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Defining the full spectrum of human disease associated with a biomarker is necessary to

advance the biomarker into clinical practice. We hypothesize that associating biomarker

measurements with electronic health record (EHR) populations based on shared genetic

architectures would establish the clinical epidemiology of the biomarker. We use Bayesian

sparse linear mixed modeling to calculate SNP weightings for 53 biomarkers from the

Atherosclerosis Risk in Communities study. We use the SNP weightings to computed pre-

dicted biomarker values in an EHR population and test associations with 1139 diagnoses. Here

we report 116 associations meeting a Bonferroni level of significance. A false discovery

rate (FDR)-based significance threshold reveals more known and undescribed associations

across a broad range of biomarkers, including biometric measures, plasma proteins and

metabolites, functional assays, and behaviors. We confirm an inverse association between

LDL-cholesterol level and septicemia risk in an independent epidemiological cohort. This

approach efficiently discovers biomarker-disease associations.
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B iomarkers are reproducible measures of a physiological
state. When associated with disease risk, biomarkers can
facilitate early diagnosis or risk stratification, and in

instances where the biomarker is a mediator of disease, can be
targeted to prevent or treat disease1. Defining the complete
spectrum of disease outcomes associated with a biomarker not
only provides insights into disease mechanisms, but may also
reveal potential beneficial and adverse effects of modulating
biomarker levels. Traditionally, disease biomarkers are identified
and characterized using epidemiological study designs, which
directly measure the biomarker and outcomes in the same indi-
viduals. A limitation of these studies is that they often assess a
only single outcome, ascertained over years or decades. Defining
the extended set of phenomic associations requires measuring the
biomarker in very large populations comprising large numbers of
clinical outcomes, which typically is not feasible. Efficient, cost-
effective approaches that quickly and comprehensively define the
clinical epidemiology of putative biomarkers are needed.

Electronic health record (EHR) data resources could be suitable
for biomarker discovery and characterization due to the presence
of diverse outcomes with large sample sizes. However, the existing
data are restricted to measurements which have proven clinical
value. Hence, newly discovered or nonclinical biomarkers are not
available for clinical and epidemiological characterization in
EHRs. More recently, EHR data sets have been linked to DNA
biobanks, thereby creating resources comprising many indivi-
duals with both dense clinical and genetic data2,3. This has
enabled study designs such as phenome wide association study
(PheWAS), which serially tests associations between a variable
and a large collection of clinical diagnoses extracted from an EHR
data set4,5.

Leveraging genetic information across multiple studies can
bypass limitations of biomarker studies in single populations. A
genetic predictor based on common single nucleotide poly-
morphisms (SNPs) can capture the genetic component of varia-
bility in a given biomarker. This predictor can then be used to
compute a genetically predicted level of the biomarker into any
genotyped population. Importantly, this genetically predicted
level can be used to test for epidemiological associations with
potential diseases whose risk is also modulated by genetic risk
factors6,7. Thus, biomarkers measured in one genotyped popu-
lation can be associated with outcomes ascertained in a second
genotyped population in whom the biomarker was not measured.

Constructing a robust SNP predictor of a biomarker’s level
typically requires large scale genome wide association studies
(GWAS) to identify SNPs that are reliably associated with the
biomarker. For many unproven biomarkers, data sets suffi-
ciently powered to enable SNP discovery by GWAS are not yet
available. Alternative genetic approaches which simultaneously
analyze large number of SNPs can measure the collective con-
tribution of these SNPs to phenotype variability using relatively
modest sample sizes8–10. Methods such as Bayesian sparse
linear mixed modelling (BSLMM) have extended these
approaches and can compute SNP weights across large numbers
of SNPs, and these can then be used to calculate genetically
predicted phenotype values11. By not having to identify a col-
lection of SNPs meeting the rigid p value thresholds expected
from SNP discovery approaches in order to construct pre-
dictors, BSLMM overcomes limitations of relying on GWAS to
identify SNPs.

We couple the BSLMM approach with PheWAS to enable a
discovery-oriented study design whereby a genetic predictor of a
biomarker level is developed in an initial genotyped population
and then used to impute biomarker levels into a larger, deeply
phenotyped population. Biomarker measurements used here are
from the prospective Atherosclerosis Risk in Communities

(ARIC) study12 and the clinical population is from the Electronic
Medical Records and Genomics (eMERGE) network, a con-
sortium of medical centers with EHR-linked DNA biobanks13.
We show that this approach identifies well-characterized clinical
associations across a wide range of putative biomarkers and
enables discovery of associations between biomarkers and clinical
outcomes.

Results
Biomarker genetics and model performance. We used BSLMM
to generate genetically predicted levels for 53 biomarkers mea-
sured in 7740 subjects participating in the ARIC study (Fig. 1a
and Supplementary Table 1). The underlying genetic archi-
tectures of the biomarkers varied considerably. Estimates of the
additive genetic variances explained by the common SNPs (pro-
portions of variance explained (PVE)) ranged from 0.57 (red
blood cell distribution width [RDW]) to 0.03 (carotid wall
thickness) (Supplementary Fig. 1). Biomarkers related to blood
coagulation such as the activated partial thromboplastin time
(aPTT) and Von Willebrand Factor (vWF) levels had the largest
portion of the genetic risk attributable to SNPs of large effect size
(PGE= 0.87 and 0.78, respectively), while phenotypes such as
diastolic blood pressure, smoking and waist circumference had
small contributions from large effect SNPs (PGE < 0.05 for each
phenotype) (Supplementary Fig. 1).

We computed the genetically predicted level for each of the 53
biomarkers in the EHR population. The median amount of the
genetic variance (PVE) explained by the genetically predicted
biomarker level was 6.5% [interquartile range: 0.9–14.9%] (Supple-
mentary Fig. 1). The frequency distributions of the predicted levels
ranged from trimodal for biomarkers levels that were heavily driven
by SNPs with relatively large effect sizes (e.g., vWF) to
approximately normally distributed for highly polygenic pheno-
types (e.g., waist circumference) (Supplementary Fig. 2). We
employed PheWAS to identify clinical diagnoses associated with
each predicted biomarker. There were 116 biomarker-phenotype
associations among 25 biomarkers that were significant at an
experiment-wide Bonferroni p < 0.05 (Fig. 1b and Supplementary
Data 1). To ascertain the validity of the associations, we quantified
how many of 42 prespecified positive control biomarker-diagnosis
pairs were significantly associated. Of 42 expected associations, 21
(50%) were significantly associated with a positive-control pheno-
type (Fig. 2, Supplementary Fig. 3 and Supplementary Table 2). To
ensure that the associations were not due to population stratifica-
tion, we reran the analyses for the top associations, adjusting for 20
PCs. Only one result was significantly impacted, an association
between the biomarker “RDW”, a measure of the range of sizes of
red blood cells, and a diagnosis of “Disorders of iron metabolism”
which are diseases affecting iron levels that often manifest with
abnormal red blood cell sizes (Supplementary Fig. 4). Unlike the
other biomarkers, RDW was measured in a small number of
subjects (n= 1736), which may have contributed to its outlier
status.

Many of the 116 biomarker associations were with clusters of
phenotypes denoting an elevated level of the biomarker or
disease subtypes attributed to the biomarker (Fig. 2). For
instance, systolic blood pressure (SBP) was associated with 6
hypertension-related diagnoses such as “Hypertenstpdelive
chronic kidney disease” (odds-ratio [OR]= 1.15, 9% CI:
[1.10–1.19], p= 3.9 × 10–12), which is a diagnosis of elevated
blood pressure with concomitant kidney disease. There were
fewer associations with known diseases attributable to down-
stream effects of a biomarker, such as the association between
body mass index and obstructive sleep apnea (OR= 1.09
[1.06–1.13] p= 8.1 × 10−8).
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Evaluating an FDR-based selection threshold. For 32 (76%) of
the 42 positive controls pairs, the expected positive con-
trol phenotype was among the top 5 strongest associations in the
PheWAS analysis (Fig. 2). For instance, the most significant
association with the ARIC biomarker high-sensitivity C-reactive
protein (CRP) was with “Hypertriglyceridemia” and the second
was with the positive control diagnosis “Elevated CRP” (p=
0.0009) (Supplementary Fig. 5). We explored whether employing
an false discovery rate (FDR) p value selection threshold, which is
often used in conjunction with PheWAS to enable discovery5,
would identify more positive control associations. Using an
inclusion threshold of FDR q < 0.1, 28 (66.7%) of the 42 positive
control pairs met the inclusion criteria (Fig. 2 and Supplementary

Table 2). Ten (24%) of the 42 biomarkers had neither significant
nor highly ranked associations with a positive controls. These
included serum creatinine, phosphorous, protein, potassium,
hematocrit and factor VII levels, and neutrophil count.

There were 377 biomarker-phenotype associations significant
at FDR q < 0.1 (Supplementary Fig. 6 and Supplementary Data 2).
The biomarkers with the largest differences in the numbers of
associations meeting a FDR threshold and not a Bonferroni
threshold were SBP (26 versus 6 associations) and waist
circumference (32 versus 7) (Supplementary Fig. 1). Of the 26 SBP
associations, 24 clinical diagnoses associated with SBP at FDR q <
0.1 (Fig. 3a) and represented 6 distinct diseases know to be
associated with blood pressure (hypertension, stroke, heart
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Fig. 1 Overview. a Overview of the study design. Bayesian sparse linear mixed modelling (BSLMM) was used to compute SNP weights for 53 biomarkers
from the ARIC study. These weights were used to compute genetically predicted biomarkers in the EHR data set and phenome wide scanning (PheWAS)
was used to identify clinical phenotypes associated with the genetically predicted biomarker. b Circos plot showing the 116 significant associations
(Bonferroni p < 0.05) between the genetic predictors of the ARIC biomarkers and pheWAS phenotypes. Associations are denoted by lines. Coloring is used
to highlight similar groups of biomarkers and pheWAS phenotypes
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disease, peripheral vascular disease (PVD), kidney disease, and
gout), and the other 2 diagnoses were for nonspecific electrolyte
abnormalities (e.g., elevated potassium), which are often attribu-
table to antihypertensive medications or late-stage sequelae of
hypertensive disease (such as kidney failure) (Fig. 3b)14–18. The
six diagnoses that also met a Bonferroni level of significance were
for hypertension and hypertension subtypes (Fig. 3b). Similarly,
for waist circumference (Fig. 3c), 29 of the 32 diagnoses
associated at FDR q < 0.1 were for 11 known known obesity-
related diagnoses (Fig. 3d)19–22. Only 3 of the 11 of the associated
diseases (obesity, diabetes, and sleep apnea) were represented
among diagnoses meeting a Bonferroni selection threshold
(Fig. 3d). The other 3 of 32 associated diagnoses were
hypotension (n= 2 diagnoses) and treatment with aspirin. In
sum, the FDR significance threshold identified more established
biologically relevant biomarker-disease associations than the
Bonferroni threshold.

Waist circumference had the largest number of associations
with FDR q < 0.1 of any biomarker. Across all associations,
there was marked skewing of the ORs toward values greater
than 1 (skewness= 1.40), indicating that waist circumference
had weak positive associations across a large number of
phenotypes (Fig. 3e and Supplementary Data 3). The phenotype
with next largest skewness value was low-density lipoprotein
cholesterol (LDL-C), which was skewed in the opposite
direction (skewness=−1.15).

Overview of associations. There were numerous associations
meeting the FDR threshold where the diagnosis matched the
known biology or epidemiology of the biomarker. For instance,
genetically predicted higher triglyceride levels were associated
with multiple vascular diseases including PVD (OR= 1.10
[1.05–1.15]), ischemic heart disease (IHD) (OR= 1.06
[1.02–1.09]), abdominal aortic aneurysm (OR= 1.12,
[1.06–1.17]), and renal artery atherosclerosis (OR= 1.12
[1.05–1.19]) (Fig. 4a and Supplementary Fig. 7). A genetic
predictor of lifetime smoking burden (pack-years) was asso-
ciated with obesity (OR= 1.05 [1.02–1.07]) and alcohol use
(OR= 1.12 [1.07–1.18]) (Fig. 4b). In contrast, an alcohol pre-
dictor was associated with alcohol use, but not smoking (Sup-
plementary Fig. 8), indicating that the alcohol predictor was
more weakly associated the smoking diagnosis. Genetically

predicted FEV1/FVC levels, a spirometric measure of lung
function, was associated with the obstructive lung disease
emphysema [OR= 0.91 [0.87–0.95]) (Supplementary Fig. 8). A
magnesium level genetic predictor was associated with two
diagnoses, in opposite directions, related to the pathological
precipitation of electrolytes: chondrocalcinosis (OR= 0.88
[0.82–0.95]), which is caused by calcium pyrophosphate pre-
cipitation in a joint, and kidney stones (urinary calculus; OR=
1.07 [1.03–1.11]), which are frequently caused by precipitation
of calcium oxalate in the kidney (Fig. 4c). Genetically predicted
calcium levels were associated with hyperparathyroidism (OR
= 1.12 [1.05–1.19]) (a cause of elevated calcium) (Supplemen-
tary Fig. 9). vWF, a soluble protein involved in hemostasis23,
was associated with both venous thrombosis (e.g., deep vein
thrombosis [OR= 1.24 {1.18–1.29}]) and arterial thrombosis
(including stroke [OR= 1.11 {1.06–1.16}] and “Acute vascular
insufficiency of intestine” [OR= 1.21 {1.09–1.34}]) (Fig. 4d).
Antithrombin III, another coagulation factor, was associated
with venous disease (Supplementary Fig. 10).

There were also undescribed associations present among
known associations. For instance, among hematologic biomar-
kers: platelet counts were associated with varicose veins (OR=
0.90 [0.85–0.95]) and “poisoning by anti-infectives” (OR= 0.82
[0.73–0.91]); white blood cell counts were associated with anxiety
disorders24 (OR= 1.07 [1.04–1.10]), and chronic bronchitis25

(OR= 1.08 [1.03–1.12]); and monocyte counts were associated
with tonsillitis (OR= 0.85 [0.78–0.93]) and tendon rupture (OR
= 1.17 [1.08–1.25]) (Supplementary Fig. 11). Subscapular skin-
fold thickness was associated with many obesity-related diagnoses
and also two adverse drug phenotypes for opiates (OR= 1.14
[1.07–1.22]) and cortical steroids (OR= 1.17 [1.08–1.27])
(Supplementary Fig. 12).

Feasibility study in African ancestry. There was a small number
of African ancestry (AA) subjects available for analysis. Since
we were insufficiently powered for discovery, we ascertained
how many associations observed in the European ancestry (EA)
analyses had a Bonferonni-adjusted significant association at p
< (0.05/107= 4.67 × 10–4) in an AA cohort. Of the 116 EA
associations with a Bonferroni significance, 107 were available
for testing in the AA cohort. Four associations in the AA
cohort had a significant association. To ascertain whether the
low replication rate could be due to low power, we compared
the direction of association in the AA cohort to the direction in
the EA cohort for all associations with a nominal association p
< 0.1 in the AA cohort (n= 64). Among these, 64/64 (100%)
had the same direction of association as the EA data set, sug-
gesting that more associations would be replicated with a larger
sample size.

Validating an LDL-C genetic association. Genetically predicted
levels of LDL-C were inversely associated with two diagnoses
related to infection: bacteremia (OR= 0.91 [0.87–0.95], FDR p=
0.009) and septicemia (OR= 0.93 [0.90–0.96], FDR p= 0.01)
(Fig. 5a). LDL-C was also associated with T2D with the same
direction of effect. Since infections are a common sequela of T2D,
we stratified the association analysis by T2D status to see whether
this eliminated the associations with the infection diagnoses. In
stratified analyses, the associations were only significant among
subjects with T2D versus nondiabetics (e.g., for septicemia: OR=
0.91 [0.87–0.96], p= 5.3 × 10–4 versus OR= 0.96 [0.91–1.00], p
= 0.057, respectively) (Fig. 5b and Supplementary Table 3). To
ascertain whether these associations could be recapitulated using
directly measured LDL-C levels, we tested for associations
between clinically measured LDL-C levels and the infection
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diagnoses in an independent cohort. Specifically, we tested whe-
ther these associations could be detected by standard epidemio-
logical methods using a previously curated cohort of
22,281 subjects who had either low (LDL-C < 60 mg/dl) and
normal (LDL-C > 90 and <130 mg/dl) cholesterol levels while not
taking lipid-lowering drugs. Similar to the genetic association, low
measured LDL-C, as compared to normal LDL-C was associated
with a decreased risk for both phenotypes (e.g., for septicemia
OR= 3.54 [2.81–4.46], p < 2 × 10–16) (Fig. 5c and Supplementary
table 4). Thus, low LDL-C, as measured by either a genetic pre-
dictor or measured directly, was associated with an increased risk
of severe infection.

Discussion
We examined 53 high quality biomarkers measured in the
ARIC study and identified clinical diagnoses associated with
genetic predictors of those biomarkers. We observed significant
associations with genetic predictors for a broad range of bio-
markers, including plasma proteins, plasma metabolites, func-
tional assays related to clotting and lung function, electrolytes
levels, and behaviors. In discovery-oriented analyses, we

identified an inverse association between genetically predicted
LDL-C levels and septicemia, which was replicated in an
independent EHR-derived epidemiological cohort.

Traditionally, biomarkers have been identified and validated
using prospective studies. While the gold standard approach, the
sample sizes and follow-up times required by prospective studies
are resource-constrained, thereby limiting the number and
diversity of clinical endpoints observed over time. For instance,
the link between hypertension and stroke was reported by the
Framingham study 17 years after the first patient was exam-
ined26,27. We demonstrate an approach which rapidly associates a
putative biomarker with clinical outcomes based on their shared
polygenic architectures. Genetics-based association approaches
are effective because heritable genetic variation represents a life-
long exposure to disease risk. Thus, even modest genetic per-
turbations to homeostatic levels of a causative biomarker are
detectable given the long duration of exposure. Our approach
eliminates the requirement that biomarkers and outcomes be
measured in the same populations, which allows us to sig-
nificantly augment the number of disease associations that can be
tested. Since these data sets can be rapidly developed and, in the
case of EHR data sets, comprise a broad collection of clinically
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recognized outcomes, we can rapidly identify a broad spectrum of
clinical disease associated with a biomarker.

The power of a SNP-based genetic predictor is optimal when it
consists of only those SNPs that modulate the phenotype of
interest. Thus, for phenotypes with existing GWAS conducted
using large sample sizes, predictors based on the highly sig-
nificantly associated SNPs perform well because they capture a
modest amount of the genetic variation and the signal-to-noise
ratio is high. Biomarkers without a proven clinical application,
however, are more likely to be measured in relatively small data
sets. Therefore, we employed an SNP weighting strategy based on
linear mixed models. Mixed modelling approaches are typically
more sensitive than GWAS at capturing the overall additive
genetic SNP effects, especially with small sample sizes28. The
advantages of Bayesian approaches, as used here, are that SNP
weights are assigned based on an empirical estimation of the
underlying genetic architecture and predictors incorporate all
SNPs. These advantages enhance prediction across a range of
genetic architectures and capture the contributions of SNPs with
smaller effect sizes29. A limitation of mixed modelling approaches
is that they require access to individual level data. Alternative
methods, such as LD-regression30 and LDPred31, have been
proposed to capture features of mixed models and leverage
GWAS summary statistics data.

To assess the biological plausibility and validity of our
approach, we examined 42 positive control associations in which
the biomarker and the clinical phenotype were closely related.
The positive control diagnosis was a top PheWAS association for
32 (76%) biomarker-diagnosis pairs, and was frequently the most
significant association. Only 50% of the positive control associa-
tions were significant using a Bonferroni level of significance.
Because the effects of a disease process can manifest across a
range of phenotypes, a disease biomarker will often be associated
with multiple diagnoses. In these instances, the FDR adjustment
procedure is desirable since it is designed to control the family-
wise error-rate in the context of positive regression depen-
dence5,32. Consistently, we found that applying an FDR selection
threshold identified more positive control associations (67%) and
more known biological associations than a Bonferroni correction.
PheWAS is typically used as a hypothesis generating tool, and the
benefit of using an FDR threshold is that it identifies candidate
associations while controlling for the proportion of false dis-
coveries at a given selection threshold. Thus, at an FDR threshold
of 0.1 used in these analyses, we identified far more candidate
associations than when we applied a Bonferonni threshold. By
design, ~10% of associations (n= ~38) are expected to be false-
positives, so further validation of candidate associations, as we
describe for LDL-C below, is essential.
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For biomarkers whose levels fluctuate acutely in clinical set-
tings, such as serum potassium levels and neutrophil counts,
associations with the positive control diagnoses were often not
observed. This is likely due to the fact that these diagnoses often
reflect acute departures from baseline levels, rather than long-
standing homeostatic variability. Some other types of positive
control pairs also did not perform well, such as ankle-brachial
index, a measure of blood flow to the lower extremities, and a
diagnosis of PVD. Possible explanations are that (1) the clinical
phenotypes are not well-ascertained (and, thus, there is high
misclassification), (2) the biomarker is not measured accurately,
or (3) the biomarker or the clinical phenotype does not have a
strong genetic signal. Further analyses in independent data sets
could clarify these possibilities.

Many of the biomarkers that we evaluated are known cardio-
vascular risk factors. This allowed us to demonstrate that we
could rediscover known epidemiologically significant associa-
tions. We found associations in which the biomarker is either a
mediator or direct contributor to disease risk, such as the asso-
ciations between SBP and diagnoses of kidney disease, heart
disease, and stroke33. SBP was also associated with gout, which is
caused by precipitation of uric acid. Pharmacologically lowering
uric acid levels can improve blood pressure18. Waist cir-
cumference had associations with many clinical diagnoses, con-
sistent with epidemiological observations that obesity predisposes
to a broad range of morbidities34. Among these was psoriasis, and
weight loss through either dietary or surgical approaches has been
shown to markedly attenuate psoriasis severity20.

We also identified patterns of associations indicative of shared
regulatory mechanisms among diseases and the biomarker. A
genetic predictor of serum magnesium levels was associated with
two disorders of calcium: chondrocalcinosis and kidney stones,
implicating a link between magnesium and calcium regulation.
Studies of Mendelian diseases point to shared mechanisms of
coregulation for these factors. For instance, the disease Familial
hypomagnesemia with hypercalciuria and nephrocalcinosis is
caused by mutations in claudin-16, which leads to magnesium
and calcium wasting and kidney stones35. The translational utility
of establishing an epidemiological association between magne-
sium and calcium homeostasis is evidenced by current clinical
practice standards, which include the evaluation and correction of

magnesium deficits for the treatment of hypocalcemia36. We
also observed associations between predicted pack-years of
smoking and diagnoses of tobacco-use, alcohol-use and obesity,
suggesting that the genetic predictor of smoking behavior is
capturing addiction or reward mechanisms related to eating and
drinking behaviors37. These findings suggest that treatments,
which are effective for treating one of these behaviors may also be
effective for the others.

We observed a number of undescribed associations that met
the FDR criteria. For instance, there was an inverse association
between tonsillitis risk and a predictor of monocyte counts, a
subset of white blood cells. It has been previously shown that
the ratio of peripheral lymphocytes to WBCs can differentiate
between tonsillitis caused by mononucleosis and tonsillitis
caused by bacteremia38. Hence, the monocyte count biomarker
may be capturing a similar pattern of changes to the monocyte
cellular fraction which reflect a genetically mediated predis-
position toward infection. We also observed associations with
pharmacogenomic phenotypes. Genetically predicted platelet
levels were inversely associated with a diagnosis of “poisoning
by other anti-infectives”. Thrombocytopenia (low platelets) is a
complication associated with a range of medications including
antibiotics, NSAIDS and anticoagulants39,40. Possible mechan-
isms accounting for the association we observed are that some
antibiotics may modulate genetic mechanisms regulating pla-
telet homeostasis or that individuals genetically predisposed to
lower levels of platelets at baseline are more likely to drop
below the clinically defined threshold defining thrombocyto-
penia. We also found that subscapular skin-fold thickness was
inversely associated with adverse reactions to narcotics and
adrenal steroids. The effects of steroids on skin, including
inducing purpura and lipodystropy (thinning of the skin), are
well described. However, a mechanism relating adverse effects
of opiates to skin phenotypes is not clear.

There were a number of biomarkers for which both higher and
lower predicted levels were associated with clinical diagnoses. The
clinical relevance of this pattern of association is that it provides
insights into potential adverse effects that may be associated with
modulating the biomarker. For instance, higher levels of predicted
LDL-C were associated with a diagnosis of hyperlipidemia and
lower levels were associated with increased T2D risk, an
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association that has been previously reported41. Consistent with
these findings, lowering cholesterol using a statin drug is asso-
ciated with an increased risk of T2D42. This inverse genetic
relationship was also manifest in the skewness analysis, which
showed that the LDL-C predictor, which demonstrated the
strongest negative skewing, had a skewness value of similar
magnitude, but opposite direction, as a T2D predictor (−1.15
versus 0.98).

Because a genetic predictor only captures a small portion of the
phenotypic variability, it cannot substitute for the directly mea-
sured value of the biomarker in a clinical setting. We observed that
predicted LDL-C levels were also inversely associated with septi-
cemia risk. Since LDL-C measurements are frequently available
and easily measured in clinical settings, we evaluated the plausi-
bility of this candidate association by ascertaining whether clini-
cally measured LDL-C levels were associated with infection risk.
We confirmed the genetic association by showing that low levels of
measured LDL-C were associated with diagnoses of bacteremia and
septicemia. The epidemiological association was stronger than the
genetic association and was not suggestive of an interaction with
T2D status. The stronger association observed with direct mea-
surement suggests that both the genetic and environmental mod-
ulators of LDL-C variability impact septicemia risk similarly. Thus,
a direct measurement of LDL-C, which captures both genetic and
environmental risk, would be expected to be more predictive than a
proxy that only captures genetic risk. A similar association was
seen in the prospective REGARDS population cohort (n=
30,239 subjects), in which it was found that individuals with lower
baseline LDL-C levels had the highest risk of incident sepsis43.
While a mechanism accounting for these findings is not known,
the authors note that LDL-C is involved in clearance of bacterial
toxins, as lipid-based pathogens bind to proteins which are
transferred to LDL-C particles and are ultimately taken up by the
liver44. Hence, our findings provide independent support that
LDL-C level is a biomarker of infection risk.

There are several limitations to this study. PheWAS pheno-
types are derived from EHR billing codes rather than a systematic
ascertainment of a diagnosis. This can lead to misclassification,
especially among the controls, which can attenuate the strength of
associations. While the genetic predictors were designed to cap-
ture the variation of the ARIC biomarkers, an association between
the classifier and diagnosis does not necessarily indicate that
phenotypic variation in the biomarker is associated with the
diagnosis, as it is possible that SNPs predictors are tagging var-
iants that predispose to the clinical diagnosis through different
genetic mechanisms45. Some biomarkers may not have a large
genetic component, preventing the use of this approach. The
Benjamini–Hochberg (B–H) FDR method used in these analyses
may have an erroneous type 1 error rate if the pattern of asso-
ciations violates the positive regression dependence assumption.
We did not have sufficient subjects to fully validate our approach
in other ancestries. We performed a feasibility analysis using
available non-EA subjects and demonstrate that the approach
recapitulates some expected results in AA populations. Further
validation with large sample sizes is needed to more fully define
its utility across ancestries. These analyses do not meet the criteria
of a Mendelian Randomization experiment, a subclass of genetic
association studies which seek to establish a causal association
between a biomarker and an outcome7,46. Thus, similar to an
epidemiological or genetic correlation study, we also do not claim
causality for the associations that we report. Ultimately, pro-
spective studies will be needed to validate associations, such as
that between LDL levels and infection, which this methodology
identifies.

In summary, we developed polygenic SNP predictors for bio-
markers measured in the ARIC prospective study and associated

these with clinical diagnoses derived from a large EHR data set.
We were able to efficiently recapitulate known epidemiological
associations and identify additional associations. We anticipate
this study design will become an important mechanism to rapidly
identify clinical outcomes that may be associated with putative
biomarkers, which will enhance the translation of these bio-
markers into clinical practice.

Methods
Study populations. The ARIC population comprises 13,113 genotyped adult
subjects participating in the NHLBI-funded Atherosclerosis Risk in Communities
longitudinal study designed to investigate the natural history of cardiovascular and
atherosclerotic diseases12. Study subjects were recruited between 1987 and 1989
from four U.S. communities: Minneapolis, MN, Washington County, MD, Forsyth
County, NC, and Jackson, MS. Genetic and phenotypic data were obtained from
dbGaP (phs000280.v3.p1). For the primary analyses, only unrelated ARIC subjects
of EA, defined as having >90% probability of being in the HapMap CEU cluster
using STRUCTURE47 in conjunction with ancestry informative markers, were
analyzed (n= 7740).

The primary EHR population was derived from the eMERGE Phase I and II
Network (n= 16,923), a consortium of medical centers using EHRs as a tool for
genomic research, and from Vanderbilt University Medical Center’s (VUMC)
BioVU resource (n= 20,230) (Supplementary Table 5)13,48. The participating
eMERGE sites were Geisinger Health System, VUMC, Marshfield Clinic,
Northwestern University, Mayo Clinic and Kaiser Permanente/University of
Washington, Seattle. BioVU is a deidentified collection of patients whose DNA was
extracted from discarded blood and linked to phenotypes through a deidentified
EHR49. The additional BioVU subjects were not part of eMERGE and had been
previously genotyped. All subjects were born prior to 1990 and fell within four
standard deviations for each of the first two principal components based on
common SNPs for the subset of subjects self-identified as “White, non-Hispanic”.
Principal component analyses visualizing the ARIC and EHR populations with
respect to HAPMAP populations are shown in Supplementary Fig. 13.

The eMERGE study was approved by the Institutional Review Board (IRB) at
each site, including VUMC’s IRB13,49.

Genetic data. SNP genotype data were acquired on the Illumina Human660W-
Quadv1_A, HumanOmni1-Quad, HumanOmni5-Quad, MEGA-EX, Human610,
Human550, HumanOmniExpressExome-8v1.2A, and Affymetrix 6.0 SNP array
platforms (Supplementary Table 6). Quality control (QC) steps for the EHR data
sets included reconciling strand flips, verifying that allele frequencies were con-
cordant among data sets, and identifying duplicate and related individuals50,51. QC
for the ARIC data set followed the guidelines accompanying the dbGaP release,
including removing SNPs with chromosomal anomalies and with >5 discordant
calls in replicate samples and using a predefined subset of unrelated subjects. QC
analyses used PLINK v 1.90β352. Prior to imputation, data sets were standardized
using the HRC-1000G-check tool v4.2.5 (http://www.well.ox.ac.uk/wrayner/tools/).
SNPs were then pre-phased using SHAPEIT53, imputed using IMPUTE254 in
conjunction with the 10/2014 release of the 1000 Genomes cosmopolitan reference
haplotypes. All platforms were imputed to the 1000G standard which comprises
~80,000,000 common and rare SNPs. Imputed data were filtered for a sample
missingness rate <2%, a SNP missingness rate <4% and a SNP deviation from
Hardy–Weinberg < 0.0001. The final analytic data set comprised a LD-reduced (r-
square > 0.9) set of 739,681SNPs with MAF > 1% present on all platforms (the EHR
data sets had 7,218,081SNPs, the ARIC data set had 7,254,201 SNPs and their
intersection had 5,701,931 SNPs). Principal components were generated using the
SNPRelate package55.

Biomarker and phenotype data. In the ARIC data set, 53 biomarkers representing
a range of laboratory, biometric, and other measurements were used to construct
SNP-based predictors (shown in Supplementary Data 4). In order to assess whether
genetic predictors based on the ARIC biomarkers appropriately associated with
similar clinical diagnoses in the EHR data set, one or more positive control clinical
diagnoses were identified for 42 of the ARIC biomarkers (Supplementary Table 2).
For 25 of these positive controls, the ARIC biomarker represented the disease-
defining continuous measure for a clinical diagnosis (e.g., hypertension is defined
as a SBP > 140mmHg) and for the other 17, the ARIC biomarker was linked to the
clinical diagnoses based on its known biology (e.g., aPTT as a potential biomarker
for diagnoses of thromboses). For a number of biomarkers, multiple closely-related
clinical diagnoses were selected as potential positive controls.

EHR clinical phenotypes were based on phecodes (https://phewas.mc.
vanderbilt.edu/), which are collections of related ICD-9-CM (International
Classification of Disease, Ninth revision) diagnosis codes4,5. For each phenotype,
cases are subjects with one or more instances of the code appearing in their
medical record. Any eMERGE site which had fewer than 10 cases for a given
phenotype was excluded for that phenotype. Phenotypes that only affected a
single gender were not included in these analyses. There were 1139 clinical
phenotypes with ≥300 cases in the EHR data set that were used in the PheWAS
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analyses. Controls were subjects without the clinical phenotype or any closely
related phecodes and whose decade of birth fell within the range of birth decades
observed among cases.

Statistics. BSLMM, as implemented in the GEMMA v0.95α package56, was used to
construct SNP classifiers for each of the 53 ARIC biomarkers. BSLMM employs a
hybrid of generalized linear mixed modelling and sparse regression models11 and
estimates the proportion of variance explained by a set of SNPs as well as the
distribution of effect sizes for the SNPs. It then jointly models the contribution of
all SNPs to the observed phenotypic variance. Parameters estimated by the mod-
elling approach that are reported here are the proportion of additive phenotype
variance explained by all SNPs (PVE), proportion of genetic variance explained by
SNPs with relatively larger effect sizes (PGE) and the estimated number of large-
effect SNPs modulating the phenotype. For each ARIC biomarker, 100,000 sam-
pling steps were run and the parameter estimates reported are the median from the
last 50,000 iterations57. The posterior SNP weight estimates generated by this
approach were used to compute genetically predicted values for each of the ARIC
biomarkers. To estimate how much of the genetic variance is explained by a
biomarker predictor, a subset of 500 ARIC subjects was randomly removed and the
BSLMM model was fit using the remaining subjects. The genetically predicted level
of the biomarker was estimated in the 500 removed subjects, and the variance of
the measured phenotype that was explained by the predicted level was calculated.
The %PVE is defined as (variance explained by the biomarker/PVE)*100.

To compute the genetically predicted values for each biomarker within the EHR
data set, each biomarker phenotype was first adjusted for age, sex, and two PCs
using linear regression. BSLMM was then used to generate SNP weights (w) using
the regression residuals. For each SNP, BSLMM computes both a small polygenic
effect (α), a large effect (β) and a posterior probability that the SNP is in the large
effect group (γ) based on the underlying genetic architecture for the phenotype, as
determined by the Bayesian algorithm. The SNP weight is computed using the
equation: w= α+ βγ. These weights were used to compute a genetically predicted
value of the ARIC biomarker for each individual in the EHR data set taking the
sum of the SNP genotype (coded as 0, 1, or 2) multiplied by its corresponding
weight across all SNPs:

Predicted phenotype ¼
X#SNPs

i¼1

wi ´ SNP genotype½ �i
� � ð1Þ

A PheWAS analysis was then performed using each genetically predicted
biomarker and serially testing its association with each PheWAS phenotype using
multivariable logistic regression, adjusting for three PCs, birth decade, sex,
eMERGE site, and genotyping platform. The genetically predicted phenotypes
values were standardized to have a standard deviation of 1, so ORs reflect the risk
per standard deviation (s.d.) increase in the genetically predicted biomarker value
(which is not equivalent to a s.d. increase in the original biomarker). Association
analyses used SAS v9.3 (SAS Institute, Cary, NC). To adjust for multiple testing, we
applied a strict Bonferroni correction and associations with p < (0.05 < [53 × 1139]
= ~8.28 × 10−7) were considered significant. In discovery-oriented analysis, we
examined associations with aa B–H FDR58 q value < 0.1 (a threshold often applied
to PheWAS analyses5).

Some PheWAS analyses appeared to yield more positive than negative (or vice
versa) associations. In order to measure the extent to which the logistic regression
coefficients (Beta) from a pheWAS analysis were positively or negatively skewed
away from 0 (corresponding to an OR of 1), a skewness statistic was computed
using the equation:

Skewness ¼ P
Betað Þ3=n� �

=
P

Betað Þ2=n� �3=2

where n ¼ the number of pheWAS phenotypes

and Beta is the regression coefficient:

Since this analysis was used to ascertain the extent to which genetically
predicted phenotypes had nonsignificant associations with the PheWAS
phenotypes, the analyses included additional pheWAS phenotypes for which there
was low power to detect an association due to low case counts (>150 cases, n=
1318 total phenotypes). To eliminate the influence of strong associations,
associations with FDR q < 0.1 were excluded from the analysis.

Feasibility study in AA. Both the ARIC and EHR data sets contained an
insufficient number of subjects of non-EA to conduct a well-powered analysis
using those populations. However, we did assess the feasibility of this approach
in other ancestries by conducting a parallel analysis in self-reported black sub-
jects and ascertained how many of the significant associations identified in the
EA population were observed in non-EA population had a Bonferroni-adjusted
association p < 0.05. ARIC and eMERGE subjects who fell within four standard

deviations of the first two PCs for EHR subjects self-identified as “Black” were
used. There were 2703 unrelated ARIC and 8552 eMERGE subjects (Supple-
mentary Table 1) available for analysis. For these analyses, eMERGE data were
imputed using the Michigan Imputation Server (HRC v1.1)59. This reference
panel is enriched for individuals of EA, and also includes the diverse ancestries
from the 1000 Genomes populations (n= 2495)60. Data were available for 52 of
the 53 ARIC biomarkers. Due to smaller number of subjects in the EHR data set,
PheWAS diagnoses with >100 cases (rather than >300) were analyzed. While 52
ARIC biomarkers were analyzed, for 19 of 52 biomarkers, the BSLMM model
was not able to optimize the hyper-parameters (likely due to small sample sizes
which can affect its performance). There were nine significant diagnosis-
biomarker associations observed in the EA analysis for which the diagnosis was
not available in this cohort.

Epidemiological replication. As described, we identified an association between
genetically predicted LDL cholesterol levels and infection phenotypes. To
determine whether this finding could be recapitulated using directly measured
LDL-C levels, we used a cohort of 28,753 subjects previously extracted from
VUMC’s deidentified EHR to test for an epidemiological association between
low LDL-C cholesterol levels and the PheWAS diagnoses for “Bacteremia”
(phecode 38.3) and “Septicemia” (phecode 38). All subjects had one or more
outpatient LDL-C measurements that were not taken while the patient was on a
lipid-lowering medication. For subjects with multiple LDL-C measurements, the
median of all measurements was used in the analyses. “Low LDL-C” subjects had
a median LDL-C < 60 mg/dl and “Normal LDL-C” subjects had a median value
between 90 and 130 mg/dl. Analyses were limited to subjects born before 1990
and excluded 766 subjects who were included in the genetic association analyses.
After exclusions, there were 22,281 subjects available for analysis. Age, gender,
self-reported race and type 2 diabetes (T2D) case/control status based on Phe-
WAS codes were available for each subject (Supplementary Table 7). Logistic
regression analyses were used to test the association between the infection
diagnoses and LDL-C (low versus normal). Analyses were stratified by T2D
status and adjusted for age, gender, and race. A p value < 0.05 was considered
statistically significant.

Data availability. All ARIC data are available through dbGaP (phs000280.v3.p1).
Much of the eMERGE data presented here is also available through dbGaP
(phs000360.v3.p1), and the remaining is under preparation for deposition.
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