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Positive-strand RNA [(+)RNA] viruses show a significant degree

of conservation of their mechanisms of replication. The

universal requirement of (+)RNA viruses for cellular membranes

for genome replication, and the formation of membranous

replication organelles with similar architecture, suggest that

they target essential control mechanisms of membrane

metabolism conserved among eukaryotes. Recently,

significant progress has been made in understanding the role of

key host factors and pathways that are hijacked for the

development of replication organelles. In addition, electron

tomography studies have shed new light on their ultrastructure.

Collectively, these studies reveal an unexpected complexity of

the spatial organization of the replication membranes and

suggest that (+)RNA viruses actively change cellular membrane

composition to build their replication organelles.
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Introduction
(+)RNA viruses infect almost all eukaryotic organisms,

often inducing devastating diseases in humans, animals

and plants. Despite adaptation to diverse hosts, the

replication mechanisms of (+)RNA viruses display

remarkable conservation. These viruses universally

require cellular membranes for assembly of their replica-

tion complexes – containing viral proteins, RNA, and host

factors – to amplify their genome. To convert cellular

membranes into replication sites, (+)RNA viruses must

have evolved efficient ways of manipulating the highly

regulated cellular membrane metabolism. The small

genome size of these viruses and thus limited repertoire

of available resources suggests that they rely on only a few
Current Opinion in Virology 2012, 2:740–747 
evolutionarily successful strategies shared among differ-

ent viruses.

Recently, major advances have been made in understand-

ing of virus–cell interaction of several groups of (+)RNA

viruses. The pioneering research of picornavirus-induced

membrane remodeling has been complemented lately by

detailed examinations of the biochemistry and morphology

of replication organelles of flaviviruses, alphaviruses and

nidoviruses. Many important insights into virus-induced

membrane modifications were gained from studies on

Flock House virus and Brome Mosaic virus (BMV), which

can replicate in yeast, allowing application of yeast genetic

tools to elucidate the role of specific host factors. These

studies revealed important similarities in the principles of

remodeling cellular membranes and organizing replication

sites among diverse (+)RNA viruses. The development

and functioning of these structures require rewiring of

cellular pathways into new configurations that are induced

and regulated by viral proteins.

In this review, we will describe new data on the organ-

ization and development of replication structures and

focus on the emerging concept that viral membranous

replication complexes are bona fide new organelles with

unique lipid and protein compositions.

Morphology of membranous replication
organelles
Recently, 3D electron tomography (ET) was applied to

resolve the complex spatial organization of replication

membranes of picorna, flavi, corona, arteri and noda-

viruses [1�,2�,3�,4�,5�,6�]. Conventional EM and ET stu-

dies collectively show that different (+)RNA viruses

initiate development of their replication structures on

different cellular organelles and that the degree of the

remodeling of the original cellular membrane architecture

varies greatly. However, it appears that there are only a

few basic configurations of replication-associated mem-

branes: invaginations, tubular–vesicular networks, double

or multimembrane vesicles, and convoluted membranes

without identifiable topological units.

Distinct membranous structures may support different

steps in the viral life cycle

Different combinations of membranous structures can

often be simultaneously observed in one infected cell,

or they can develop in a defined succession during the

course of infection. It is not always clear whether these

structures contribute equally to RNA replication or
www.sciencedirect.com
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have other specialized functions in the viral life cycle. For

enveloped viruses, distinct membrane structures may be

expected to be associated with genome replication and

virion maturation. Indeed, genome replication of HCV is

associated with a membranous web believed to originate

from ER membranes [7], while RNA encapsidation is

linked to the surface of lipid droplets [8,9]. Polyprotein

processing, RNA replication and virion maturation each

appear to be confined to different membrane compart-

ments in cells infected with arthropod-borne flaviviruses

[3�,10,11]. Time-dependent evolution of membrane

structures, implicated to reflect distinct stages of virus

propagation, has been described for coronaviruses [1�,12],

and recently for enteroviruses (i.e. poliovirus and coxsack-

ievirus). Early in infection enteroviruses replicate their

RNA on single membrane convoluted tubular clusters

that later in infection are converted into double-mem-

brane vesicles (DMV) and complex multimembrane

structures [4�,5�]. Although DMV may contribute to

enterovirus RNA replication, they have also been impli-

cated in non-lytic release of newly formed virions [13].

Morphology of replication structures is conserved

among large taxa of viruses

(+)RNA viruses can be divided into three superfamilies:

picorna-like, alpha-like and flavi-like viruses [14–16]. Inter-

estingly, flavi-and alpha-like viruses induce formation of

discrete membrane invaginations with negative membrane

curvature [3�,17�,18,19], while picorna-like viruses rely on

positively curved convoluted tubular–vesicular membrane

networks [1�,4�,5�,20–23]. In the invaginations, the replica-

tion machinery is located on the inner membrane surface

and the replication compartment is connected to the cyto-

plasm with an opening wide enough to provide a supply of

nucleotides and to export synthesized RNA [2�,3�]. In

tubulo-vesicular replication structures, the viral replication

proteins are localized on the external membranous surface

facing the cytoplasm [24]. This division may reflect an

evolutionary divergence between (+)RNA virus groups and

suggest that the mechanisms of membrane remodeling may

be significantly different between picorna-like and other

(+)RNA viruses (Figure 1).

(+)RNA viruses rewire cellular pathways to
generate replication organelles
In general, remodeling of cellular membranes requires

coordinated lipid sorting and/or actions of specific mem-

brane shaping protein complexes [25,26]. Here, we will

discuss the roles of autophagy, the secretory pathway, and

lipid biosynthesis in the development and/or functioning

of replication organelles. For the role of protein-depend-

ent membrane-shaping mechanisms, the reader is

referred to a recent review [27].

Autophagy

Activation of at least initial steps of the autophagy path-

way is well documented in cells infected with diverse
www.sciencedirect.com 
(+)RNA viruses. Since a double membrane is a distinctive

feature of autophagosomes, it was initially suggested that

autophagy-like processes may be responsible for the

generation of double membrane replication structures.

However conflicting data on the importance of autophagy

for replication of coronaviruses [1�,28–31] and entero-

viruses [32–34] suggest that DMV are either not essential

for replication, or that they bear only superficial resem-

blance to autophagosomes. Recently, an autophagy-inde-

pendent role of LC3 in tuning the ER-associated

degradation (ERAD) pathway was suggested to be

important for coronavirus replication, indicating that

viruses may selectively utilize autophagy/ERAD pathway

components to generate replication membranes [35,36].

Although an intact autophagy pathway may not be

required for bona fide genome replication of (+)RNA

viruses, autophagy may be induced upon infection as it

plays an important regulatory role in the type I interferon

response [37]. Indeed, activation of autophagy by HCV

and Dengue virus has recently been shown to suppress

the cellular capacity to activate this antiviral innate

response [38,39].

Secretory pathway

Replication of most (+)RNA viruses is intimately associ-

ated with cellular secretory pathway(-derived) mem-

branes (Figure 2). Below the roles of some common

membrane-remodeling host factors identified to be

required for (+)RNA virus replication are discussed.

GBF1

GBF1, a guanine nucleotide exchange factor for the small

GTPase Arf1 and a target of brefeldin A (BFA), coordi-

nates the formation and fusion of transport vesicles in

trafficking between ER and early Golgi [40]. GBF1 was

recognized as an essential factor for replication of enter-

oviruses [41–43], but not other picornaviruses such as

cardioviruses and aphthoviruses [44,45]. GBF1 has also

been implicated in replication of HCV and mouse

hepatitis coronavirus [46,47]. Several lines of evidence

suggest that the role of GBF1 in viral replication is

unrelated to its normal function in transport vesicle

formation and Arf1 activation. Expression of poliovirus

and HCV proteins in the presence of BFA resulted in the

appearance of new membrane structures that are indis-

tinguishable from those observed without the drug, indi-

cating that GBF1 is more probably involved in the

function of replication organelles than in their formation

[41,45]. Moreover, while activated Arf1 accumulates on

enterovirus replication organelles, BFA-resistant polio-

virus mutants can efficiently replicate without active Arf1,

and siRNA knockdown of Arf1 does not affect coxsack-

ievirus replication [42,48�]. Lastly, expression of trun-

cated GBF1 deficient in supporting cellular metabolism

rescued poliovirus replication in the presence of

BFA [48�].
Current Opinion in Virology 2012, 2:740–747
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Figure 1
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Basic principles of viral replication organelle organization. (a–d) Invagination type of replication organelles with negative membrane curvature typical

for flavi-like and alpha-like viruses. Arrowheads show connection of the inner compartment with the cytoplasm. (a) EM image and tomography

reconstruction of the replication structures of Dengue virus induced on ER membranes (modified from [3]). (b) EM image and tomography

reconstruction of the replication structures of Flock house virus on outer mitochondria membrane (modified from [2]). (c) Spherules induced on the

plasma membrane at the early stage of Semliki Forest virus infection are later translocated inside the cytoplasm (modified from [17]). (d) Schematic

representation of the invagination–spherule replication organelle organization. (e–g) Vesicular–tubular replication organelles with positive membrane

curvature characteristic of picorna-like viruses. (e) EM image and tomography reconstruction of the early replication structures of poliovirus (modified

from [4]). (f) EM image and tomography reconstruction of the early replication structures of Coxsackie B3 virus (modified from [5]). (g) Schematic

representation of the vesicular–tubular replication organelle organization.
Phosphatidylinositol-4-kinase (PI4K)

Replication membranes of enteroviruses were shown to

become enriched in PI4KIIIb, but depleted of coat

proteins, yielding unique uncoated phosphatidylinosi-

tol-4-phosphate (PI4P) lipid-enriched organelles [49�].
It was proposed that recruitment of PI4KIIIb to replica-

tion organelles depends on the interaction of viral protein

3A with GBF1 as well as on the Arf1 activation function

of GBF1 [45,49�]. However, the observations that Arf1

as well as strong 3A–GBF1 interaction may be dispen-

sable for enterovirus replication [42] (G. Belov, F. van
Current Opinion in Virology 2012, 2:740–747 
Kuppeveld, unpublished data) argue that this model may

be an oversimplification of the actual processes (Figure 3).

Another PI4K, PI4KIIIa, is recruited to replication sites

of HCV by viral protein NS5A [50,51�]. Inhibition of PI4K

activity potently blocks replication of enteroviruses and

HCV, showing that PI4P is an important component of

their replication membranes [49�,52,53]. As is the case for

GBF1, PI4Ks are not required for the replication of all

(+)RNA viruses and even viruses from one family may

demonstrate different requirements for PI4Ks [51�,54] (F.

van Kuppeveld, unpublished data). The role of PI4P, the
www.sciencedirect.com
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Figure 2
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Schematic overview of the secretory pathway and the sites targeted and/or altered by (+)RNA viruses for formation of their membranous replication

organelles. For reasons of simplicity, the endocytic pathway and the lysosomes are combined. Secretory pathway transport depends on specific coat

complexes that contribute by mediating the bending, deformation and detachment of membranes carriers. Anterograde transport of proteins out of the

ER takes place via a COP-II dependent pathway, whereas intra-Golgi transport as well as retrograde transport from the Golgi and intermediated

compartment relies on COP-I-coated carries. Endocytosis takes place via clathrin-coated vesicles. The putative sites that are targeted and/or altered

by different (+)RNA viruses (Family and Genera names of the viruses are given here below between parenthesis) to form their replication organelles are

indicated by their position. Essential host factors and their localization are also indicated. CV, coxsackievirus (Picornaviridae, Enterovirus). DENV,

dengue virus (Flaviviridae, Flavivirus). EAV, equine arteritis virus (Arteriviridae, Arterivirus). FHV, flock house virus (Nodaviridae, Alphanodavirus). HCV,

hepatitis C virus (Flaviviridae, Hepacivirus). MHV, mouse hepatitis virus (Coronaviridae, Coronavirus). PV, poliovirus (Picornaviridae, Enterovirus). RUBV,

rubella virus (Togaviridae, Rubivirus). SARS-CoV, severe acute respiratory syndrome coronavirus (Coronaviridae, Coronavirus). SFV, Semliki Forest

virus (Togaviridae, Alphavirus). TBSV, tomato bushy stunt virus (Tombusviridae, Tombusvirus). TMV, tobacco mosaic virus (Virgaviridae, Tobamovirus).

WNV, west Nile virus (Flaviviridae, Flavivirus).
product of PI4K activity, is likely to mediate recruitment

and/or activation of viral proteins and host factors on

replication organelles (e.g. PI4P-binding cellular proteins

such as oxysterol binding proteins and ceramide transport

protein), where they may support RNA replication

directly or indirectly by remodeling membranes

(Figure 3). Poliovirus polymerase 3D has been shown

to preferentially bind PI4P in a biochemical assay, but the

relevance of this observation for replication in vivo
remains to be elaborated [49�]. For HCV, the absence

of PI4KIIIa activity induced a dramatic change in

the ultrastructural morphology of the membranous
www.sciencedirect.com 
replication complex, suggesting a role of PI4P in recruit-

ing specific membrane-shaping proteins [51�].

Taken together, these data suggest that (+)RNA viruses do

not rely on a functional secretory pathway, but rather

dismantle it and stitch together separate elements in

new configurations that serve to support viral genome

replication. Despite the critical role of GBF1 and PI4K

in replication, enteroviruses can become resistant to inhibi-

tors targeting these factors, suggesting built-in redundancy

of essential virus–cell interactions [55,56]. Other studies

have shown that replication of some (+)RNA viruses can be
Current Opinion in Virology 2012, 2:740–747
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Figure 3
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Possible functions of GBF1 and PI4KIIIb/PI4P in formation and/or activity of enterovirus replication organelles. Enterovirus replication starts at Golgi

membranes where the viral 3A protein interacts with GBF1, a GEF for Arf1 that in uninfected cells is involved in recruiting COP-I coats to membranes

(left). The interaction of 3A with GBF1 interferes with COP-I recruitment, resulting in uncoated membranes that can no longer function in secretory

pathway trafficking. At the same time, 3A causes an increased recruitment of PI4KIIIb to membranes. Although this lipid kinase is an effector of Arf1 in

uninfected cells, growing evidence suggests that the interaction of 3A with GBF1/Arf1 is not essential for the massive recruitment of PI4KIIIb observed

in infected cells. 3A may directly interact with PI4KIIIb or this interaction may occur via another cellular protein (e.g. ACBD3, which has recently been

reported to bind 3A as well as PI4KIIIb [68,69]). Enhanced recruitment of PI4KIIIb results in PI4P enriched membranes, which may serve to activate

and/or recruit viral and/or cellular proteins that are directly involved in replication of the viral RNA. One candidate protein is the viral RNA-dependent

RNA polymerase, 3D, which has been shown to bind PI4P lipids in vitro. Additionally, PI4P-rich membranes may serve as docking sites for other

cellular proteins that exert functions in membrane remodeling that contribute to the formation of the membranous environment suitable for RNA

replication.
redirected to alternative intracellular membranes,

suggesting a remarkable plasticity of the viral replication

machinery regarding the availability of at least some cel-

lular factors [57,58,59�]. The multiple compensatory mech-

anisms may be important for replication in different cell

types, where availability of cellular components may vary.

This may serve as an essential source of evolutionary

elasticity, and allow adaptation to changing conditions,

including chemotherapeutic interventions.

Lipid synthesis pathways

The remarkable conservation of the overall design of the

membranous replication complexes among distant
Current Opinion in Virology 2012, 2:740–747 
(+)RNA viruses suggests shared basic mechanisms of

their formation. Currently known elements of the autop-

hagy and/or secretory pathways cannot fit the bill, since

even related viruses display significant variability in

requirements for these factors. The only universal feature

of the (+)RNA virus infection that emerges over the years

of research seems to be the obligatory modulation of

cellular lipid biosynthesis pathways. Picornavirus

(picorna-like superfamily) infection is long known to

significantly enhance cellular phospholipid synthesis

[60–62]. Investigation of BMV (alpha-like superfamily)

replication in yeast system showed that formation

of replication structures strongly depends on the
www.sciencedirect.com
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metabolism of fatty acids and other lipids [63,64].

Recently, new high-throughput lipidomics techniques

allowed resolution of profound changes in the lipid spec-

trum upon Dengue virus (flavi-like superfamily) infection

[65�]. Replication of many viruses has been proposed to

depend on the activity of cellular fatty acid synthase (FAS).

Expression of FAS is activated in HCV-infected cells [66]

and the enzyme is recruited to the replication membranes

of Dengue virus [67]. The apparently universal up-regu-

lation of lipid metabolism by (+)RNA viruses raises inter-

esting questions: Are the local changes in structural lipid

composition the major driving force for formation of the

membranous replication sites? Are these sites further

stabilized by interaction with viral and/or cellular proteins?

Do (+)RNA viruses remodel pre-existing cellular mem-

branes, as we generally assume, or do they actually build

replication membranes de novo and thus can they be truly

called ‘‘novel replication organelles’’?

Concluding remarks
We are only beginning to understand the complex details

of biogenesis of viral replication organelles and their role in

infection of (+)RNA viruses, and many questions still need

to be resolved. The shared morphology of replication

structures and the apparently universal requirement for

active lipid synthesis strongly suggest that key steps of

their formation are shared among distantly related viruses.

(+)RNA viruses actively change cellular membranes,

rather than rely on pre-existing membranes. They relocate

key cellular regulators of membrane metabolism, and

modulate their activities to create new pathways of mem-

brane remodeling. Redundant networks of crucial virus–
cell interactions that allow the generation of a favorable

replication microenvironment may exist, thereby provid-

ing viruses the opportunity to adapt to and evolve under

changing conditions. Understanding how viral proteins

hijack regulatory mechanisms of membrane metabolism

will undoubtedly bring new perspective to many areas of

cell biology and will be indispensable for the development

of a new generation of anti-viral control strategies.
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