C for 5 min
and stabilized at 42°C prior to loading onto the array. Loaded
samples were hybridized on the NimbleGen hybridization
station for 16–24 h at 42°C.
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Slide Washing and Scanning
Slides were disassembled in a dish containing wash buffer 1 at
42°C and then washed in wash buffer 1, wash buffer 2, and wash
buffer 3 for 2 min, 1 min, and 15 s, respectively. The slides were
washed and subsequently dried in the Slide Washer 12 Array
Processing System. Microarrays were scanned with a NimbleGen
MS 200 Microarray Scanner at 2 mm using “auto gain” to
automatically adjust the scanning parameters on an individual
array basis.

Data Analysis
Spearman’s rank correlation was used to evaluate the relationship
of DNA quantity between the original extraction and post-WGA
and the relationship between parasitemia and the original DNA
quantity by SAS software (SAS Institute Inc., Version 9.2, Cary,
NC, USA). A P value of <0.05 was used to evaluate the differences
with statistical significance. The SNP call rate and SNP call
accuracy were calculated based on the intensity of each probe
using the heuristic algorithm written in PERL (Jacob et al., 2014)
and standard outputs from the Roche NimbleScan (v2.6) software.
The samples with the missing calls of the SNPs associated with
antimalarial drug resistance are removed in the data analysis. The
structure of each parasite population was evaluated by principal
component analysis (PCA) using the EIGENSOFT program (Price
et al., 2006), and ADMIXTURE (Alexander et al., 2009) was used
to calculate maximum likelihood estimates of the most probable
number of ancestral populations (K) based on data of the SNPs for
the substructure analysis. The SNP data of Southeast Asia samples
used in PCA analysis are from the published study (Takala-
Harrison et al., 2015).
RESULTS

Sample Information
The DBS were collected from P. falciparum–infected patients
before antimalarial drug treatment. These cases were diagnosed
by microscopy or RDT before sample collection. A total of 256
DBS samples were collected from Yingjian, Menglian, and
Tengchong in Yunnan Province from 2009 to 2012 (Figure 1).
Among them, 65 isolates also had parasitemia data from a level 1
microscopist who was certificated by the WHO. Another 11 DBS
from Hainan Province collected in 2007 were only used in
subpopulation structure analysis (Table 1).

DNA Quantity
After the genomic DNA was extracted, 86.3% (221/256) were
successfully quantified of P. falciparum genomic DNA, and 35
samples that were tested failed in the quantitative PCR. The
threshold for total DNA to be tested in the microarray was 2 ng.
The highest DNA quantity in the DBS was 77.51 ng. A total of 64
samples contained more than 2 ng of genomic DNA, which
accounted for 25.0%; 25 samples contained DNA between 1 and
2 ng, 75 samples between 0.1 and 1 ng and 57 less than 0.1 ng.
The proportion in each range of DNA quantity is shown in
Figure 2.
January 2021 | Volume 10 | Article 610985
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At the first step, a total of 48 samples with the original DNA at
0.5–2 ng underwent whole-genome amplification, and 85.6%
(43/48) had an increased amount of genomic DNA. The post-
WGA DNA amount in 39 samples was more than 2 ng, and the
highest post-WGA DNA was 186 times the original DNA
amount. Nevertheless, the DNA concentration of post-WGA
was not correlated with the original DNA concentration (Figure
3A). When the relationship between the parasitemia and DNA
quantity was analyzed, there was a significant relation between
parasitemia and DNA quantity (r=0.6701, P<0.001) (Figure 3B).
Second, another 49 samples with the original DNA < 0.5 ng
underwent WGA, and 32 samples were increasing the DNA
amount to more than 2 ng. Considering the lower of the original
DNA of these 49 samples, the relationship analysis between the
original DNA and post-WGA DNA did not include these
49 samples.
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SNP Call Rate
A total of 135 samples (including 64 with original DNA >2 ng
and 71 with post-WGA DNA>2ng) had an average call rate of
44.4% (Figure 4). The highest call rate was 89.1%, and the lowest
was 18.5%. The SNP call rates were not in a normal distribution
by using the Shapiro-Wilk normality test of SAS software (mean:
44.4%, standard deviation: 0.17168, P<0.01). The samples with
the highest call rate also had the highest parasite DNA level. In
addition, there was a strong correlation between DNA quantity
and call rate (data not shown), which demonstrated that DNA
quantity was a good predictor of the number of SNPs called.

Molecular Markers
A total of 27 SNPs related to antimalarial drug resistance were
tested through the SNP microarray. These SNPs were from pfcrt,
pfmdr1, pfdhfr, phdhps, and another four SNPs (MAL10:688956,
MAL13:1718319, MAL13:1719976, MAL14:718269) located on
chromosomes 10, 13, and 14, which were associated with delayed
parasite clearance time. The location of each SNP is shown in the
Supplementary File 1.

In total, eight codons of pfcrt were tested, and no mutations
were identified at codons 74, 75, and 371 (Figure 5). All 66
samples tested successfully were 100.0% mutant at pfcrt 356 (66/
66), followed by codons 326 (91.2%, 31/34), 271 (57.1%, 24/42),
76 (39.3%, 11/27), and 220 (9.7%, 3/31). All the SNP mutations
involving codons N86Y, Y184F, S1034C, N1042D, and D1246Y
of pfmdr1 were wild type.

A total of 10 SNPs of pfdhfr and pfdhps associated with
antifolate drugs, located on chromosomes 4 and 8, respectively,
FIGURE 1 | Sites for sample collection in Southern China and countries of samples collection in PCA analysis.
TABLE 1 | Sites and years of collection of dry blood samples of P. falciparum in
Southern China.

Study site Year Total

2007 2009 2010 2011 2012

Yingjiang 84 28 54 166
Ruili 16 16
Menglian 44 11 55
Tengchong 19 19
Hainan 11*
Total 144 28 11 73 256
The 11 samples from Hainan were only used in the population structure analysis.
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FIGURE 2 | Proportion of parasite genomic DNA evaluated by 18s rRNA qPCR.
A

B

FIGURE 3 | (A) Correlation between the DNA concentration of the original extraction and post-WGA; (B) Correlation between parasitemia and the original DNA quantity.
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were tested on the microarray. The highest prevalence of pfdhfr
was at codon 108 (96.7%, 29/30), followed by codons 59 (40.0%,
16/40), 51 (16.0%, 4/25), and 164 (6.3%, 3/48). No mutations
were identified at codon 51. The prevalence of pfdhps mutants
was consistent with that of pfdhfr. The prevalence of pfdhps
mutation at codons 436, 437, 540, and 581 was 98.5%, 56.3%,
55.6%, and 71.2%, respectively (Figure 5).

Candidate SNPs on chromosomes 10, 13, and 14 that were
associated with delayed parasite clearance showed low prevalence
of mutants. The SNP at MAL13:1719976 showed a 100.0%
mutation rate. Nevertheless, the other three had low mutant
prevalence or were wild type.

Population Structure
All the samples with successful SNP calls were used to evaluate
the structure of each parasite population. After the SNP data
were filtered with the threshold of missing data <50%, 686
isolates, including 135 from this study and 551 from the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
published data (Takala-Harrison et al., 2015), along with 570
SNP data by using the same NimbleGen microarray were used
for PCA. PCA illustrates the first PC on the horizontal axis and
the second and third PC on the vertical axis, respectively
(Figure 6). The samples are colored by geographical location
stratified by country in Southeast Asia. PCA results indicate a
clear distinction between the isolates. Parasites from Southern
China are clustered and separated from the isolates from western
Cambodia, northwest Thailand, southern Myanmar, Vietnam,
and Bangladesh in Southeast Asia (Takala-Harrison et al., 2015)
(Figure 6).

The substructure of 135 samples of different origins in
Southern China, including Yunnan and Hainan Provinces, was
evaluated by ADMIXTURE. The parasite populations were
designed on the basis of their geographic origins with K=5.
Each vertical line represents a single sample with color denoting
the origin proportion in that sample (Figure 7). Admixture
estimates were computed using the parameters over a varying
FIGURE 4 | The SNP call rates were not in a normal distribution (mean: 44.38%, standard deviation: 0.17168, P<0.01).
FIGURE 5 | Prevalence of constructed haplotypes of SNPs in pfcrt, pfdhfr, and pfdhps at different codons.
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number of clusters (K) ranging from 2 to 10 with 10 technical
replicates each. The optimal K value was determined by
maximizing the log-likelihood across replicates for a single K
value and minimizing the cross-validation error between
different K values (Supplementary File 2). In this study, the
optimal K was determined as 2, which indicates that a total of
135 samples from Southern China were mainly divided into two
subgroups. The parasites from the different sites in Yunnan
Province bordering with Myanmar belong to one group, and
the parasites from Hainan Province are slightly separated from
parasites from Yunnan Province (Figure 7).
DISCUSSION

Malaria was one of the most serious infectious diseases in the last
century and was endemic in central and Southern China (Tang
et al., 1997). However, China has made great contributions
toward global malaria control in the past 40 years, and in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
2010, China launched the National Malaria Elimination Action
Plan 2010–2020 with an ultimate goal to interrupt local malaria
transmission by 2020 (Feng et al., 2016; Yang and Zhou, 2016;
Feng et al., 2020). ACTs, considered to be the best therapy for
falciparum malaria in the world, have contributed to significant
decreases in case numbers and deaths and are crucial to the
success of control and elimination programs (Nosten and White,
2007; Dondorp et al., 2009). Recently, the emergence and spread
of artemisinin resistance in P. falciparum poses a threat to
malaria control and eradication goals in the GMS, where the
resistance has emerged independently and has spread
(Henriques et al., 2013; Ashley et al., 2014; Huang et al., 2015;
Takala-Harrison et al., 2015; Ménard et al., 2016). Parasites in
Southern China are reported to show decreased in vitro
sensitivity to artemisinin and delayed parasite clearance time of
artemisinin (Huang et al., 2015; Wang et al., 2015).

In this study, parasites collected from Southern China were
genotyped using an SNP microarray, including 33,716 loci within
the P. falciparum genome. This new SNPmicroarray was developed
FIGURE 6 | Parasites from Southern China were clustered with and separated from parasites from Southeast Asia by PCA. ARB/MARIB: Bangladesh; ARC/CP:
Western Cambodia; ARS: Northwest Thailand; LPC = Laos; MA: Vietnam; MKT: Southern Myanmar.
FIGURE 7 | Population structure of the sample set, analyzed on the basis of geography, using ADMIXTURE. Parasites from the different sites in Yunnan Province
along the border areas and Hainan Province were slightly separated.
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by using DBS, which did not have a sufficiently high concentration
of DNA for sequencing (Jacob et al., 2014). We chose 64 samples
with original DNA content of more than 2 ng and 71 samples of
post-WGA DNA >2 ng. The average SNP call rate was 44.4% using
the DBS in this study, and this was not as high as for venous blood
samples (Jacob et al., 2014). WGA is one way to increase the total
quantity of whole DNA, including human and parasite DNA
(Nakayama et al., 2008; Chueh et al., 2011). Interestingly, the
DNA concentration post-WGA was not correlated with the
original DNA concentration in this study. The ratio of human
DNA to parasite DNA prior to amplification may contribute to this
discrepancy as a majority of the DNA sequences were from
humans. Additionally, we observed a significant relation between
the level of parasitemia and DNA quantity.

A total of 27 validated and candidate SNPs associated with
antimalarial drug resistance were tested. Parasites in Southern
China show a moderate prevalence of pfcrt mutation with a
prevalence of 39.3%, which is much lower than that in another
study that reported 100.0% mutant haplotype of pfcrt CIETS (Bai
et al., 2018). However, the prevalence of pfcrt at Q271E, N326S, and
I356L remain high in this study. Interestingly, the mutations of
pfmdr1 involving codons N86Y, Y184F, S1034C, N1042D, and
D1246Y were all of wild type. CQ was used to treat falciparum
malaria in China in the last century until it was withdrawn and
replaced in the 1970s as a result of the CQ resistance emerging in
Southern China according to in vivo and in vitro testing (Huang
et al., 1988; Hong-Ping et al., 1998; Liu et al., 2005). This decreased
prevalence of the pfcrt K76T marker may be associated with the
cessation of CQ use against P. falciparum malaria in Southern
China (Wang et al., 2005; Laufer et al., 2010).

The prevalence of pfdhfr and pfdhps remains at a high level even
though antifolate drugs have not been used in China formany years,
which is consistent with other studies (Huang et al., 2012a; Huang
et al., 2012b; Bai et al., 2018). Pyrimethamine was used for the
radical treatment of P. vivax in combination with primaquine in
China around 40 years ago (unpublished data). Additionally,
pyrimethamine plus primaquine has always been recommended
as prophylaxis for specific populations, and pyrimethamine was
added to salt for prophylaxis in China in the 1980s (Wang, 1984).
The mechanism of action of pfdhfr and pfdhps mutations on the
resistance to SP drugs has not been well described.

When the SNP microarray was developed, the K13 gene
associated with artemisinin resistance was not identified.
Therefore, only four candidate SNPs associated with delayed
parasite clearance time were included in the microarray. Only
one locus, MAL13:1719976, showed 100.0% mutation in all the
samples, and the other three had low levels of mutation or were
wild type. These results have provided further evidence of the
decreased sensitivity to artemisinin and delayed parasite
clearance time of artemisinin in Southern China, which was
identified by our other published study (Huang et al., 2015).

According to the analysis of population structure, the
parasites from Southern China represent a clear distinct cluster
and little connection with the parasites from other countries in
the GMS, which is consistent with the findings of other studies
(Wei et al., 2015; Zhu et al., 2016; Ye et al., 2019). Although the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
population diversity of P. falciparum is high in the GMS, the
parasites from Southern China are relatively low diversity.
Human migration may be another cause for parasite
population evolution and genomic diversity. Yunnan Province
has a long border with Myanmar, but the human population
movement is relatively low because of geographical barriers and
some regions having political issues (Wang et al., 2016; Xu and
Liu, 2016; Zhou et al., 2016; Chen et al., 2018). Hainan Province,
geographically separated from the Chinese mainland, provides a
natural barrier to parasite migration and spread. The population
structure analysis is a useful tool that allows targeting of
populations with low migration and low diversity in the
malaria elimination stage and tracking of the origin of
imported parasites in the postelimination stage.
LIMITATIONS

In this study, we used samples of DBS from the field that had low
quantity genomic DNA; even though we usedWGA to increase the
DNA amount, the total DNA were still lower than venous blood
samples. In addition, the SNP call rates of DBS samples were not as
good as those of venous blood samples. The DNAmicroarray could
only test known SNPs. We did not test the SNPs of K13 using this
microarray because K13 was not identified when the chip was
developed. Although this custom array is not available now, some
new microarrays have been developed, for example, Illumina Bead
Chip microarray, protein array, or peptide array, which provide a
high throughout and a powerful platform in malaria field (Bailey
et al., 2020; Zhao et al., 2020).
CONCLUSIONS

Parasites from Southern China were clustered and separated
from those from Southeast Asia although parasites from Yunnan
Province were a substructure of those from Hainan Province.
This study provides a population-level genetic framework
for investigating the biological origins of antimalarial
drug resistance.
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